

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx534f064ht-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 13: PIN NAMES FOR 124-PIN USB, ETHERNET, AND CAN DEVICES (CONTINUED)

124	4-PIN VTLA (BOTTOM VIEW) ^(2,3)			A3	4
		B13	B29		Conductive Thermal Pad
	PIC32MX675F512L PIC32MX695F512L PIC32MX795F512L	B1	B56	B41	A51
	A1				
	Polarity Indicator		A68		
Package Bump #	Full Pin Name		Package Bump #	F	ull Pin Name
B8	Vss		B33	TDO/RA5	
B9	TMS/RA0		B34	OSC1/CLKI/RC	212
B10	AERXD1/INT2/RE9		B35	No Connect (N	C)
B11	AN4/C1IN-/CN6/RB4		B36	AETXCLK/SCL	.1/INT3/RA14
B12	Vss		B37	RTCC/EMDIO/	AEMDIO/IC1/RD8
B13	AN2/C2IN-/CN4/RB2		B38	SCK1/IC3/PMC	CS2/PMA15/RD10
B14	PGED1/AN0/CN2/RB0		B39	SDO1/OC1/INT	[0/RD0
B15	No Connect (NC)		B40	SOSCO/T1CK/	CN0/RC14
B16	PGED2/AN7/RB7		B41	Vss	
B17	VREF+/CVREF+/AERXD3/PMA6/RA10		B42	OC3/RD2	
B18	AVss		B43	ETXD2/IC5/PN	ID12/RD12
B19	AN9/C2OUT/RB9		B44	OC5/PMWR/CI	N13/RD4
B20	AN11/ERXERR/AETXERR/PMA12/RB11		B45	ETXEN/PMD14	4/CN15/RD6
B21	Vdd		B46	Vss	
B22	AC1TX/SCK4/U5TX/U2RTS/RF13		B47	No Connect (N	C)
B23	AN12/ERXD0/AECRS/PMA11/RB12		B48	VCAP	
B24	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14		B49	C1RX ⁽¹⁾ /ETXD	1/PMD11/RF0
B25	Vss		B50	C2TX ⁽¹⁾ /ETXE	RR/PMD9/RG1
B26	AETXD0/SS3/U4RX/U1CTS/CN20/RD14		B51	TRCLK/RA6	
B27	SDA5/SDI4/U2RX/PMA9/CN17/RF4		B52	PMD0/RE0	
B28	No Connect (NC)		B53	Vdd	
B29	SCL3/SDO3/U1TX/RF8		B54	TRD2/RG14	
B30	VUSB3V3		B55	TRD0/RG13	
B31	D+/RG2		B56	PMD3/RE3	

This pin is only available on PIC32MX795F512L devices. Note 1:

2:

Shaded package bumps are 5V tolerant. It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout. 3:

TABLE 1-1	: PINOU	T I/O DES		NS (CONT)					
		Pin Nun	nber ⁽¹⁾		Pin	Buffer				
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Туре	Туре	Description			
PMD0	60	93	A4	B52	I/O	TTL/ST	Parallel Master Port data			
PMD1	61	94	B4	A64	I/O	TTL/ST	(Demultiplexed Master mode) or			
PMD2	62	98	B3	A66	I/O	TTL/ST	address/data (Multiplexed Master modes)			
PMD3	63	99	A2	B56	I/O	TTL/ST	nodes)			
PMD4	64	100	A1	A67	I/O	TTL/ST				
PMD5	1	3	D3	B2	I/O	TTL/ST				
PMD6	2	4	C1	A4	I/O	TTL/ST				
PMD7	3	5	D2	B3	I/O	TTL/ST				
PMD8	—	90	A5	A61	I/O	TTL/ST				
PMD9	—	89	E6	B50	I/O	TTL/ST				
PMD10	—	88	A6	A60	I/O	TTL/ST				
PMD11	_	87	B6	B49	I/O	TTL/ST				
PMD12	_	79	A9	B43	I/O	TTL/ST				
PMD13	_	80	D8	A54	I/O	TTL/ST				
PMD14	_	83	D7	B45	I/O	TTL/ST				
PMD15	_	84	C7	A56	I/O	TTL/ST				
PMALL	30	44	L8	A29	ο	_	Parallel Master Port address latch enable low byte (Multiplexed Master modes)			
PMALH	29	43	К7	B24	0	_	Parallel Master Port address latch enable high byte (Multiplexed Master modes)			
PMRD	53	82	B8	A55	0	_	Parallel Master Port read strobe			
PMWR	52	81	C8	B44	0	_	Parallel Master Port write strobe			
VBUS	34	54	H8	A37	I	Analog	USB bus power monitor			
VUSB3V3	35	55	H9	B30	Р	_	USB internal transceiver supply. If the USB module is <i>not</i> used, this pin mus be connected to VDD.			
VBUSON	11	20	H1	A12	0	_	USB Host and OTG bus power contro output			
D+	37	57	H10	B31	I/O	Analog	USB D+			
D-	36	56	J11	A38	I/O	Analog	USB D-			
USBID	33	51	K10	A35	Ι	ST	USB OTG ID detect			
C1RX	58	87	B6	B49	I	ST	CAN1 bus receive pin			
C1TX	59	88	A6	A60	0		CAN1 bus transmit pin			
AC1RX	32	40	K6	A27	I	ST	Alternate CAN1 bus receive pin			
AC1TX	31	39	L6	B22	0	—	Alternate CAN1 bus transmit pin			
C2RX	29	90	A5	A61	I	ST	CAN2 bus receive pin			
	21	89	E6	B50	0	—	CAN2 bus transmit pin			
C2TX			1	1	1		Alternate CAN2 bus receive pin			

PINOLIT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator

bit 0 **OSWEN:** Oscillator Switch Enable bit

- 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit Bit 28/20/12/4 27/19/11/3		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	DCRCDATA<31:24>													
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23.10	DCRCDATA<23:16>													
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	DCRCDATA<15:8>													
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				DCRCDA	ΓA<7:0>									

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31.24	DCRCXOR<31:24>													
00.40	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	DCRCXOR<23:16>													
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	DCRCXOR<15:8>													
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				DCRCXO	R<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

1 = Enable the XOR input to the Shift register

0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—		—				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	—	—	—		—				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHCSIZ<15:8>											
7.0	R/W-0	R/W-0 R/W-0 R		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHCSIZ	/<7:0>							

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

111111111111111 = 65,535 bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	—	—	—	—	—	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	—	—	—	—	—					
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
15:8	CHCPTR<15:8>												
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0 R-0	R-0					
7:0				CHCPTF	R<7:0>								

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess											Bits								
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
53A0	U1EP10	31:16	_	_	_	_	_	—	_	_		_	—	—	-		_	_	0000
55A0	U1EP10	15:0	—	—	_	_	_	—	_	_	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	-	_	_			_				_	_	—			_		0000
5560		15:0	-	_	_			_				-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	Ι	_		-		_			_	—	—	_	-	-	_	-	0000
5300	UTEPTZ	15:0	Ι	-	_	_	_	-	_	_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5200		31:16		_	_	—	_	-	—	—	_	-	—	—	—	_	_	_	0000
53D0	U1EP13	15:0	Ι	-	_	_	_	-	_	_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
		31:16		_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_	_	_	—	_	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		-	_	_	_	-	_	—	_			—	-	0000
53F0	U1EP15	15:0	_	—	—	-		_	-	—		_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1:

All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

This register does not have associated SET and INV registers. 2:

3: This register does not have associated CLR, SET and INV registers.

Reset value for this bit is undefined. 4:

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_			_			—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	_	_	—	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_			_		_	_

REGISTER 12-1: CNCON: CHANGE NOTICE CONTROL REGISTER

Legend:

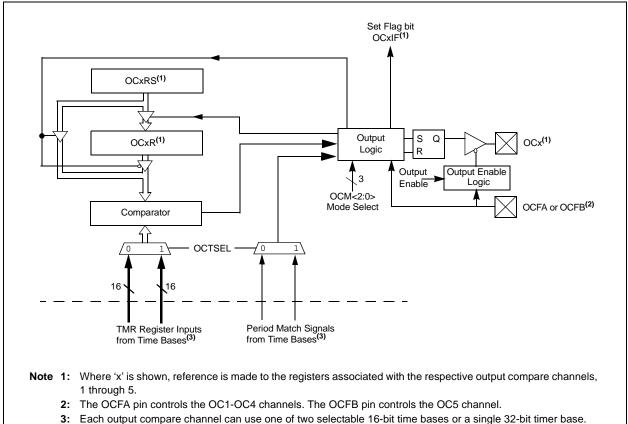
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle mode does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

NOTES:

17.0 OUTPUT COMPARE


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16.** "Output Compare" (DS60001111) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4			Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
31:24	—	—	—	RXBUFELM<4:0>					
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
23:16	—	—	—	TXBUFELM<4:0>					
45.0	U-0	U-0	U-0	U-0	R-0	U-0	U-0	R-0	
15:8	—	—	—	_	SPIBUSY	_	_	SPITUR	
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0	
7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF	

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	C = Clearable bit HS = Set in hardware	
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as the	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (only valid when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (only valid when ENHBUF = 1)
- bit 15-12 Unimplemented: Read as '0'
- bit 11 SPIBUSY: SPI Activity Status bit 1 = SPI peripheral is currently busy with some transactions 0 = SPI peripheral is currently idle
 - Unimplemented: Read as '0'
- bit 10-9
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

- bit 7 **SRMT:** Shift Register Empty bit (only valid when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can only be cleared (= 0) in software.
- bit 5 **SPIRBE:** RX FIFO Empty bit (only valid when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'
- bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB is empty
 - 0 = Transmit buffer, SPIxTXB is not empty
 - Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.
 - Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
- bit 2 Unimplemented: Read as '0'

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽²⁾
 - 1 = Active-high (PMCS1)
 - $0 = \text{Active-low}(\overline{\text{PMCS1}})$
- bit 2 Unimplemented: Read as '0'
- bit 1 WRSP: Write Strobe Polarity bit
 - For Slave Modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Write strobe active-high (PMWR)
 - $0 = Write strobe active-low (\overline{PMWR})$

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Enable strobe active-high (PMENB)
- 0 = Enable strobe active-low (PMENB)
- bit 0 RDSP: Read Strobe Polarity bit
 - For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Read Strobe active-high (PMRD)
 - $0 = \text{Read Strobe active-low } (\overline{\text{PMRD}})$

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Read/write strobe active-high (PMRD/ \overline{PMWR})
- 0 = Read/write strobe active-low (PMRD/PMWR)
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31:24		HR10-	<3:0>			HR01	<3:0>	
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16		MIN10	<3:0>	MIN01<3:0>				
45-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8		SEC10	<3:0>		SEC01<3:0>			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	—	—	—	—	—	—	—	—
Legend:								
R = Readable bit			W = Writable	e bit	U = Unimplemented bit, read as '0'			

REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

IX – IXeauable bit			it, read as 0
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 31-28 HR10<3:0>: Binary-0	Coded Decimal Value of Hou	rs bits, 10 digits; contains a	value from 0 to 2

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits, contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9
bit 17-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

REGISTER 24-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4 (CONTINUED)

	(
bit 15	FLTEN17: Filter 13 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL17<1:0>: Filter 17 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL17<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN16: Filter 16 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL16<1:0>: Filter 16 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL16<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
r	

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 25-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_		—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0		_			_	_	SCAN	READ

Legend:

5						
R = Readable bit	able bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-2 Unimplemented: Read as '0'

- bit 1 SCAN: MII Management Scan Mode bit
 - 1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)
 - 0 = Normal Operation

bit 0 READ: MII Management Read Command bit

- 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
- 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24			—	_	—	—	-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	_	_	—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	—		LINKFAIL	NOTVALID	SCAN	MIIMBUSY

Legend:

5				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	1

bit 31-4 Unimplemented: Read as '0'

bit 3 LINKFAIL: Link Fail bit

When '1' is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register.

bit 2 NOTVALID: MII Management Read Data Not Valid bit When '1' is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid.

bit 1 SCAN: MII Management Scanning bit When '1' is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress.

bit 0 MIIMBUSY: MII Management Busy bit

When '1' is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

31.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

31.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

31.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

31.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

DC CHA	DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No. Symbol Characteristics			Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
D130	Ер	Cell Endurance	1000	_	_	E/W	_		
D130a	Ер	Cell Endurance	20,000			E/W	See Note 5		
D131	Vpr	VDD for Read	2.3	—	3.6	V	—		
D132	Vpew	VDD for Erase or Write	3.0	—	3.6	V	—		
D132a	Vpew	VDD for Erase or Write	2.3	_	3.6	V	See Note 5		
D134	Tretd	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	—	10	_	mA	_		
D138	Tww	Word Write Cycle Time ⁽⁴⁾	—	411	_	FRC Cycles			
D136	Trw	Row Write Cycle Time ^(2,4)	_	26067	_	FRC Cycles			
D137	TPE	Page Erase Cycle Time ⁽⁴⁾	_	201060		FRC Cycles			
D139	TCE	Chip Erase Cycle Time ⁽⁴⁾	_	804652		FRC Cycles	—		

TABLE 32-11: DC CHARACTERISTICS: PROGRAM MEMORY⁽³⁾

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

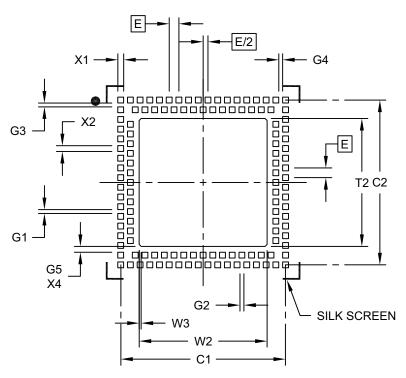

- **3:** Refer to *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.
- 4: This parameter depends on the FRC accuracy (see Table 32-19) and the FRC tuning values (see Register 8-2).
- **5:** This parameter only applies to PIC32MX534/564/664/764 devices.

TABLE 32-12: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS

DC CHARACTERISTICS				
Required Flash Wait States	SYSCLK	Units	Comments	
0 Wait State	0 to 30	MHz	—	
1 Wait State	31 to 60			
2 Wait States	61 to 80			

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimensior	Limits	MIN	NOM	MAX
Contact Pitch E		0.50 BSC		
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)				0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A

APPENDIX B: REVISION HISTORY

Revision A (August 2009)

This is the initial released version of this document.

Revision B (November 2009)

The revision includes the following global update:

Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits.

Other major changes are referenced by their respective chapter/section in Table B-1.

Section Name	Update Description		
"High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers"	Added the following devices: - PIC32MX575F256L - PIC32MX695F512L		
	 PIC32MX695F512H The 100-pin TQFP pin diagrams have been updated to reflect the current pin name locations (see the "Pin Diagrams" section). 		
	Added the 121-pin Ball Grid Array (XBGA) pin diagram.		
	Updated Table 1: "PIC32 USB and CAN – Features"		
	Added the following tables:		
	 Table 4: "Pin Names: PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L and PIC32MX575F512L Devices" 		
	 Table 5: "Pin Names: PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L and PIC32MX695F512L Devices" 		
	 Table 6: "Pin Names: PIC32MX775F256L, PIC32MX775F512L and PIC32MX795F512L Devices" 		
	Updated the following pins as 5V tolerant:		
	- 64-pin QFN: Pin 36 (D-/RG3) and Pin 37 (D+/RG2)		
	 64-pin TQFP: Pin 36 (D-/RG3) and Pin 37 (D+/RG2) 100-pin TQFP: Pin 56 (D-/RG3) and Pin 57 (D+/RG2) 		
1.0 "Guidelines for Getting Started	Removed the last sentence of 1.3.1 "Internal Regulator Mode".		
with 32-bit Microcontrollers"	Removed Section 2.3.2 "External Regulator Mode"		

TABLE B-1: MAJOR SECTION UPDATES