

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx534f064ht-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

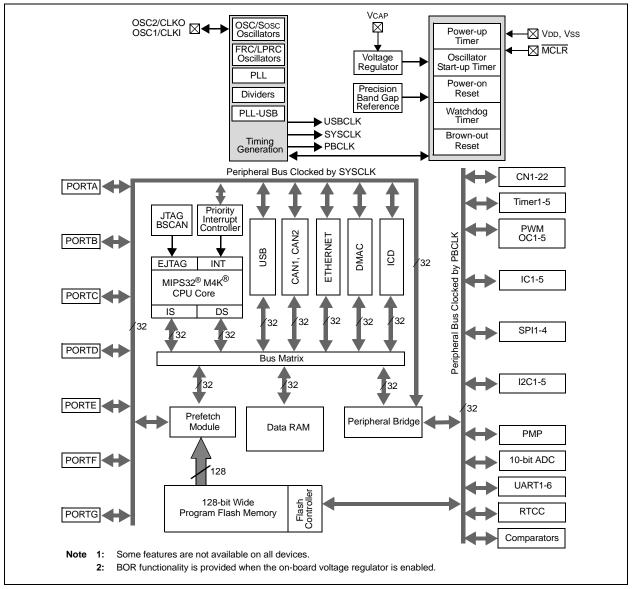
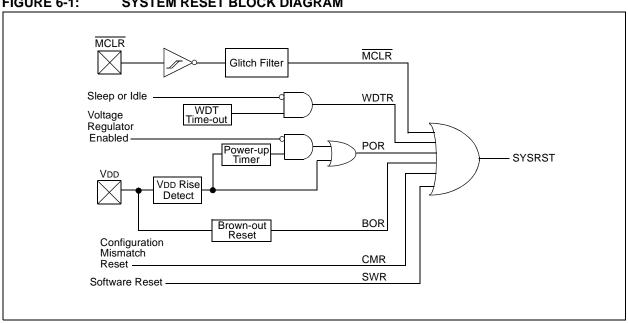

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

FIGURE 1-1: BLOCK DIAGRAM^(1,2)

This document contains device-specific information for PIC32MX5XX/6XX/7XX devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX5XX/6XX/7XX family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.


6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES (CONTINUED)

ess										Bi	its														
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets						
10D0	IPC4	31:16	_	—	-		INT4IP<2:0>		INT4IS	S<1:0>	_	—	-		OC4IP<2:0>		OC4IS<1:0>		0000						
1000	IPC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		T4IP<2:0>		T4IS-	<1:0>	0000						
4050	IPC5	31:16	—	_	_		SPI1IP<2:0>		SPI1IS	6<1:0>	_	_	_		OC5IP<2:0>		OC5IS	S<1:0>	0000						
10E0	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS	<1:0>	-		_		T5IP<2:0>		T5IS-	<1:0>	0000						
		31:16	_	_	_		AD1IP<2:0>		AD1IS	S<1:0>	_	_	_		CNIP<2:0>		CNIS	<1:0>	0000						
10F0	IPC6														U1IP<2:0>		U1IS-	<1:0>							
IUFU	IFCO	15:0	—	—	—		I2C1IP<2:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1		—	—	—		SPI3IP<2:0>	•	SPI3IS	S<1:0>	0000
														I2C3IP<2:0>		I2C3IS<1:0>									
							U3IP<2:0>		U3IS	U3IS<1:0>															
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>		SPI2IS	S<1:0>	—	—	—	CMP2IP<2:0>		CMP2IS<1:0>		0000							
1100	11 07						I2C4IP<2:0>		12C415	S<1:0>															
		15:0	_			(CMP1IP<2:0	>	CMP1I	S<1:0>	_	_		PMPIP<2:0>		PMPIS<1:0>		0000							
		31:16	_			F	RTCCIP<2:0	>	RTCCIS<1:0>		_	_		I	FSCMIP<2:0	>	FSCMIS<1:0>		0000						
1110	IPC8														U2IP<2:0>		U2IS<1:0>								
1110	11 00	15:0	—	—	—		I2C2IP<2:0>		12C215	6<1:0>	—	—	—		SPI4IP<2:0>		SPI4IS	S<1:0>	0000						
															I2C5IP<2:0>		12C515	S<1:0>							
1120	IPC9	31:16	_	_			DMA3IP<2:0		DMA3I	S<1:0>	_				DMA2IP<2:0		DMA2I	S<1:0>	0000						
1120	11 03	15:0	_	_			DMA1IP<2:0		DMA1I		_				DMA0IP<2:0		DMA0I	S<1:0>	0000						
1130	IPC10	31:16	—	—	—	DI	MA7IP<2:0>	(2)	DMA7IS	i<1:0> ⁽²⁾	—	_	—	D	MA6IP<2:0>	(2)	DMA6IS	<1:0> ⁽²⁾	0000						
1130	11 010	15:0	—	—	—	DI	MA5IP<2:0>	(2)	DMA5IS<1:0> ⁽²⁾		_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	<1:0> ⁽²⁾	0000						
1140	IPC11	31:16	—	-	_	_	_		_				_	_	—		—		0000						
1140	IFCII	15:0	—	—	—		USBIP<2:0>		USBIS	S<1:0>	_	_	—	FCEIP<2:0>		FCEIS	<1:0>	0000							
1150	IPC12	31:16	_	_	-		U5IP<2:0>		U5IS-	<1:0>	_		-	U6IP<2:0>		U6IS<1:0>		<1:0>	0000						
1150	IFUIZ	15:0	_	-			U4IP<2:0>		J4IP<2:0> U4IS<1:0> ETHIP<2:0>			ETHIS<1:0>		0000											

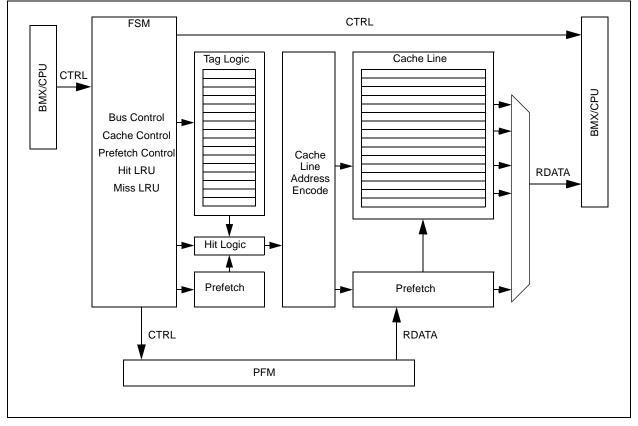
Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX664 devices.

3: This register does note have associated CLR, SET, and INV registers.

9.0 PREFETCH CACHE


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Prefetch Cache" (DS60001119) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching.

9.1 Features

- 16 fully-associative lockable cache lines
- 16-byte cache lines
- Up to four cache lines allocated to data
- Two cache lines with address mask to hold repeated instructions
- Pseudo-LRU replacement policy
- All cache lines are software writable
- 16-byte parallel memory fetch
- Predictive instruction prefetch

A simplified block diagram of the Prefetch Cache module is illustrated in Figure 9-1.

FIGURE 9-1: PREFETCH CACHE MODULE BLOCK DIAGRAM

14.2 Control Registers

TABLE 14-1:	TIMER2 THROUGH TIMER5 REGISTER MAP

		••																	
ess										В	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0800	T2CON	31:16	—	_	—	—		—			—	—	—		—	-	—		0000
0800	12001	15:0	ON	_	SIDL	_	-	—	1		TGATE		TCKPS<2:0>		T32		TCS ⁽²⁾		0000
0810	TMR2	31:16	_	—	—	—	_	—	_	—	—	_	—	_	—	_	—	_	0000
0010	T IVIT VZ	15:0			-					TMR2	<15:0>				-				0000
0820	PR2	31:16	—										0000						
0020	1112	15:0	PR2<15:0>									FFFF							
0A00	T3CON	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0,100	100011	15:0	ON	—	SIDL	_	_	—	_	_	TGATE		TCKPS<2:0>	`	—	—	TCS ⁽²⁾	_	0000
0A10	TMR3	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0			1					TMR3	<15:0>								0000
0A20	PR3	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	-	15:0								PR3<	15:0>		-						FFFF
0C00	T4CON	31:16	_	—	—	—	—	—	—	—	—	—	—	—		—		—	0000
		15:0	ON	_	SIDL	—	_	_		_	TGATE		TCKPS<2:0>	>	T32	_	TCS ⁽²⁾	_	0000
0C10	TMR4	31:16	—	—		—	—	—	_			—	—	—		_	—	_	0000
		15:0								TMR4									0000
0C20	PR4	31:16	-	—	—	—	_	_	_	-	-	_	—	_	—	_	_	—	0000
		15:0	_			_				PR4<				_		_	_	_	FFFF
0E00	T5CON	31:16 15:0	ON								— TGATE		 TCKPS<2:0>				— TCS ⁽²⁾		0000
<u> </u>		31:16	- UN		SIDL					_	IGATE	_		, 	_		-	_	0000
0E10	TMR5	15:0										0000							
		31:16	_	_		_	_	_	_	—		_	_	_	_	_	_	_	0000
0E20	PR5	15:0											_						
		13.0	:0 PR5<15:0> FFFF																

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24					-			—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	-	_	—	_	—	-	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,3)		SIDL ⁽⁴⁾	_	-	_	_	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽³⁾	Т	CKPS<2:0> ^{(:}	3)	T32 ⁽²⁾	_	TCS ⁽³⁾	_

REGISTER 14-1: TXCON: TYPE B TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue operation when device enters Idle mode0 = Continue operation when device is in Idle mode
- bit 12-8 Unimplemented: Read as '0'
- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 =Gated time accumulation is enabled

0 = Gated time accumulation is disabled

bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits⁽³⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value
- 000 = 1:1 prescale value
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only available on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT<2:0>				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
23:16	_	—	_	—	—		SPIFE	ENHBUF ⁽²⁾		
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	0N ⁽¹⁾	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾		
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	SSEN	CKP	MSTEN	_	STXISEL<1:0>		SRXISEL<1:0>			

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER

Legend:

F	R = Readable bit	W = Writable bit	U = Unimplemented bit, re	oit, read as '0'			
-1	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31	FRMEN: Framed SPI Support	bit
		Dir

- 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
- 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on SSx pin bit (only Framed SPI mode) 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 **FRMPOL:** Frame Sync Polarity bit (only Framed SPI mode)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed Sync mode.
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23-18 Unimplemented: Read as '0'
- bit 17 SPIFE: Frame Sync Pulse Edge Select bit (only Framed SPI mode)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 ENHBUF: Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

20.1 Control Registers

TABLE 20-1: UART1 THROUGH UART6 REGISTER MAP

										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	U1MODE ⁽¹⁾	31:16			—					_		_		_					0000
0000	UTWODE: /	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6010	U1STA ⁽¹⁾	31:16	_				—	_		ADM_EN				ADDR	<7:0>			-	0000
0010	UIUIA	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6020	U1TXREG	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	OTIMALEO	15:0	—	—	—	_	—	—	—	TX8				Transmit	Register				0000
6030	U1RXREG	31:16		—	_	_	—	_	—	_		—	—	—	—	—	—	_	0000
0000	OHOULEO	15:0		—	_	_	—	_	—	RX8				Receive	Register				0000
6040	U1BRG ⁽¹⁾	31:16	—	_	—	—	—	—	_	—	-	—	—	—	_	—	_	—	0000
		15:0								BRG<	15:0>								0000
6200	U4MODE ⁽¹⁾	31:16			_	_	_	_		—			_		_	—	—	—	0000
		15:0	ON	_	SIDL	IREN	_	_	_	—						STSEL	0000		
6210	U4STA ⁽¹⁾	31:16		—	_	—	—	—	—	ADM_EN							r	0000	
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6220	U4TXREG	31:16	—				_	_		—			—		—	—	—	_	0000
		15:0	—	—	_	—	—	—	—	TX8				Transmit	Register				0000
6230	U4RXREG	31:16	—				_	_		—			—		—	—	—	_	0000
		15:0	—				_	_		RX8				Receive	Register				0000
6240	U4BRG ⁽¹⁾	31:16		—	—	—	—	—	—	—			—		—	—	—	_	0000
		15:0					1			BRG<	15:0>	1		1				1	0000
6400	U3MODE ⁽¹⁾	31:16	—	_	—	—	—	—	_	—	-	—	—	_	_	-	_	—	0000
		15:0	ON		SIDL	IREN	RTSMD		UEN		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6410	U3STA ⁽¹⁾	31:16	—	_	-	—	—	—	_	ADM_EN				ADDR		1		I.	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6420	U3TXREG	31:16	—				_	_		—			—		—	—	—	_	0000
		15:0	—				_	_		TX8				Transmit	Register				0000
6430	U3RXREG	31:16	—	_	-	_	—	—	_	—	-	_	—	—	_	—	_	—	0000
		15:0	—				_	_		RX8				Receive	Register				0000
6440	U3BRG ⁽¹⁾	31:16	—	—	-	_	—	—	—	—	—	—	_	—	—	—	—	—	0000
		15:0											0000						
6600	U6MODE ⁽¹⁾	31:16	_	_	-	—	—	_	_	—	—	—	—	—	—	—	—	—	0000
	CONODE	15:0	ON	_	SIDL	IREN	—	_	_	—	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6610	U6STA ⁽¹⁾	31:16	—	—	-	—	—		—	ADM_EN				ADDR		1			0000
0010	2001/1	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	—	-	_	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	IREN	RTSMD	-	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

Legend:		HC = Cleared by hard	ware
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits.
 - 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal.
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation when device enters Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 UEN<1:0>: UARTx Enable bits
 - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
 - 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>	
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16	16 MONTH10<3:0>				MONTH01<3:0>			
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8		DAY10	0<3:0>		DAY01<3:0>			
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
7:0	—	—	_	_	WDAY01<3:0>			
Legend:								
R = Readable bit $W = Writable bit$ $U = Unimplemented bit,$			emented bit, re	ead as '0'				

0' = Bit is cleared

REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

'1' = Bit is set

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

-n = Value at POR

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

x = Bit is unknown

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0						
31:24	—	—	—		_	—	—	_
00.40	U-0	U-0						
23:16	—	—	—	_	—	—	—	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	_	—	FORM<2:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
7:0		SSRC<2:0>		CLRASAM	—	ASAM	SAMP ⁽²⁾	DONE ⁽³⁾

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:

R = Readable bit	R = Readable bit W = Writable bit		ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit⁽¹⁾
 - 1 = ADC module is operating
 - 0 = ADC module is not operating
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 Unimplemented: Read as '0'

bit 10-8 **FORM<2:0>:** Data Output Format bits

- 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000)
- 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
- 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss dddd dddd)
- 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
- 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
- 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)
- 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

- 111 = Internal counter ends sampling and starts conversion (auto convert)
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CTMU ends sampling and starts conversion
- 010 = Timer 3 period match ends sampling and starts conversion
- 001 = Active transition on INT0 pin ends sampling and starts conversion
- 000 = Clearing the SAMP bit ends sampling and starts conversion
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write a '0' to end sampling and start conversion. If SSRC<2:0> ≠ '000', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN27	MSEL2	27<1:0>			FSEL27<4:0>			
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN26	MSEL2	26<1:0>	FSEL26<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	FLTEN25	MSEL2	25<1:0>	FSEL25<4:0>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN24	MSEL2	24<1:0>	FSEL24<4:0>					

REGISTER 24-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FLTEN27: Filter 27 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL27<1:0>: Filter 27 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL27<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN26: Filter 26 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL26<1:0>: Filter 26 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	<pre>FSEL26<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 25-26: EMAC1IPGR: ETHERNET CONTROLLER MAC NON-BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24							—	_			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10							—	_			
15:8	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0			
10.0	—		NB2BIPKTGP1<6:0>								
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0			
7.0				NB2E	BIPKTGP2<6:	0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14-8 NB2BIPKTGP1<6:0>: Non-Back-to-Back Interpacket Gap Part 1 bits

This is a programmable field representing the optional carrierSense window referenced in section 4.2.3.2.1 "Deference" of the IEEE 80.23 Specification. If the carrier is detected during the timing of IPGR1, the MAC defers to the carrier. If, however, the carrier comes after IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus ensuring fair access to the medium. Its range of values is 0x0 to IPGR2. Its recommend value is 0xC (12d).

bit 7 Unimplemented: Read as '0'

bit 6-0 NB2BIPKTGP2<6:0>: Non-Back-to-Back Interpacket Gap Part 2 bits

This is a programmable field representing the non-back-to-back Inter-Packet-Gap. Its recommended value is 0x12 (18d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps).

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—			—		—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	_	_	—
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
15:8				STNADD	R4<7:0>			
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
7:0				STNADD	R3<7:0>			

REGISTER 25-38: EMAC1SA1: ETHERNET CONTROLLER MAC STATION ADDRESS 1 REGISTER

Legend:		P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR4<7:0>:** Station Address Octet 4 bits These bits hold the fourth transmitted octet of the station address.
- bit 7-0 **STNADDR3<7:0>:** Station Address Octet 3 bits These bits hold the third transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.
 2: This register is loaded at reset from the factory preprogrammed station address.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_	-	_	_	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	—	—	—	—
45.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
15:8	15:8 STNADDR2<7:0>							
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
7:0				STNADDR	1<7:0>			

REGISTER 25-39: EMAC1SA2: ETHERNET CONTROLLER MAC STATION ADDRESS 2 REGISTER

Legend:	P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-16 Reserved: Maintain as '0'; ignore read
- bit 15-8 **STNADDR2<7:0>:** Station Address Octet 2 bits These bits hold the second transmitted octet of the station address.
- bit 7-0 **STNADDR1<7:0>:** Station Address Octet 1 bits These bits hold the most significant (first transmitted) octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

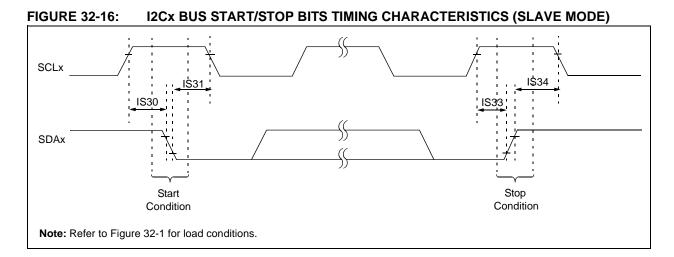
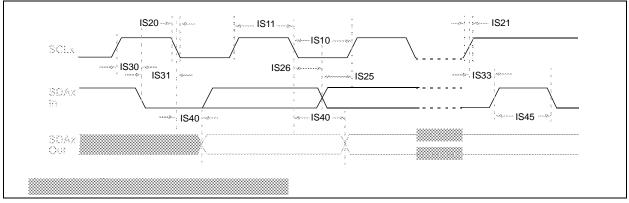

2: This register is loaded at reset from the factory preprogrammed station address.

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)

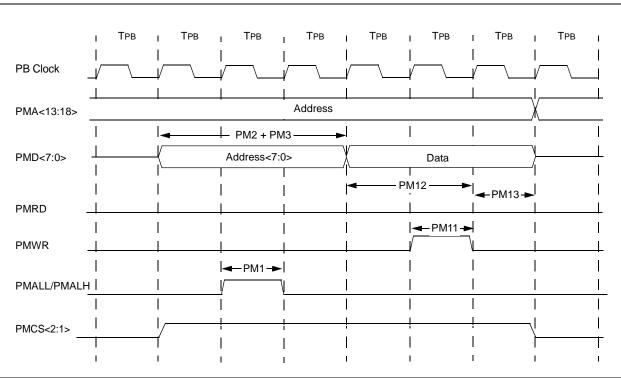

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽²⁾	Max.	Units	Conditions				
Idle Current (IIDLE) ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices								
DC30a	1.5	5		-40°C, +25°C, +85°C		4 MHz		
DC30c	3.5	6	mA	+105⁰C	—	4 M⊡Z		
DC31a	7	11		-40°C, +25°C, +85°C	—	25 MHz (Note 3)		
DC32a	13	20	mA	-40°C, +25°C, +85°C	—	60 MHz (Note 3)		
DC33a	17	25	- mA	-40°C, +25°C, +85°C		80 MHz		
DC33c	20	27	mA	+105°C	—			
DC34c		40		-40°C		LPRC (31 kHz) (Note 3)		
DC34d			μΑ	+25°C	2.3V			
DC34e				+85°C	2.3V			
DC34f		1000		+105°C				
DC35c	30		μA	-40°C				
DC35d	55			+25°C	2.21/			
DC35e	230	_		+85°C	3.3V			
DC35f	800			+105°C				
DC36c		43		-40°C				
DC36d	1	106		+25°C	2.01/			
DC36e		800	μA	+85°C	3.6V			
DC36f	1000		1	+105ºC				

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

TABLE 32-36: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions (see Note 5): 2.5V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-				
AD20d	Nr	Resolution	10 data bits		bits	(Note 3)		
AD21d	INL	Integral Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD22d	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)	
AD23d	Gerr	Gain Error	> -4	-	< 4	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD24d	EOFF	Offset Error	> -2	-	< 2	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD25d	—	Monotonicity	—	—	_	—	Guaranteed	
Dynami	c Performa	ance						
AD31b	SINAD	Signal to Noise and Distortion	55	58.5		dB	(Notes 3,4)	
AD34b	ENOB	Effective Number of Bits	9.0	9.5		bits	(Notes 3,4)	


Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions	
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_	
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	—	_	
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв			—	

Note 1: These parameters are characterized, but not tested in manufacturing.