

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

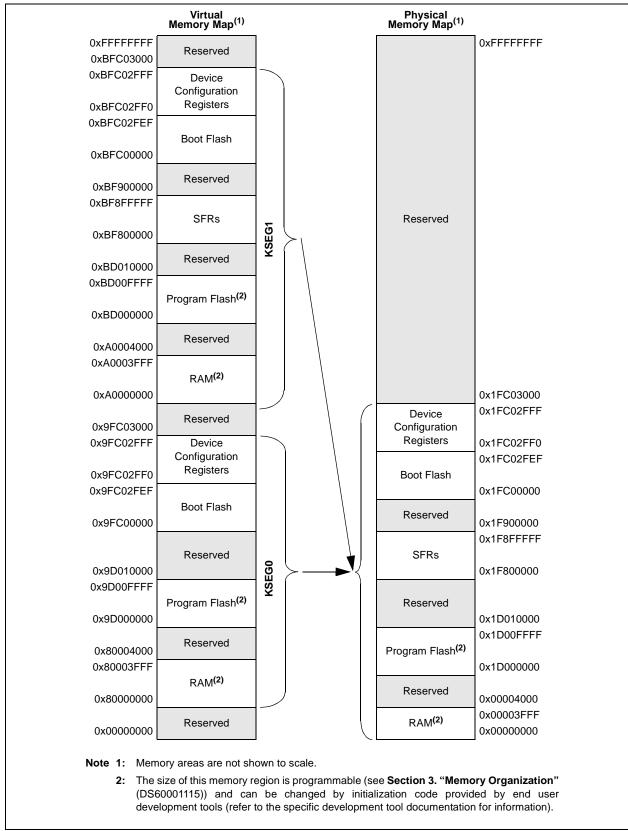
Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx534f064l-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


		Pin Nur	nber ⁽¹⁾		Dim	Duffer	
Pin Nam	e 64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
RA0	_	17	G3	B9	I/O	ST	PORTA is a bidirectional I/O port
RA1	—	38	J6	A26	I/O	ST	
RA2	—	58	H11	A39	I/O	ST	
RA3	—	59	G10	B32	I/O	ST	
RA4	—	60	G11	A40	I/O	ST	
RA5	—	61	G9	B33	I/O	ST	
RA6	—	91	C5	B51	I/O	ST	
RA7	—	92	B5	A62	I/O	ST	
RA9	—	28	L2	A21	I/O	ST	
RA10		29	K3	B17	I/O	ST]
RA14		66	E11	B36	I/O	ST]
RA15	—	67	E8	A44	I/O	ST	
RB0	16	25	K2	B14	I/O	ST	PORTB is a bidirectional I/O port
RB1	15	24	K1	A15	I/O	ST	
RB2	14	23	J2	B13	I/O	ST	
RB3	13	22	J1	A13	I/O	ST	
RB4	12	21	H2	B11	I/O	ST	
RB5	11	20	H1	A12	I/O	ST	
RB6	17	26	L1	A20	I/O	ST	
RB7	18	27	J3	B16	I/O	ST	
RB8	21	32	K4	A23	I/O	ST	
RB9	22	33	L4	B19	I/O	ST	
RB10	23	34	L5	A24	I/O	ST	1
RB11	24	35	J5	B20	I/O	ST]
RB12	27	41	J7	B23	I/O	ST]
RB13	28	42	L7	A28	I/O	ST]
RB14	29	43	K7	B24	I/O	ST	
RB15	30	44	L8	A29	I/O	ST	
RC1	—	6	D1	A5	I/O	ST	PORTC is a bidirectional I/O port
RC2	—	7	E4	B4	I/O	ST	
RC3	—	8	E2	A6	I/O	ST	
RC4		9	E1	B5	I/O	ST]
RC12	39	63	F9	B34	I/O	ST]
RC13	47	73	C10	A47	I/O	ST]
RC14	48	74	B11	B40	I/O	ST]
	-	64	F11	A42	I/O	ST	1

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX534F064H AND PIC32MX534F064L DEVICES

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24		_	BYTO	<1:0>	WBO ⁽¹⁾	_	_	BITO
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	_	_	_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	_			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	—	(CRCCH<2:0>	,

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 **Unimplemented:** Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (reverse source byte order)
 - 00 = No swapping (source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (not reflected)
- bit 23-13 Unimplemented: Read as '0'
- bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6		—						—
7.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	UTEYE	UOEMON		USBSIDL				UASUSPND

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UTEYE: USB Eye-Pattern Test Enable bit
 - 1 = Eye-Pattern Test is enabled
 - 0 = Eye-Pattern Test is disabled
- bit 6 **UOEMON:** USB OE Monitor Enable bit
 - $1 = \overline{OE}$ signal is active; it indicates intervals during which the D+/D- lines are driving
 - $0 = \overline{OE}$ signal is inactive
- bit 5 Unimplemented: Read as '0'
- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 11-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_		_				_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		-		-				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	-	-	—
7.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

bit 1

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device enabled
 - 0 = Direct connection to a low-speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NACK'd transactions disabled
 - 0 = Retry NACK'd transactions enabled; retry done in hardware
- bit 5 Unimplemented: Read as '0'
- bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit
 - If EPTXEN = 1 and EPRXEN = 1:
 - 1 = Disable Endpoint 'n' from control transfers; only TX and RX transfers are allowed
 - 0 = Enable Endpoint 'n' for control (SETUP) transfers; TX and RX transfers are also allowed Otherwise, this bit is ignored.
- bit 3 EPRXEN: Endpoint Receive Enable bit
 - 1 = Endpoint 'n' receive is enabled
 - 0 = Endpoint 'n' receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint 'n' transmit is enabled
 - 0 = Endpoint 'n' transmit is disabled
 - EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint 'n' was stalled
 - 0 = Endpoint 'n' was not stalled
- bit 0 **EPHSHK:** Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP (CONTINUED)

ess							•			Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5230	I2C5MSK	31:16	-	—	—	_		_	—	-	_	_		_	—	—	_		0000
5230	IZCONISK	15:0	-	—	—	-		_					MSK	<9:0>				-	0000
5240	I2C5BRG	31:16	_	_	_	—	_	—	—	—	_	—	_	—	—		-	_	0000
5240		15:0	—	—	—	—					Ba	ud Rate Ger	erator Regi	ster			•		0000
5250	I2C5TRN	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—		—	—	0000
0200		15:0	—	_	_	—	_	—	_	_		-		Transmit	Register		•		0000
5260	I2C5RCV	31:16	-			—	_	-		_	_	—	_	—		_	—	_	0000
		15:0	-		—	—		—		_				Receive	Register				0000
5300	I2C1CON	31:16	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5310	I2C1STAT	31:16	—	_	_	_	_	_	—	—	_	—	—	_	_		—	_	0000
			ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5320	I2C1ADD	31:16	_	_	—	—	_		—		_	—		_	—		—	—	0000
		15:0	_	_	_	_	_	-					ADD	<9:0>					0000
5330	I2C1MSK	31:16	_	_	_	_	_	-	_	-	_	_	—	-	_	-	—	—	0000
		15:0	_		_	_		_					MSK	<9:0>			1		0000
5340	I2C1BRG	31:16	_			_	_	—		_	-	-		_	—		-	_	0000
-		15:0	_			_					Ва	ud Rate Ger	Ū.	ster			1		0000
5350	I2C1TRN	31:16	_	—	—	_	_	_	_	_	_	_	—		—	—	—	—	0000
		15:0	_	_	_	_	_	_		_				Transmit	Register				0000
5360	I2C1RCV	31:16 15:0	_	_				—			—	—	—	- Deseive		—	—	—	0000
								_						Receive					
5400	12C2CON(2)	31:16 15:0	ON		-	-		-	— DI001144	-	-	— STREN	— ACKDT			-		-	0000
				_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN					PEN	RSEN	SEN	1000
5410	12C2STAT ⁽²⁾	31:16			_	_	_	— DCI	— 	-	-	-	— D/A	— P	-	— •	-	— TDF	0000
		15:0 31:16	ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5420	12C2ADD(2)	15:0				_	_		_	-	—	—		 <9:0>	—		—	—	0000
		31:16	_			_		_	_		_		ADD	<9.0>			_	_	0000
5430	12C2MSK ⁽²⁾	15:0								_	_	_	 MSK	<0.0>	_		_	_	0000
		31:16									_			< 3.02				_	0000
5440	I2C2BRG ⁽²⁾	15:0	_			_	_	_	_		Ra	ud Rate Ger	erator Regi	ster					0000
		31:16	_	_	_	_	_	_	_	_	Da				_		_	_	0000
5450	I2C2TRN ⁽²⁾	15:0	_	_	_		_		_					Transmit	Register				0000
		31:16	_	_	_	_		_	_	_	_	_	_				_	_	0000
5460	12C2RCV ⁽²⁾	15:0	_	_	_	_	_	_	_	_				Receive	Register				0000
Legen								Les are show	l 	aire al				110001100					0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 5 **ABAUD:** Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55);
 - cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode 4x baud clock enabled
 - 0 = Standard Speed mode 16x baud clock enabled
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Selection bit
 - 1 = 2 Stop bits
 - 0 = 1 Stop bit
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (has at least 1 data character) **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) bit 5 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 **RIDLE:** Receiver Idle bit (read-only) 1 =Receiver is idle 0 = Data is being received bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected FERR: Framing Error Status bit (read-only) bit 2 1 = Framing error has been detected for the current character 0 = Framing error has not been detected bit 1 **OERR:** Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to an empty state.
 - 1 = Receive buffer has overflowed
 - 0 = Receive buffer has not overflowed
- bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

										Bi	ts								
Virtual Address (BF80_#) Register	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000 PM0		31:16	_	_	_	_	_	_	_	_		_	_	_	—	_	—	_	0000
7000 1 100		15:0	ON	—	SIDL	ADRMU	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010 PMM	MODE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
7010 Pivily	NODE	15:0	BUSY IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITE<1:0> WAITM<3:0> WAITE<1:0> 0000																
7020 PMA		31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7020 PINA	IADDR	15:0	CS2EN/A15	CS1EN/A14							ADDR	<13:0>							0000
7000 040		31:16								DATAOU	T 04.0								0000
7030 PMD		15:0								DATAOU	1<31:0>								0000
7040 DM	MDIN	31:16									.01.0								0000
7040 PM		15:0		DATAIN<31:0>															
7050 014	MAEN	31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7050 PM/	VIAEN	15:0								PTEN<	:15:0>								0000
7000 0140	10TAT	31:16	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
7060 PMS	ISTAL	15:0	IBF	IBOV	_	-	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	-	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_		—	—	—	—
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16		MONT	H10<3:0>			MONTH	01<3:0>	
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8		DAY	10<1:0>			DAY01	<3:0>	
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
7:0		_	_			WDAY0)1<3:0>	

REGISTER 22-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Logona.				1
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	I
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	—	_	—	—
23:16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.6				TERRCI	NT<7:0>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				RERRC	NT<7:0>			

REGISTER 24-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT \geq 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning $(128 > \text{RERRCNT} \ge 96)$
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 24-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	FLTEN19	MSEL1	9<1:0>		F	SEL19<4:0>	>		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN18	MSEL1	8<1:0>		F	SEL18<4:0>	>		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	FLTEN17	MSEL1	7<1:0>		F	SEL17<4:0>	>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN16	MSEL1	6<1:0>		F	SEL16<4:0>	>		

REGISTER 24-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FLTEN19: Filter 19 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL19<1:0>: Filter 19 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	<pre>11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN18: Filter 18 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL18<1:0>: Filter 18 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL18<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 24-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' (n = 0 THROUGH 31)

- bit 6 TXABAT: Message Aborted bit⁽²⁾ 1 = Message was aborted 0 = Message completed successfully bit 5 TXLARB: Message Lost Arbitration bit⁽³⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority 00 = Lowest message priority Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 25-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	_	_	_	_	—	—			
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	_	_	_	—	—			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8		FRMTXOKCNT<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		FRMTXOKCNT<7:0>									

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

30.0 INSTRUCTION SET

The PIC32MX5XX/6XX/7XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- Core Extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to "MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Typical ⁽³⁾	Max.	Units		Conditions	i		
Operatir	ng Current (I	DD) ^(1,2,4) f O I	PIC32MX5	575/675/695/775/795 Family D)evices			
DC20	6	9	mA	Code executing from Flash	4 MHz			
DC20b	7	10			+105⁰C			
DC20a	4			Code executing from SRAM	_			
DC21	37	40	mA	Code executing from Flash			25 MHz	
DC21a	25		IIIA	Code executing from SRAM	_	_		
DC22	64	70	mA	Code executing from Flash			60 MHz	
DC22a	61	_	IIIA	Code executing from SRAM				
DC23	85	98	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	80 MHz	
DC23b	90	120]	+105°C				
DC23a	85]	Code executing from SRAM —				
DC25a	125	150	μA	—	+25°C	3.3V	LPRC (31 kHz)	

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

DC CHA	RACTER	ISTICS	(unless	otherwi	se state	ed)	$\frac{1}{2.3} \times \frac{1}{5} \times $
			Operatin	ig tempe	erature		\leq TA \leq +85°C for Industrial \leq TA \leq +105°C for V-temp
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	V	$\text{IOL} \leq 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RC15	_	_	0.4	V	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	V	Ioh ≥ -10 mA, Vdd = 3.3V
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15	2.4	_	_	V	IOH \ge -15 mA, VDD = 3.3V
		Output High Voltage	1.5 ⁽¹⁾	—	—		Ioh \geq -14 mA, Vdd = 3.3V
		4x Source Driver Pins - All I/O	2.0 ⁽¹⁾	—	—	V	Ioh \geq -12 mA, Vdd = 3.3V
DO20A Voh1	output pins not defined as 8x Sink Driver pins	3.0 ⁽¹⁾	—	_		$IOH \geq \textbf{-7} \; mA, \; VDD = 3.3 V$	
	VUHI	Output High Voltage	1.5 ⁽¹⁾	—	—		$\text{IOH} \geq \text{-22 mA}, \text{ VDD} = 3.3 \text{V}$
		8x Source Driver Pins - RC15	2.0 ⁽¹⁾	_	_	V	Ioh \geq -18 mA, Vdd = 3.3V
			3.0 ⁽¹⁾	_			Ioh \geq -10 mA, Vdd = 3.3V

TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: This driver pin only applies to devices with less than 64 pins.

3: This driver pin only applies to devices with 64 pins.

TABLE 32-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low (Note 2)	2.0		2.3	V	—

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

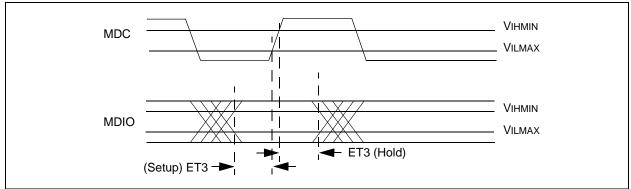
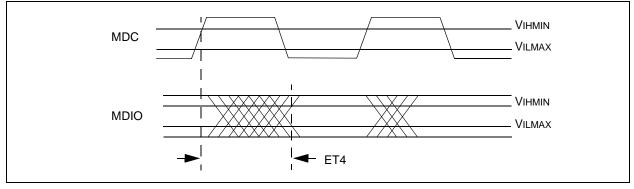

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

TABLE 32-35: ETHERNET MODULE SPECIFICATIONS


AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Characteristic	Min.	Typical	Max.	Units	Conditions	
MIIM Tin	ning Requirements						
ET1	MDC Duty Cycle	40		60	%	—	
ET2	MDC Period	400	—	—	ns	—	
ET3	MDIO Output Setup and Hold	10	—	10	ns	See Figure 32-19	
ET4	MDIO Input Setup and Hold	0	—	300	ns	See Figure 32-20	
MII Timi	ng Requirements						
ET5	TX Clock Frequency	—	25	_	MHz	—	
ET6	TX Clock Duty Cycle	35	—	65	%	—	
ET7	ETXDx, ETEN, ETXERR Output Delay	0	—	25	ns	See Figure 32-21	
ET8	RX Clock Frequency	_	25		MHz	—	
ET9	RX Clock Duty Cycle	35	—	65	%	—	
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	—	30	ns	See Figure 32-22	
RMII Tin	ning Requirements						
ET11	Reference Clock Frequency	—	50	—	MHz	—	
ET12	Reference Clock Duty Cycle	35		65	%	—	
ET13	ETXDx, ETEN, Setup and Hold	2	—	4	ns	—	
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	—	4	ns	—	

Note 1: The Ethernet module is functional at VBORMIN < VDD < 2.9V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 32-19: MDIO SOURCED BY THE PIC32 DEVICE

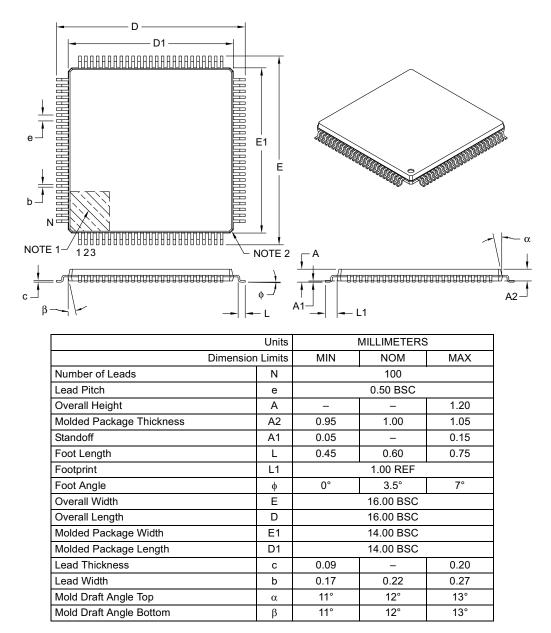


FIGURE 32-20: MDIO SOURCED BY THE PHY

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

TABLE B-3:	MAJOR SECTION UPDATES	(CONTINUED)	

Section Name	Update Description
1.0 "Electrical Characteristics"	Updated the Typical and Maximum DC Characteristics: Operating Current (IDD) in Table 1-5.
	Updated the Typical and Maximum DC Characteristics: Idle Current (IIDLE) in Table 1-6.
	Updated the Typical and Maximum DC Characteristics: Power-Down Current (IPD) in Table 1-7.
	Added DC Characteristics: Program Memory parameters D130a and D132a in Table 1-11.
	Added the Internal Voltage Reference parameter (D305) to the Comparator Specifications in Table 1-13.