

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx534f064l-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nun	nber ⁽¹⁾			D "	
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
CN0	48	74	B11	B40	I	ST	Change notification inputs. Can be
CN1	47	73	C10	A47	I	ST	software programmed for internal weak
CN2	16	25	K2	B14	I	ST	pull-ups on all inputs.
CN3	15	24	K1	A15	I	ST	
CN4	14	23	J2	B13	I	ST	
CN5	13	22	J1	A13	I	ST	
CN6	12	21	H2	B11	I	ST	
CN7	11	20	H1	A12	I	ST	
CN8	4	10	E3	A7	I	ST	
CN9	5	11	F4	B6	I	ST	
CN10	6	12	F2	A8	I	ST	
CN11	8	14	F3	A9	I	ST	
CN12	30	44	L8	A29	I	ST	
CN13	52	81	C8	B44	I	ST	
CN14	53	82	B8	A55	I	ST	
CN15	54	83	D7	B45	I	ST	
CN16	55	84	C7	A56	I	ST	
CN17	31	49	L10	B27	I	ST	
CN18	32	50	L11	A32	I	ST	
CN19	—	80	D8	A54	I	ST	
CN20	—	47	L9	B26	I	ST	
CN21	—	48	K9	A31	I	ST	
IC1	42	68	E9	B37	I	ST	Capture Inputs 1-5
IC2	43	69	E10	A45	I	ST	
IC3	44	70	D11	B38	I	ST	-
IC4	45	71	C11	A46	I	ST	-
IC5	52	79	A9	A60	I	ST	-
OCFA	17	26	L1	A20	I	ST	Output Compare Fault A Input
OC1	46	72	D9	B39	0	_	Output Compare Output 1
OC2	49	76	A11	A52	0		Output Compare Output 2
OC3	50	77	A10	B42	0		Output Compare Output 3
OC4	51	78	B9	A53	0	_	Output Compare Output 4
OC5	52	81	C8	B44	0		Output Compare Output 5
OCFB	30	44	L8	A29	I	ST	Output Compare Fault B Input
INT0	46	72	D9	B39	I	ST	External Interrupt 0
INT1	42	18	G1	A11	I	ST	External Interrupt 1
INT2	43	19	G2	B10	I	ST	External Interrupt 2
INT3	44	66	E11	B36	1	ST	External Interrupt 3
INT4	45	67	E8	A44	1	ST	External Interrupt 4
Legend: C S	MOS = CMO T = Schmitt T TL = TTL inp	S compatib rigger input	le input or c	output	A		Analog input P = Power

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

6.1 Control Registers

TABLE 6-1: RESETS REGISTER MAP

ess		e		Bits										(2)					
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	DCON	31:16	_	—	—	—	_	_	_	_	_	—	—	_	_	_	—	—	0000
F600	RCON	15:0		_	_	_	_	_	CMR	VREGS	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR	POR	0000
5040	RSWRST	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
F610	RSWRSI	15:0	—			_	_	—	_	—	—	_		_	_	_	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES (CONTINUED)

ess		0								Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
10A0	IPC1	31:16	_	—	—		INT1IP<2:0>		INT1IS	<1:0>	-	_	_	OC1IP<2:0>		OC1IS	S<1:0>	0000	
TUAU	IFCI	15:0		_	_		IC1IP<2:0>		IC1IS<	<1:0>	_	_		-	T1IP<2:0>		T1IS	<1:0>	0000
10B0	IPC2	31:16		—	—		INT2IP<2:0>		INT2IS	<1:0>	—	_	-	C	C2IP<2:0>	>	OC2IS	S<1:0>	0000
тово	IF 02	15:0		_	_		IC2IP<2:0>		IC2IS<	<1:0>	_	-		-	T2IP<2:0>		T2IS	<1:0>	0000
10C0	IPC3	31:16		_	_		INT3IP<2:0>		INT3IS	<1:0>	—	_		C	C3IP<2:0>	>	OC3IS	S<1:0>	0000
1000	11 00	15:0	—	—	—		IC3IP<2:0>		IC3IS<	<1:0>	—	—	—	-	T3IP<2:0>		T3IS	<1:0>	0000
10D0	IPC4	31:16	—	—	—		INT4IP<2:0>		INT4IS	<1:0>	—	—	—	C	C4IP<2:0>	>	OC4IS	S<1:0>	0000
TODO	11 04	15:0	—	—	—		IC4IP<2:0>		IC4IS<	<1:0>	—	—	—	-	T4IP<2:0>		T4IS	<1:0>	0000
10E0	IPC5	31:16	—	—	—		—	—	—	—	—	—	_	-	C5IP<2:0>	>	OC5IS	S<1:0>	0000
IOLO	1 00	15:0	—	—	—		IC5IP<2:0>		IC5IS<	<1:0>	—	—	—		T5IP<2:0>		T5IS		0000
		31:16	—	—	—	AD1IP<2:0>		AD1IP<2:0>		<1:0>	—	—	—	CNIP<2:0>		CNIS	-	0000	
10E0	10F0 IPC6													l	J1IP<2:0>		U1IS	<1:0>	
101.0	1 00	15:0	15:0 — — — I2C1IP<2:0>			I2C1IS	<1:0>	—	—	—	S	PI3IP<2:0:	>	SPI3IS	S<1:0>	0000			
														12	2C3IP<2:0>	>	12C31	S<1:0>	
							U3IP<2:0>		U3IS<	:1:0>									
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>		SPI2IS	<1:0>	—	—	—	C	MP2IP<2:0	>	CMP2I	S<1:0>	0000
1100	11 07						I2C4IP<2:0>		I2C4IS	-									
		15:0	—	—	—	(CMP1IP<2:0>	•	CMP1IS		—	—	_		MPIP<2:0		PMPIS	S<1:0>	0000
		31:16	—	—	—	F	RTCCIP<2:0>	•	RTCCIS	S<1:0>	—	—	_		SCMIP<2:0	>		S<1:0>	0000
1110	IPC8														J2IP<2:0>		U2IS		
	11 00	15:0	—	—	—	—	—	—	—	—	—	—	—	S	PI4IP<2:0;	>	SPI4IS	S<1:0>	0000
															2C5IP<2:0>		12C518		
1120	IPC9	31:16	_	—	—		DMA3IP<2:0>		DMA3IS		_	—	_		MA2IP<2:0		DMA2I		0000
1120	11 00	15:0	_	—	—		DMA1IP<2:0>		DMA1IS		_	—	_		MA0IP<2:0		DMA0I		0000
1130	IPC10	31:16	—	—	—		MA7IP<2:0>(DMA7IS-	-	—	—	—		A6IP<2:0>			S<1:0> ⁽²⁾	0000
1100	1 010	15:0	—	—	—	D	MA5IP<2:0>(2)	DMA5IS-	<1:0> ⁽²⁾	—	—	—	DM	IA4IP<2:0>	(2)	DMA4IS	S<1:0> ⁽²⁾	0000
1140	IPC11	31:16	_	_	_			_	_	—	_	_	CAN1IP<2:0>		CAN1I	S<1:0>	0000		
1140		15:0	—	—	—		USBIP<2:0>		USBIS	<1:0>	—	—	_	FCEIP<2:0>		FCEIS	6<1:0>	0000	
1150	IPC12	31:16	_	—	—		U5IP<2:0>		U5IS<	:1:0>	—	—	—	U6IP<2:0>		U6IS	<1:0>	0000	
1100	1 012	15:0	—	—	—		U4IP<2:0>		U4IS<	:1:0>	—	—	_	—	—	-	-	—	0000

PIC32MX5XX/6XX/7XX

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET Note 1: and INV Registers" for more information.

These bits are not available on PIC32MX534/564/664/764 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES (CONTINUED)

ess										Bi	its																								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets																
10D0	IPC4	31:16	_	—	-		INT4IP<2:0>		INT4IS	S<1:0>	_	—	-		OC4IP<2:0>		OC4IS	6<1:0>	0000																
1000	IPC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		T4IP<2:0>		T4IS-	<1:0>	0000																
4050	IPC5	31:16	—	_	_		SPI1IP<2:0>		SPI1IS	6<1:0>	_	_	_		OC5IP<2:0>		OC5IS	S<1:0>	0000																
10E0	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS	<1:0>	-		_		T5IP<2:0>		T5IS-	<1:0>	0000																
		31:16	_	_	_		AD1IP<2:0>		AD1IS	S<1:0>	_	_	_		CNIP<2:0>		CNIS	<1:0>	0000																
10F0	IPC6														U1IP<2:0>		U1IS-	<1:0>																	
IUFU	IFCO	15:0	—	—	—		I2C1IP<2:0>		I2C1IS<1:0> —		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		—	—	—		SPI3IP<2:0>	•	SPI3IS	S<1:0>	0000
												I2C3IP<2:0> I2C3I		S<1:0>																					
			6				U3IP<2:0>		U3IS	<1:0>																									
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>		SPI2IS<1:0>		—	—	—	(CMP2IP<2:0	>	CMP2IS<1:0>		0000																
1100	11 07						I2C4IP<2:0>		I2C4IS<1:0>																										
		15:0	_			(CMP1IP<2:0	>	CMP1I	S<1:0>	_	- <u> </u>			PMPIS	S<1:0>	0000																		
		31:16	_			RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCIS<1:0>		_		FSCMIP<2:0>		FSCMI	S<1:0>	0000											
1110	IPC8														U2IP<2:0>		U2IS-	<1:0>																	
1110	11 00	15:0	—	—	—		I2C2IP<2:0>		12C215	6<1:0>	—	—	—		SPI4IP<2:0>		SPI4IS	S<1:0>	0000																
															I2C5IP<2:0>		12C515	S<1:0>																	
1120	IPC9	31:16	_	_			DMA3IP<2:0		DMA3I	S<1:0>	_	— — DMA2IP<2:0>		DMA2I	S<1:0>	0000																			
1120	11 03	15:0	_	_			DMA1IP<2:0		DMA1I		_				DMA0IP<2:0		DMA0I	S<1:0>	0000																
1130	IPC10	31:16	—	—	—	DI	MA7IP<2:0>	(2)	DMA7IS<1:0> ⁽²⁾		—	_	—	D	MA6IP<2:0>	(2)	DMA6IS	<1:0> ⁽²⁾	0000																
1130	11 010	15:0	—	—	—	DI	MA5IP<2:0>	(2)	DMA5IS<1:0> ⁽²⁾		_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	<1:0> ⁽²⁾	0000																
1140	IPC11	31:16	—	-	_	_	_		_				_	_	—		—		0000																
1140	IFCII	15:0	—	—	—		USBIP<2:0>		USBIS	S<1:0>	_	_	—	FCEIP<2:0>		FCEIP<2:0>		FCEIS	<1:0>	0000															
1150	IPC12	31:16	_	_	-	U5IP<2:0>		U5IP<2:0>		U5IP<2:0>		<1:0>	_		-	U6IP<2:0>		U6IP<2:0>		U6IP<2:0>		U6IS-	<1:0>	0000											
1150	IFUIZ	15:0	_	-			U4IP<2:0> U4IS<1:0> ETH		ETHIP<2:0>		ETHIS	i<1:0>	0000																						

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX664 devices.

3: This register does note have associated CLR, SET, and INV registers.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—		_		_	_	_	—				
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23:16		CHAIRQ<7:0> ⁽¹⁾										
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
15:8	CHSIRQ<7:0> ⁽¹⁾											
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	—				

REGISTER 10-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit
	 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0	Unimplemented: Read as '0'

Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24				_			_	_
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16				_			-	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0				_			-	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

bit 7

•				
R = Readable bit	e bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

DPPULUP: D+ Pull-Up Enable bit 1 = D+ data line pull-up resistor is enabled 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D+ data line pull-down resistor is enabled
 - 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled

bit 3 VBUSON: VBUS Power-on bit

- 1 = VBUS line is powered
- 0 = VBUS line is not powered
- bit 2 **OTGEN:** OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_		—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	_	—	—	—	-	_	-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	-	_	—	—	—	-	_	-
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7:0		ENDP	Г<3:0>		DIR	PPBI	_	_

REGISTER 11-10: U1STAT: USB STATUS REGISTER

Legend:

3							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

- bit 31-8 Unimplemented: Read as '0'
- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 •
 - 0001 = Endpoint 1
 - 0000 = Endpoint 0
- bit 3 DIR: Last Buffer Descriptor Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 **PPBI:** Ping-Pong Buffer Descriptor Pointer Indicator bit
 - 1 = The last transaction was to the Odd buffer descriptor bank
 - 0 = The last transaction was to the Even buffer descriptor bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when U1IR<TRNIF> is active. Clearing the U1IR<TRNIF> bit advances the FIFO. Data in register is invalid when U1IR<TRNIF> = 0.

16.1 Control Registers

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	IC1CON ⁽¹⁾	31:16		—	—	—	_	—	_	_	_	—	—	_	—	—	_	_	0000
2000		15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2010	IC1BUF	31:16								IC1BUF	~31.0>								xxxx
2010		15:0								101201				-					xxxx
2200	IC2CON ⁽¹⁾	31:16		_	—	—	_	_	—	_	_	_	_	—	—		—	—	0000
2200	.0200.1	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2210	IC2BUF	31:16								IC2BUF	<31:0>								xxxx
		15:0			-										-				xxxx
2400	IC3CON ⁽¹⁾	31:16	-	_	—	_	_	—	_	_	-	-	—	—	—		-		0000
		15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2410	IC3BUF	31:16								IC3BUF	<31:0>								XXXX
		15:0	XX									XXXX							
2600	IC4CON ⁽¹⁾	31:16	-		-	_			-	-	-	-		-		—	-	_	0000
		15:0	ON	_	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2610	IC4BUF	31:16 15:0								IC4BUF	<31:0>								XXXX
		31:16		_	_	_	_		_	_	_	_			_		_	_	xxxx 0000
2800	IC5CON ⁽¹⁾	15:0	ON	_		_			FEDGE	 C32	ICTMR	ICI<		ICOV	ICBNE		ICM<2:0>		
		31:16	UN		SIDL	—	_		FEDGE	632	ICTIVIK		1.0>	1000	ICDINE	l	10101<2.0>		0000
2810	IC5BUF									IC5BUF	<31:0>								XXXX
	ل ــــــــــــــــــــــــــــــــــــ	15.0	15:0 x										XXXX						

TABLE 16-1: INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	-	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 17-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

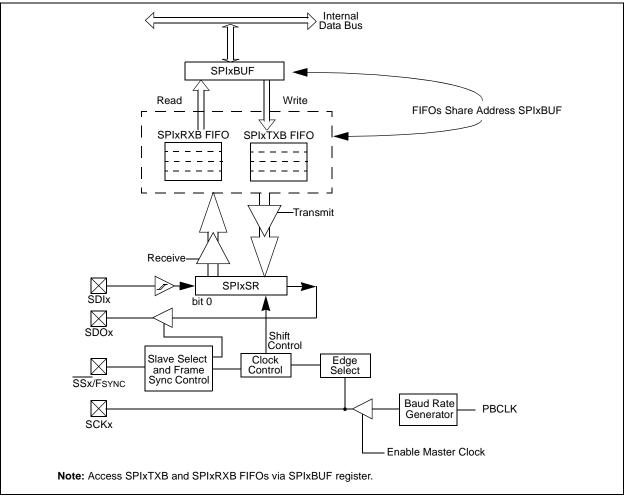
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Module On bit⁽¹⁾
 - 1 = Output Compare module is enabled
 - 0 = Output Compare module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation when CPU is in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
 - 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 **OCFLT:** PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (only cleared in hardware)
 - 0 = PWM Fault condition has not occurred

bit 3 OCTSEL: Output Compare Timer Select bit

- 1 = Timer3 is the clock source for this Output Compare module
- 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only used when OCM < 2:0 > = 111. It is read as '0' in all other modes.


18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The following are some of the key features of the SPI module:

- Master mode and Slave mode support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs
- based on 32/16/8-bit data width
 Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 5 **ABAUD:** Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55);
 - cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode 4x baud clock enabled
 - 0 = Standard Speed mode 16x baud clock enabled
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Selection bit
 - 1 = 2 Stop bits
 - 0 = 1 Stop bit
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

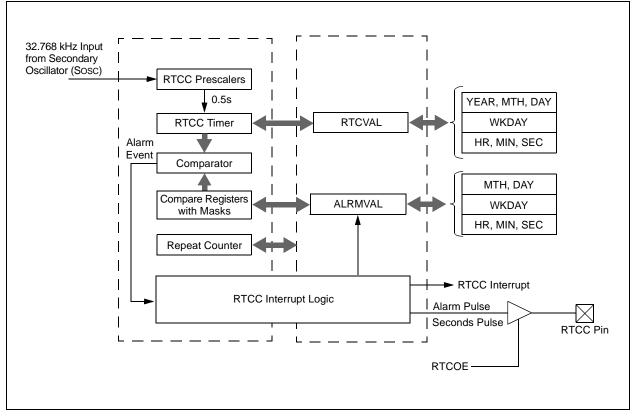
PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	_	_	_	—
45.0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	PTEN14	_	—	_		PTEN<10:8>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				PTEN	<7:0>			

REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	


- bit 31-15 **Unimplemented:** Read as '0'
- bit 15-14 **PTEN14:** PMCS1 Strobe Enable bits
 - 1 = PMA14 functions as either PMA14 or PMCS1⁽¹⁾
 - 0 = PMA14 functions as port I/O
- bit 13-11 Unimplemented: Read as '0'
- bit 10-2 PTEN<10:2>: PMP Address Port Enable bits
 - 1 = PMA<10:2> function as PMP address lines
 - 0 = PMA<10:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- **Note 1:** The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. A simplified block diagram of the RTCC module is illustrated in Figure 22-1. Key features of the RTCC module include:

- Time: hours, minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- Alarm repeat with decrementing counter
- Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

FIGURE 22-1: RTCC BLOCK DIAGRAM

REGISTER 22-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
- 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC clock output is enabled (clock presented onto an I/O)
 - 0 = RTCC clock output is disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **3:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can only be set when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is only reset on a Power-on Reset (POR).

		-	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	—	—	—	_	—	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_		—	—	—	_	_	—		
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾) AMASK<3:0> ⁽²⁾					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ARPT<7:0> ⁽²⁾									

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 **CHIME:** Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽³⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read.
 The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

1111 = Reserved

- 1010 = Reserved
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1000 = Once a month
- 0111 = Once a week
- 0110 = Once a day
- 0101 = Every hour
- 0100 = Every 10 minutes
- 0011 = Every minute
- 0010 = Every 10 seconds
- 0001 = Every second
- 0000 = Every half-second
- Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0 > = 0.0 and CHIME = 0.
 - **2:** This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is only reset on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24		—	_		—	—	—	—			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16		MONT	H10<3:0>			MONTH	01<3:0>	R/W-x			
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8		DAY	10<1:0>		DAY01<3:0>						
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x			
7:0		_	WDAY01<3:0>								

REGISTER 22-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Logona.				1
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	I
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	FLTEN23 MSEL23<1:0>				F	SEL23<4:0>	•					
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	FLTEN22	MSEL2	2<1:0>		F	SEL22<4:0>	•					
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
10.0	FLTEN21	MSEL21<1:0>		FSEL21<4:0>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	FLTEN20	MSEL2	20<1:0>	FSEL20<4:0>								

REGISTER 24-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit (31	FLTEN23: Filter 23 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit (30-29	MSEL23<1:0>: Filter 23 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	28-24	<pre>FSEL23<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1</pre>
bit 2	23	00000 = Message matching filter is stored in FIFO buffer 0 FLTEN22: Filter 22 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 2	22-21	MSEL22<1:0>: Filter 22 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	20-16	FSEL22<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
	otor	The hite in this register can only be madified if the correspond

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—			—		—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	_	—	_	_	—
15:8	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
	STNADDR4<7:0>							
7:0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
	STNADDR3<7:0>							

REGISTER 25-38: EMAC1SA1: ETHERNET CONTROLLER MAC STATION ADDRESS 1 REGISTER

Legend:		P = Programmable bit		
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR4<7:0>:** Station Address Octet 4 bits These bits hold the fourth transmitted octet of the station address.
- bit 7-0 **STNADDR3<7:0>:** Station Address Octet 3 bits These bits hold the third transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.
 2: This register is loaded at reset from the factory preprogrammed station address.

32.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

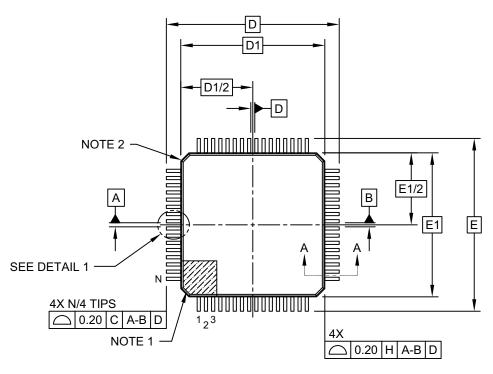
Absolute Maximum Ratings

(See Note 1)

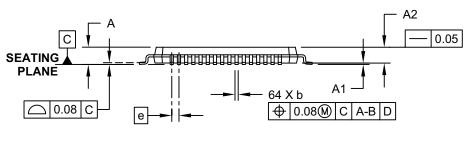
Ambient temperature under bias Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	300 mA
Maximum current into Vod pin(s) (Note 2)	300 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).


3: See the "Device Pin Tables" section for the 5V tolerant pins.

34.2 Package Details


The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2