

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

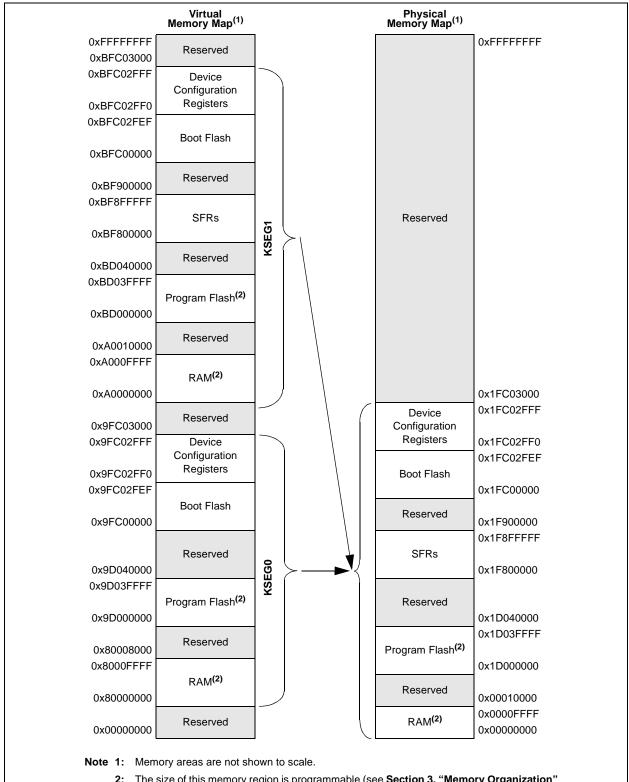
Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	· ·
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx534f064l-v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: **PIN NAMES FOR 100-PIN USB AND CAN DEVICES**

100-PIN TQFP (TOP VIEW)


PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F512L PIC32MX575F256L

100

			1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	RG15	36	Vss
2	VDD	37	Vdd
3	PMD5/RE5	38	TCK/RA1
4	PMD6/RE6	39	AC1TX/SCK4/U5TX/U2RTS/RF13
5	PMD7/RE7	40	AC1RX/SS4/U5RX/U2CTS/RF12
6	T2CK/RC1	41	AN12/PMA11/RB12
7	T3CK/RC2	42	AN13/PMA10/RB13
8	T4CK/RC3	43	AN14/PMALH/PMA1/RB14
9	T5CK/SDI1/RC4	44	AN15/OCFB/PMALL/PMA0/CN12/RB15
10	SCK2/U6TX/U3RTS/PMA5/CN8/RG6	45	Vss
11	SDA4/SDI2/U3RX/PMA4/CN9/RG7	46	VDD
12	SCL4/SDO2/U3TX/PMA3/CN10/RG8	47	SS3/U4RX/U1CTS/CN20/RD14
13	MCLR	48	SCK3/U4TX/U1RTS/CN21/RD15
14	SS2/U6RX/U3CTS/PMA2/CN11/RG9	49	SDA5/SDI4/U2RX/PMA9/CN17/RF4
15	Vss	50	SCL5/SDO4/U2TX/PMA8/CN18/RF5
16	VDD	51	USBID/RF3
17	TMS/RA0	52	SDA3/SDI3/U1RX/RF2
18	INT1/RE8	53	SCL3/SDO3/U1TX/RF8
19	INT2/RE9	54	VBUS
20	AN5/C1IN+/VBUSON/CN7/RB5	55	VUSB3V3
21	AN4/C1IN-/CN6/RB4	56	D-/RG3
22	AN3/C2IN+/CN5/RB3	57	D+/RG2
23	AN2/C2IN-/CN4/RB2	58	SCL2/RA2
24	PGEC1/AN1/CN3/RB1	59	SDA2/RA3
25	PGED1/AN0/CN2/RB0	60	TDI/RA4
26	PGEC2/AN6/OCFA/RB6	61	TDO/RA5
27	PGED2/AN7/RB7	62	Vdd
28	VREF-/CVREF-/PMA7/RA9	63	OSC1/CLKI/RC12
29	VREF+/CVREF+/PMA6/RA10	64	OSC2/CLKO/RC15
30	AVDD	65	Vss
31	AVss	66	SCL1/INT3/RA14
32	AN8/C1OUT/RB8	67	SDA1/INT4/RA15
33	AN9/C2OUT/RB9	68	RTCC/IC1/RD8
34	AN10/CVREFOUT/PMA13/RB10	69	SS1/IC2/RD9
35	AN11/PMA12/RB11	70	SCK1/IC3/PMCS2/PMA15/RD10

Shaded pins are 5V tolerant. Note 1:

FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX575F256H, PIC32MX575F256L, PIC32MX675F256H, PIC32MX675F256L, PIC32MX775F256H AND PIC32MX775F256L DEVICES

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0						
31:24		_		—	_	—		—
00.40	U-0	U-0						
23:16	_	_	_	—	_	—		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
15:8	—	_	—	—	_	—	CMR	VREGS
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7:0	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Set by hardware		
R = Readable bit	W = Writable bit	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-10	Unimplemented: Read as '0	n'
	eninplemented. Read as	

bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = Configuration mismatch Reset has occurred
	0 = Configuration mismatch Reset has not occurred
bit 8	VREGS: Voltage Regulator Standby Enable bit
	$\ensuremath{\mathtt{l}}$ = Regulator is enabled and is on during Sleep mode
	0 = Regulator is set to Stand-by Tracking mode
bit 7	EXTR: External Reset (MCLR) Pin Flag bit
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit
	1 = Software Reset was executed
	0 = Software Reset was not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit
	1 = WDT Time-out has occurred
	0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit
	1 = Device was in Sleep mode
	0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = Brown-out Reset has occurred
	0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = Power-on Reset has occurred
	0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view the next detection.

	PIC32MX695F512H DEVICES																		
ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16			—	—	_		_		_	—		_			_	SS0	0000
1000	INTCON	15:0	—	_	_	MVEC	_		TPC<2:0>		_	_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1010		15:0		—	—	—	_		SRIPL<2:0>		—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	—	_	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	_	_	_	U2TXIF SPI4TXIF I2C5MIF	U2RXIF SPI4RXIF I2C5SIF	U2EIF SPI4EIF I2C5BIF	U3TXIF SPI2TXIF I2C4MIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF I2C4BIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16					_	_	_	_	_	_	_	_		_	_	_	0000
1050	IFS2	15:0	_	_	_	_	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	_		_	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	_	_	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	_	_	-	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
		31:16			_	_	_	_		_	_	_	_	_		_	_	_	0000
1080	IEC2	15:0	_	_	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
		31:16	_	_	_		INT0IP<2:0>		INTOIS		_	_	_		CS1IP<2:0>		CS1IS		0000
1090	IPC0	15:0	_	_	_		CS0IP<2:0>		CSOIS	S<1:0>	_	_	_		CTIP<2:0>		CTIS		0000
1040	IPC1	31:16	_	_	_		INT1IP<2:0>		INT1IS	S<1:0>	_	_	_	(OC1IP<2:0>		OC1IS	S<1:0>	0000
10A0	IPUT	15:0	_	_	_		IC1IP<2:0>		IC1IS	<1:0>	_	_			T1IP<2:0>		T1IS-	<1:0>	0000
10B0	IPC2	31:16 - - - INT2IP<2:0> INT2IS<1:0> - - - OC2IP<2:0> OC2IS<1:0>					0000												
IUD0	1602	15:0	_	IC2IP<2:0> IC2IS<1:0> T2IP<2:0> T2IS<1:0>					<1:0>	0000									
10C0	IPC3	31:16	—	—	-		INT3IP<2:0>		INT3IS	S<1:0>	—	—		(OC3IP<2:0>		OC3IS	S<1:0>	0000
1000	1 00	15:0		—	—		IC3IP<2:0>		IC3IS	<1:0>	—	—	—		T3IP<2:0>		T3IS-	<1:0>	0000
Legend	d: x =	unknow	n value on	Reset; — = I	unimplement	ted, read as	'0'. Reset va	lues are sho	wn in hexad	ecimal.									

TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND DIC22MV605E512U DEVICES

DS60001156J-page 79

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information.

These bits are not available on PIC32MX664 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

© 2009-2016 Microchip Technology Inc.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator

bit 0 **OSWEN:** Oscillator Switch Enable bit

- 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

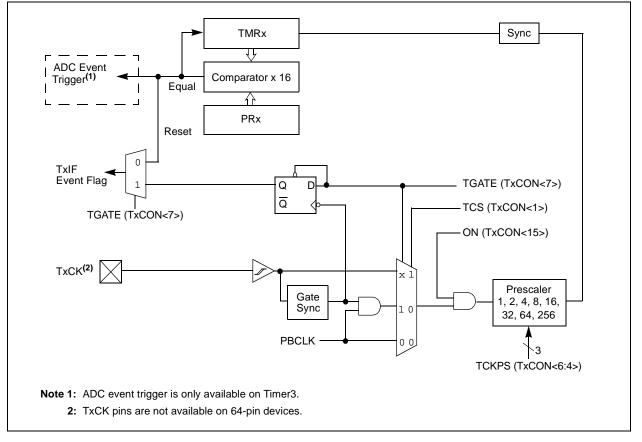
- bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾
 - 1 = The DMA transfers data from the source into the CRC but not to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
 - 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 CRCTYP: CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS60001105) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-bit Timer
- Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer


Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

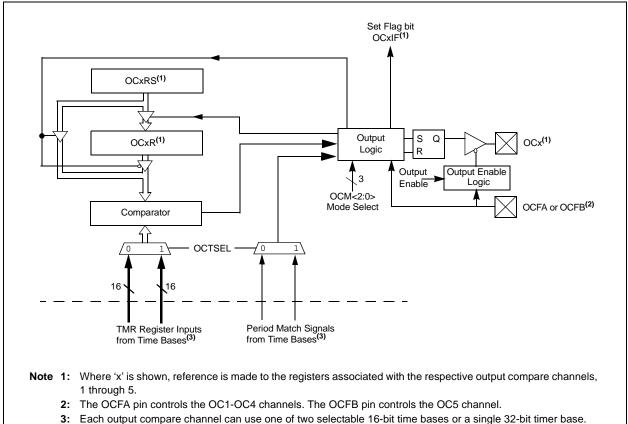
- Synchronous Internal 32-bit Timer
- · Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through Timer5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or Timer4; 'y' represents Timer3 or Timer5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (only Timer2 and Timer3)
- ADC event trigger (only Timer3)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (16-BIT)

17.0 OUTPUT COMPARE


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16. "Output Compare"** (DS60001111) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

18.1 Control Registers

TABLE 18-1: SPI1 THROUGH SPI4 REGISTER MAP

SS										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	SPI1CON ⁽²⁾	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	_	_	—	_	_		SPIFE	ENHBUF	0000
5E00	SPITCON-	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	—	STXISE	L<1:0>	SRXISE	L<1:0>	0000
5E10	SPI1STAT ⁽²⁾	31:16	—	_	_		RX	BUFELM<4	:0>		—	—	—		TX	BUFELM<4	:0>		0000
5E 10	SPIISIAL	15:0	—	_	_	_	SPIBUSY		-	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	-	SPITBF	SPIRBF	0008
5E20	SPI1BUF ⁽²⁾	31:16 15:0									0000								
5E30	SPI1BRG ⁽²⁾	31:16	—	_	-	_	_			_	—	—	_	_	_		_	_	0000
3E30	SFIIDKG	15:0	—	—	_	_	_							BRG<8:0>					0000
5800	SPI3CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	_	—	-	-	_	_	SPIFE	ENHBUF	0000
5600	SPISCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5810	SPI3STAT	31:16	—	_	_		RX	BUFELM<4	:0>		—	—	_		TX	BUFELM<4	:0>		0000
5810	SFISSIAI	15:0	—	_	_	_	SPIBUSY			SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE		SPITBF	SPIRBF	0008
5820	SPI3BUF	31:16 15:0								DATA<	:31:0>								0000
	SPI3BRG	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
5830	SPI3BRG	15:0	_	_	_	_	_		-					BRG<8:0>					0000
5400	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	_	_	_	—	_	_	SPIFE	ENHBUF	0000
5A00	SPIZCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXISE	L<1:0>	0000
5440	SPI2STAT	31:16	_	_	-		RX	BUFELM<4	:0>		_	_	-		TX	BUFELM<4	:0>		0000
5A10	SFIZSTAT	15:0	_	—	—	—	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	-	SPITBF	SPIRBF	0008
5A20	SPI2BUF	31:16 15:0								DATA<	:31:0>								0000
5A30	SPI2BRG	31:16	_	—	—	—	—	_	_	—	—	—	—	—	—	-	—	_	0000
5A30	SFIZERG	15:0	—	_	-	_	_							BRG<8:0>					0000
5C00	SPI4CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	—	—	_	—	-		SPIFE	ENHBUF	0000
5000	51 140010	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5C10	SPI4STAT	31:16	_	—				BUFELM<4	:0>	-	_					BUFELM<4	:0>	-	0000
5010		15:0	—	—	—	—	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
5C20	SPI4BUF	31:16 15:0								DATA<	:31:0>								0000
5C30	SPI4BRG	31:16		_	_	—	—	_	_	_	_	_	—	_	_	_	_	_	0000
5030		15:0	_	_	_	—	_	—	—					BRG<8:0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
31:24	—	—	—	RXBUFELM<4:0>									
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
23:16	—	—	—	TXBUFELM<4:0>									
45.0	U-0	U-0	U-0	U-0	R-0	U-0	U-0	R-0					
15:8	—	—	—	_	SPIBUSY	_	_	SPITUR					
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0					
7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF					

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware		
R = Readable bit	W = Writable bit $U = Unimplemented bit, read as '0'$		ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (only valid when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (only valid when ENHBUF = 1)
- bit 15-12 Unimplemented: Read as '0'
- bit 11 SPIBUSY: SPI Activity Status bit 1 = SPI peripheral is currently busy with some transactions 0 = SPI peripheral is currently idle
 - Unimplemented: Read as '0'
- bit 10-9
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

- bit 7 **SRMT:** Shift Register Empty bit (only valid when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can only be cleared (= 0) in software.
- bit 5 **SPIRBE:** RX FIFO Empty bit (only valid when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'
- bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB is empty
 - 0 = Transmit buffer, SPIxTXB is not empty
 - Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.
 - Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
- bit 2 Unimplemented: Read as '0'

PIC32MX5XX/6XX/7XX

REGISTE	REGISTER 23-3: AD1CON3: ADC CONTROL REGISTER 3										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	—	—	—	—	—			
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ADRC	—	—	SAMC<4:0> ⁽¹⁾							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0			
7:0				ADCS<	7:0> (2)						

Legend:

0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15	ADRC: ADC Conversion Clock Source bit
	1 = Clock derived from FRC
	0 = Clock derived from Peripheral Bus Clock (PBCLK)
bit 14-13	Unimplemented: Read as '0'

```
bit 12-8 SAMC<4:0>: Auto-Sample Time bits<sup>(1)</sup>
          11111 = 31 TAD
          00001 = 1 TAD
          00000 = 0 TAD (Not allowed)
         ADCS<7:0>: ADC Conversion Clock Select bits(2)
bit 7-0
          11111111 =TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD
```

```
00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD
00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
```

- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1.

REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)

```
bit 10-8 PRSEG<2:0>: Propagation Time Segment bits<sup>(4)</sup>
           111 = \text{Length is 8 x Tq}
           000 = \text{Length is 1 x Tq}
           SJW<1:0>: Synchronization Jump Width bits<sup>(3)</sup>
bit 7-6
           11 = \text{Length is } 4 \times \text{Tq}
           10 = Length is 3 x TQ
           01 = Length is 2 x TQ
           00 = \text{Length is } 1 \times TQ
           BRP<5:0>: Baud Rate Prescaler bits
bit 5-0
           111111 = TQ = (2 x 64)/FSYS
           111110 = TQ = (2 x 63)/FSYS
           000001 = TQ = (2 \times 2)/FSYS
           000000 = TQ = (2 \times 1)/FSYS
Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
      2: 3 Time bit sampling is not allowed for BRP < 2.
```

- $\textbf{3:} \quad SJW \leq SEG2PH.$
- **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31.24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	—
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	—	_	_	MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					MODIF	CTMRIF	RBIF	TBIF

REGISTER 24-3: CIINT: CAN INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by

Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

REGISTER 24-10: CIFLTCONO: CAN FILTER CONTROL REGISTER 0 (CONTINUED)

bit 15	FLTEN1: Filter 1 Enable bit 1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL1<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL0<1:0>: Filter 0 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
DIL 4-0	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	• 00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		—	_	-	_	_	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	_	—	—	—	—		
45.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P		
15:8	STNADDR2<7:0>									
	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P		
7:0				STNADDR	1<7:0>					

REGISTER 25-39: EMAC1SA2: ETHERNET CONTROLLER MAC STATION ADDRESS 2 REGISTER

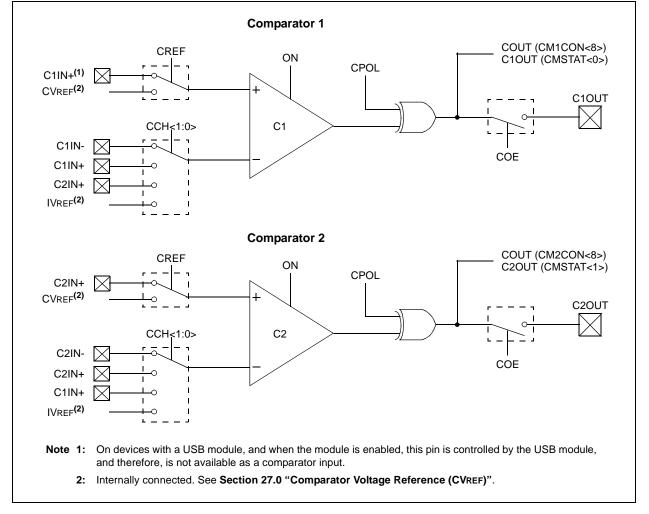
Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	Nritable bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-16 Reserved: Maintain as '0'; ignore read
- bit 15-8 **STNADDR2<7:0>:** Station Address Octet 2 bits These bits hold the second transmitted octet of the station address.
- bit 7-0 **STNADDR1<7:0>:** Station Address Octet 1 bits These bits hold the most significant (first transmitted) octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

26.0 COMPARATOR


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The Comparator module contains two comparators that can be configured in a variety of ways.

Key features of the Comparator module include:

- Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be inverted
- Selectable interrupt generation

A block diagram of the Comparator module is illustrated in Figure 26-1.

REGISTER 29-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 13-12 **FPBDIV<1:0>:** Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output is disabled
 - 0 = CLKO output signal is active on the OSCO pin; the Primary Oscillator must be disabled or configured for External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 Reserved: Write '1'
- bit 5 FSOSCEN: Secondary Oscillator Enable bit
 - 1 = Enable the Secondary Oscillator
 - 0 = Disable the Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	R	R	R	R	R	R	R	R	
31:24		VER<3	:0> ⁽¹⁾			DEVID<2	27:24> ⁽¹⁾		
00.40	R	R	R	R	R	R	R	R	
23:16	DEVID<23:16> ⁽¹⁾								
45.0	R	R	R	R	R	R	R	R	
15:8	DEVID<15:8> ⁽¹⁾								
7.0	R	R	R	R	R	R	R	R	
7:0				DEVID<	7:0> ⁽¹⁾				

REGISTER 29-5: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 DEVID<27:0>: Device ID bits⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_					_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	_	_	—
7.0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	U-0	R/W-0
7:0	_	_	_	_	JTAGEN	TROEN		TDOEN

REGISTER 29-6: DDPCON: DEBUG DATA PORT CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2 **TROEN:** Trace Output Enable bit
 - 1 = Enable the trace port
 - 0 = Disable the trace port
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO

PIC32MX5XX/6XX/7XX

TABLE 32-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$			
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μs	—
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	0.6	—	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μs	—
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	100	_	ns	
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns	_
			400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_	ns	Start condition
			1 MHz mode ⁽¹⁾	250	—	ns	
IS31	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first
		Hold Time	400 kHz mode	600	—	ns	clock pulse is generated
			1 MHz mode ⁽¹⁾	250	—	ns	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000	—	ns	—
		Setup Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	600	—	ns	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600	—	ns]
			1 MHz mode ⁽¹⁾	250	1	ns]
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	—
		Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus
			400 kHz mode	1.3	—	μS	must be free before a new
			1 MHz mode ⁽¹⁾	0.5	—	μs	transmission can start
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	_
	·	n pin capacitance =	10 E (11 100			· · · ·	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0958-8