

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betano	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx564f064ht-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nur	nber ⁽¹⁾		Din	Buffer			
Pin Nam	e 64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description		
RA0	_	17	G3	B9	I/O	ST	PORTA is a bidirectional I/O port		
RA1	—	38	J6	A26	I/O	ST			
RA2	—	58	H11	A39	I/O	ST			
RA3	—	59	G10	B32	I/O	ST			
RA4	—	60	G11	A40	I/O	ST			
RA5	—	61	G9	B33	I/O	ST			
RA6	—	91	C5	B51	I/O	ST			
RA7	—	92	B5	A62	I/O	ST			
RA9	—	28	L2	A21	I/O	ST			
RA10		29	K3	B17	I/O	ST]		
RA14		66	E11	B36	I/O	ST]		
RA15	—	67	E8	A44	I/O	ST			
RB0	16	25	K2	B14	I/O	ST	PORTB is a bidirectional I/O port		
RB1	15	24	K1	A15	I/O	ST			
RB2	14	23	J2	B13	I/O	ST			
RB3	13	22	J1	A13	I/O	ST			
RB4	12	21	H2	B11	I/O	ST			
RB5	11	20	H1	A12	I/O	ST			
RB6	17	26	L1	A20	I/O	ST			
RB7	18	27	J3	B16	I/O	ST			
RB8	21	32	K4	A23	I/O	ST			
RB9	22	33	L4	B19	I/O	ST			
RB10	23	34	L5	A24	I/O	ST	1		
RB11	24	35	J5	B20	I/O	ST]		
RB12	27	41	J7	B23	I/O	ST]		
RB13	28	42	L7	A28	I/O	ST]		
RB14	29	43	K7	B24	I/O	ST			
RB15	30	44	L8	A29	I/O	ST			
RC1	—	6	D1	A5	I/O	ST	PORTC is a bidirectional I/O port		
RC2	—	7	E4	B4	I/O	ST			
RC3	—	8	E2	A6	I/O	ST			
RC4		9	E1	B5	I/O	ST]		
RC12	39	63	F9	B34	I/O	ST]		
RC13	47	73	C10	A47	I/O	ST]		
RC14	48	74	B11	B40	I/O	ST]		
	-	64	F11	A42	I/O	ST	1		

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R	R	R	R	R	R	R	R			
31:24	BMXPFMSZ<31:24>										
22:46	R	R	R	R	R	R	R	R			
23:16	BMXPFMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXPFMSZ<15:8>										
7.0	R	R	R	R	R	R	R	R			
7:0				BMXPF	MSZ<7:0>						

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00010000 = device has 64 KB Flash 0x00020000 = device has 128 KB Flash 0x00040000 = device has 256 KB Flash 0x00080000 = device has 512 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R	R	R	R	R	R	R	R			
31:24	BMXBOOTSZ<31:24>										
00.40	R	R	R	R	R	R	R	R			
23:16	BMXBOOTSZ<23:16>										
15.0	R	R	R	R	R	R	R	R			
15:8	BMXBOOTSZ<15:8>										
7.0	R	R	R	R	R	R	R	R			
7:0				BMXBO	OTSZ<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00003000 = device has 12 KB boot Flash

Control Registers 9.2

TABLE 9-1: PREFETCH REGISTER MAP

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	CHECON ^(1,2)	31:16	:16 <u> C</u> H							CHECOH	0000								
4000	CHECON	15:0		_	—	_	_	_	DCSZ	<1:0>	_	—	PREFE	N<1:0>	_	F	PFMWS<2:0	>	0007
4010	CHEACC ⁽¹⁾	31:16 CHEWEN								0000									
4010		15:0	—	—	—	—	—	—	—	—	-	—	—	—		CHEID	X<3:0>		0000
4020	CHETAG ⁽¹⁾		LTAGBOOT	—	—	—	—	—	—	—				LTAG<			-		00xx
.020	01121710	15:0						LTAG<	<15:4>						LVALID	LLOCK	LTYPE	—	xxx2
4030	CHEMSK ⁽¹⁾	31:16	—	_	—	—	_	—		—	—	—	—	_	_	_		—	0000
		15:0	LMASK<15:5> — — — — 0000								0000								
4040	CHEW0	31:16								CHEWO)<31:0>								XXXX
		15:0																	XXXX
4050	CHEW1	31:16								CHEW1	<31:0>								XXXX
		15:0																	XXXX
4060	CHEW2	31:16 15:0								CHEW2	2<31:0>								XXXX
		31:16																	xxxx xxxx
4070	CHEW3	15:0								CHEWS	8<31:0>								XXXX
		31:16	_	_	_	_	_	_	_				CI	HELRU<24:1	6>				0000
4080	CHELRU	15:0								CHELR	J<15:0>		0.						0000
		31:16																	xxxx
4090	CHEHIT	15:0								CHEHI	⁻ <31:0>								xxxx
		31:16																	xxxx
40A0	CHEMIS	15:0								CHEMIS	5<31:0>								xxxx
4000	CHEPFABT	31:16								CHEPFAI	OT -21-0-								xxxx
4000	CHEFFABI	15:0								UNEPFAI	51<31.0>								xxxx

Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Reset value is dependent on DEVCFGx configuration. 1:

2:

Note

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded Host, full-speed Device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Endpoint buffering anywhere in system RAM
- Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, as well as other third party may specifications or technologies, require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

REGISTER 11-11: U1CON: USB CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	-	—	—	_	-	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6			—	—			—	—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	JSTATE	TATE SE0	PKTDIS ⁽⁴⁾	USBRST	HOSTEN ⁽²⁾	RESUME ⁽³⁾	PPBRST	USBEN ⁽⁴⁾
			TOKBUSY ^(1,5)					SOFEN ⁽⁵⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
 - 0 = JSTATE was not detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single-ended zero was detected on the USB
 0 = Single-ended zero was not detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled

TOKBUSY: Token Busy Indicator bit^(1,5)

- 1 = Token being executed by the USB module
- 0 = No token being executed
- bit 4 USBRST: Module Reset bit⁽⁵⁾
 - 1 = USB reset is generated
 - 0 = USB reset is terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability is enabled
- 0 = USB host capability is disabled
- bit 2 **RESUME:** RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - **2:** All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

REGISTER 11-11: U1CON: USB CONTROL REGISTER (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Reset all Even/Odd buffer pointers to the Even buffer descriptor banks
 - 0 = Even/Odd buffer pointers are not reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry is enabled
 - 0 = USB module and supporting circuitry is disabled

SOFEN: SOF Enable bit(5)

- 1 = SOF token is sent every 1 ms
- 0 = SOF token is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6		—						—
7.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	UTEYE	UOEMON		USBSIDL				UASUSPND

Legend:

R = Readable bit	= Readable bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UTEYE: USB Eye-Pattern Test Enable bit
 - 1 = Eye-Pattern Test is enabled
 - 0 = Eye-Pattern Test is disabled
- bit 6 **UOEMON:** USB OE Monitor Enable bit
 - $1 = \overline{OE}$ signal is active; it indicates intervals during which the D+/D- lines are driving
 - $0 = \overline{OE}$ signal is inactive
- bit 5 Unimplemented: Read as '0'
- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 11-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock.

Т	ABLE 12	PORTG REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H	Н.
		PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES	,
	ŝ	Bits	

ö		Φ		9 No. 10								<i>(</i> 0							
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6180	TRISG	31:16	—	—	—	_	—	—	_	—	—	—	_	_	-	_	_	_	0000
6160	TRIBU	15:0	_	_	_	_	_		TRISG9	TRISG8	TRISG7	TRISG6	_		TRISG3	TRISG2	-		03CC
6100	PORTG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
6190	PURIG	15:0	_	_	_	_	_		RG9	RG8	RG7	RG6	_		RG3	RG2	-		xxxx
61A0	LATG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
OTAU	LAIG	15:0	_	_	_	_	_		LATG9	LATG8	LATG7	LATG6	_		LATG3	LATG2	-		xxxx
61B0	ODCG	31:16	-	_	_	_	-	_	_	_	_	-	_			-	_		0000
0180	ODCG	15:0	-	_	_	_	-	_	ODCG9	ODCG8	ODCG7	ODCG6	_		ODCG3	ODCG2	_		0000
Laware																			

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 12-12: PORTG REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										Bi	ts								<i>(</i> 0
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	_	—	_	-	_	—	-	—	—	-	—	-	-	-	-	-	0000
0100	TRISG	15:0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6100	PORTG	31:16		_		_		-	-	-	-	—	-	—	—	—	_	—	0000
6190	PURIG	15:0	RG15	RG14	RG13	RG12			RG9	RG8	RG7	RG6		-	RG3	RG2	RG1	RG0	xxxx
61A0	LATG	31:16	-	_		_	-	-	-	-	-	—	-	—	—	—	—	—	0000
61A0	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	-	LATG3	LATG2	LATG1	LATG0	xxxx
61B0	ODCG	31:16		—	_	_		_		_	_	—	_	—	—	—	—	—	0000
0160	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	-	ODCG9	ODCG8	ODCG7	ODCG6	-	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP (CONTINUED)

ess							•			Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5230	I2C5MSK	31:16	-	—	—	_		_	—	-	_	_		_	—	—	_		0000
5230	IZCONISK	15:0	-	—	—	-		_					MSK	<9:0>				-	0000
5240	I2C5BRG	31:16	_	_	_	—	_	—	—	—	_	—	_	—	_		-	_	0000
5240		15:0	—	—	—	—					Ba	ud Rate Ger	erator Regi	ster			•		0000
5250	I2C5TRN	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—		—	—	0000
0200		15:0	—	_	_	—	_	—	_	_		-		Transmit	Register		•		0000
5260	I2C5RCV	31:16	-			—	_	—		_	_	—	—	—		_	—	_	0000
		15:0	-		—	—		—		_				Receive	Register				0000
5300	I2C1CON	31:16	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5310	I2C1STAT	31:16	—	_	_	_	_	_	—	—	_	—	—	_	_		—	_	0000
			ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5320	I2C1ADD	31:16	_	_	—	—	_		—		_	_		_	—		—	—	0000
		15:0	_	_	_	_	_	-					ADD	<9:0>					0000
5330	I2C1MSK	31:16	_	_	_	_	_	-	_	-	_	_	—	-	_	-	—	—	0000
		15:0	_		_	_		_					MSK	<9:0>					0000
5340	I2C1BRG	31:16	_			—	_	—		_	-	-		_	—		-	_	0000
-		15:0	_			—					Ва	ud Rate Ger	Ū.	ster			1		0000
5350	I2C1TRN	31:16	_	—	—	_	_	_	_	_	_	_	—		—	—	—	—	0000
		15:0	_	_	_	_	_	_		_				Transmit	Register				0000
5360	I2C1RCV	31:16 15:0	_	_				—			—	—	—	- Deseive		—	—	—	0000
								_						Receive					
5400	12C2CON(2)	31:16 15:0	ON		-	-		-	— DI001144	-	-	— STREN	— ACKDT			-		-	0000
				_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN					PEN	RSEN	SEN	1000
5410	12C2STAT ⁽²⁾	31:16			_	_	_	— DCI	— 	-	-	-	— D/A	— P	-	— •	-	— TDF	0000
		15:0 31:16	ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5420	12C2ADD(2)	15:0				_	_		_	-	—	—		 <9:0>	—		_	—	0000
		31:16	_			_		_	_		_		ADD	<9.0>			_	_	0000
5430	12C2MSK ⁽²⁾	15:0							_	_	_	_	 MSK	<0.0>	_		_	_	0000
		31:16									_			< 3.02				_	0000
5440	I2C2BRG ⁽²⁾	15:0	_			_	_	_	_		Ra	ud Rate Ger	erator Regi	ster					0000
		31:16	_	_	_	_	_	_	_	_	Da				_		_	_	0000
5450	I2C2TRN ⁽²⁾	15:0	_	_	_	_	_		_					Transmit	Register				0000
		31:16	_	_	_	_		_	_	_		_	_				_	_	0000
5460	12C2RCV ⁽²⁾	15:0	_	_	_	_	_	_	_	_				Receive	Register				0000
Legen								Les are show	l 	aire al				110001100					0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16								—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (ONLY SLAVE MODES)

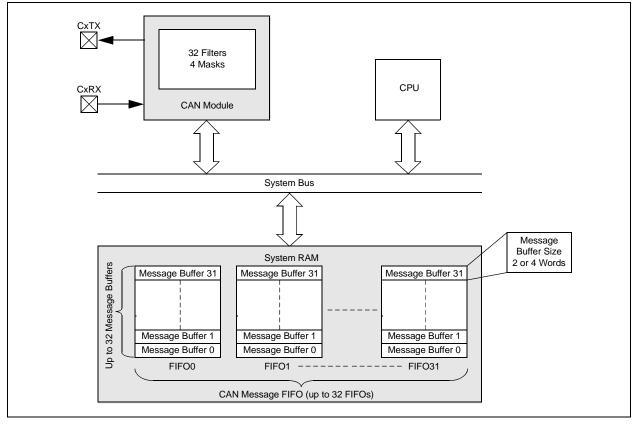
Legend:	HS = Set by Hardware	SC = Cleared by software	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 - 0 = An overflow has not occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 - 0 = An underflow has not occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

24.0 CONTROLLER AREA NETWORK (CAN)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Controller Area Network (CAN) module supports the following key features:

- Standards Compliance:
 - Full CAN 2.0B compliance
 - Programmable bit rate up to 1 Mbps
- Message Reception and Transmission:
 - 32 message FIFOs
 - Each FIFO can have up to 32 messages for a total of 1024 messages

- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 32 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet[™] addressing support
- Additional Features:
 - Loopback, Listen All Messages, and Listen Only modes for self-test, system diagnostics and bus monitoring
 - Low-power operating modes
 - CAN module is a bus master on the PIC32 system bus
 - Use of DMA is not required
 - Dedicated time-stamp timer
 - Dedicated DMA channels
 - Data-only Message Reception mode

Figure 24-1 illustrates the general structure of the CAN module.

FIGURE 24-1: PIC32 CAN MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
51.24	FLTEN23	MSEL2	3<1:0>	FSEL23<4:0>						
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN22	MSEL2	2<1:0>	FSEL22<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN21	MSEL2	21<1:0>	FSEL21<4:0>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN20	MSEL2	20<1:0>	FSEL20<4:0>						

REGISTER 24-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit (31	FLTEN23: Filter 23 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit (30-29	MSEL23<1:0>: Filter 23 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	28-24	<pre>FSEL23<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1</pre>
bit 2	23	00000 = Message matching filter is stored in FIFO buffer 0 FLTEN22: Filter 22 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 2	22-21	MSEL22<1:0>: Filter 22 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	20-16	FSEL22<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
	otor	The hite in this register can only be madified if the correspond

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 25-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	_	_	—	—	_	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	_	_	—	—	_	—			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8 MCOLFRMCNT<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	MCOLFRMCNT<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **MCOLFRMCNT<15:0>:** Multiple Collision Frame Count bits Increment count for frames that were successfully transmitted after there was more than one collision.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER (CONTINUED)

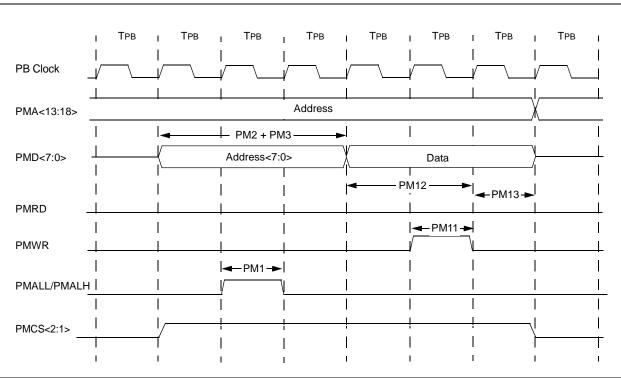
- VLANPAD: VLAN Pad Enable bit^(1,2) bit 6 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames PADENABLE: Pad/CRC Enable bit^(1,3) bit 5 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit LENGTHCK: Frame Length checking bit bit 1 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit 1 = The MAC operates in Full-Duplex mode 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 25-6 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - **3:** This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 25-6:PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	x	x	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	x	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC

27.1 Control Register


TABLE 27-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

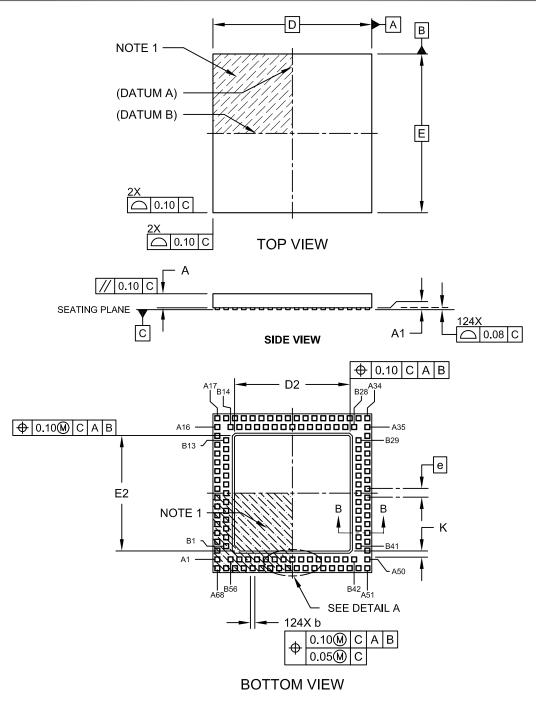
lress ¢)	Virtual Address (BF80_#) Register Name ⁽¹⁾	e		Bits															
Virtual Addr (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16			—	—	—	-	—	_	_	_	-	_		—		—	0000
9800 C∖	CVRCON	15:0	ON	-	_	—	_	VREFSEL ⁽²⁾	BGSEL	<1:0> ⁽²⁾	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0100

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX575/675/695/775/795 devices. On these devices, reset value for CVRCON is '0000'.

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM


TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions		
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_		
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	—	_		
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв			—		

Note 1: These parameters are characterized, but not tested in manufacturing.

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2

Revision C (February 2010)

The revision includes the following updates, as described in Table B-2:

TABLE B-2: MAJOR SECTION UPDATES

Section Name		U	pdate Description				
"High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers"	Added the following devices: • PIC32MX675F256H • PIC32MX775F256H • PIC32MX775F512H • PIC32MX675F256L • PIC32MX775F256L • PIC32MX775F512L						
	Added the folic • EREFCLK • ECRSDV • AEREFCLK • AECRSDV						
1.0 "Device Overview"			SDV pins to Table 5				
1.0 Device Overview	Table 1-1:	n number pinout	i/O descriptions for t	he following pin names in			
	• SCL3	• SCL5	RTCC	• C10UT			
	SDA3SCL2	SDA5TMS	CVREF-CVREF+	C2IN-C2IN+			
	• SDA2	• TMS • TCK	CVREF+ CVREFOUT	• C20UT			
	• SCL4	• TDI	• C1IN-	• PMA0			
	• SDA4	• TDO	• C1IN+	• PMA1			
			Pinout I/O Descriptio	ons table (Table 1-1):			
	 EREFCLK ECRSDV AEREFCLK AECRSDV 		·				
4.0 "Memory Organization"	Added new de Figure 4-4.	vices and updated	d the virtual and phy	vsical memory map values in			
	Added new de	vices to Figure 4-	5.				
	Added new de	vices to the follow	ving register maps:				
	 Table 4-12 (I Table 4-15 (S Table 4-24 tf Table 4-36 a Table 4-45 (I Table 4-46 (I 	2C2 Register Ma SPI1 Register Ma nrough Table 4-35	p) p) 5 (PORTA-PORTG F nange Notice and Pu ap) ap)	errupt Register Maps) Register Maps) ull-up Register Maps)			
	Configuration \	Nord Summary).		Table 4-42 (Device			
1.0 "Special Features"		ferences of POS0 r (see Register 1-		in the Device Configuration			
Appendix A: "Migrating from PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX Devices"	Added the new	v section Appendi	x .				

Revision E (July 2010)

Minor corrections were incorporated throughout the document.

Revision F (December 2010)

The revision includes the following global update:

VCAP/VDDCORE has been changed to: VCAP/VCORE

Other major changes are referenced by their respective chapter/section in Table B-4:

TABLE B-4: SECTION UPDATES

Section Name	Update Description
High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers	Removed the following Analog Feature: FV tolerant input pins (digital pins only)
	Updated the term LIN 1.2 support as LIN support for the peripheral feature: Six UART modules with: RS-232, RS-485, and LIN support
1.0 "Device Overview"	Updated the value of 64-pin QFN/TQFP pin number for the following pin names: PMA0, PMA1 and ECRSDV
4.0 "Memory Organization"	The following register map tables were updated:
	• Table 4-2:
	- Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT
	 Changed bits 25/9/-24/8 to U5IS<1:0> in IPC12
	- Added note 2
	Table 4-3 through Table 4-7:
	 Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT
	 Changed bits 25/9-24/8 to U5IS<1:0> in IPC12
	• Table 4-3:
	 Changed bits 24/8 to I2C5BIF in IFS1
	- Added note 2
	• Table 4-4:
	 Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8 to I2C5BIE in IEC1
	 Added note 2 references
	• Table 4-5:
	 Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8 to I2C5BIE in IEC1
	 Added note 2 references
	• Table 4-6:
	 Changed bit 24/8 to I2C5BIF in IFS1
	 Updated the bit value of bit 24/8 as I2C5BIE for the IEC1 register.
	- Added note 2
	• Table 4-7:
	- Changed bit 25/9 to I2C5SIF in IFS1
	- Changed bit 24/8 as I2C5BIF in IFS1
	- Changed bit 25/9 as I2C5SIE in IEC1
	- Changed bit 24/8 as I2C5BIE in IEC1
	- Added note 2 references
	Added note 2 to Table 4-8
	Updated the All Resets values for the following registers in Table 4-11: I2C3CON, I2C4CON, I2C5CON and I2C1CON.
	Updated the All Resets values for the I2C2CON register in Table 4-12

TABLE B-7: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
32.0 "Electrical Characteristics"	Note 4 in the Operating Current specification was updated (see Table 32-5).
	Note 3 in the Idle Current specification was updated (see Table 32-6).
	Note 6 references in the Power-Down Current specification were updated (see Table 32-7).
	The Program Memory parameters, D135, D136, and D137, and Note 4 were updated (see Table 32-11).
	The Voltage Reference Specifications were updated (see Table 32-14).
	Parameter DO50 (Cosco) was added to the Capacitive Loading Requirements on Output Pins (see Table 32-16).
	The EJTAG Timing Characteristics were updated (see Figure 32-28).
	The maximum value for parameters ET13 and ET14 were updated in the Ethernet Module Specifications (see Table 32-35).
	Parameter PM7 (TDHOLD) was updated (see Table 32-40).
34.0 "Packaging Information"	Packaging diagrams were updated.
Product Identification System	The Speed and Program Memory Size were updated and Note 1 was added.