

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx564f064lt-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

TABLE 8: PIN NAMES FOR 100-PIN USB AND ETHERNET DEVICES (CONTINUED)

100-PIN TQFP (TOP VIEW)

PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L

100

			1
Pin #	Full Pin Name	Pin #	Full Pin Name
71	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	86	VDD
72	SDO1/OC1/INT0/RD0	87	ETXD1/PMD11/RF0
73	SOSCI/CN1/RC13	88	ETXD0/PMD10/RF1
74	SOSCO/T1CK/CN0/RC14	89	ETXERR/PMD9/RG1
75	Vss	90	PMD8/RG0
76	OC2/RD1	91	TRCLK/RA6
77	OC3/RD2	92	TRD3/RA7
78	OC4/RD3	93	PMD0/RE0
79	ETXD2/IC5/PMD12/RD12	94	PMD1/RE1
80	ETXD3/PMD13/CN19/RD13	95	TRD2/RG14
81	OC5/PMWR/CN13/RD4	96	TRD1/RG12
82	PMRD/CN14/RD5	97	TRD0/RG13
83	ETXEN/PMD14/CN15/RD6	98	PMD2/RE2
84	ETXCLK/PMD15/CN16/RD7	99	PMD3/RE3
85	VCAP/VDDCORE	100	PMD4/RE4

Note 1: Shaded pins are 5V tolerant.

		Pin Nur	nber ⁽¹⁾				
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
CN0	48	74	B11	B40	I	ST	Change notification inputs. Can be
CN1	47	73	C10	A47	I	ST	software programmed for internal weak
CN2	16	25	K2	B14	I	ST	pull-ups on all inputs.
CN3	15	24	K1	A15	I	ST	
CN4	14	23	J2	B13	I	ST	
CN5	13	22	J1	A13	I	ST	
CN6	12	21	H2	B11	I	ST	
CN7	11	20	H1	A12	I	ST	
CN8	4	10	E3	A7	I	ST	
CN9	5	11	F4	B6	I	ST	
CN10	6	12	F2	A8	I	ST	
CN11	8	14	F3	A9	I	ST	
CN12	30	44	L8	A29	I	ST	
CN13	52	81	C8	B44	I	ST	
CN14	53	82	B8	A55	I	ST	
CN15	54	83	D7	B45	I	ST	
CN16	55	84	C7	A56	I	ST	
CN17	31	49	L10	B27	I	ST	
CN18	32	50	L11	A32	I	ST	
CN19		80	D8	A54	I	ST	
CN20		47	L9	B26	I	ST	
CN21		48	K9	A31	I	ST	
IC1	42	68	E9	B37	I	ST	Capture Inputs 1-5
IC2	43	69	E10	A45	I	ST	
IC3	44	70	D11	B38	I	ST	
IC4	45	71	C11	A46	I	ST	
IC5	52	79	A9	A60	I	ST	
OCFA	17	26	L1	A20	I	ST	Output Compare Fault A Input
OC1	46	72	D9	B39	0	_	Output Compare Output 1
OC2	49	76	A11	A52	0	_	Output Compare Output 2
OC3	50	77	A10	B42	0	_	Output Compare Output 3
OC4	51	78	B9	A53	0	_	Output Compare Output 4
OC5	52	81	C8	B44	0	_	Output Compare Output 5
OCFB	30	44	L8	A29	I	ST	Output Compare Fault B Input
INT0	46	72	D9	B39	I	ST	External Interrupt 0
INT1	42	18	G1	A11	1	ST	External Interrupt 1
INT2	43	19	G2	B10	Ι	ST	External Interrupt 2
INT3	44	66	E11	B36	1	ST	External Interrupt 3
INT4	45	67	E8	A44	I	ST	External Interrupt 4
Legend: (CMOS = CMO ST = Schmitt 1 TL = TTL inp	S compatib Frigger inpur ut buffer	le input or c t with CMO	output S levels	A O	nalog = A = Outpu	Analog input P = Power t I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX564F064H, PIC32MX564F064L, PIC32MX664F064H AND PIC32MX664F064L DEVICES

PIC32MX5XX/6XX/7XX

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX575F512H, PIC32MX575F512L, PIC32MX675F512H, PIC32MX675F512L, PIC32MX775F512H AND PIC32MX775F512L DEVICES

(DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

ess										В	its								s
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1000	INTCON	31:16	—	—	—	—	—	—	—		—	—	—	_	_	—	—	SS0	0000
		15:0	_	_	_	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000
1010	INTSTAT ⁽³⁾	15.0	_	_		_	_	_			_		_	—		<5:0>	_	_	0000
1020	IPTMR	31:16 15:0							01111 2 12:05	IPTMR	<31:0>					10.07			0000
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	SPI1TXIF	SPI1RXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	—	—	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF SPI4TXIF	U2RXIF SPI4RXIF	U2EIF SPI4EIF	U3TXIF SPI2TXIF	U3RXIF SPI2RXIF	U3EIF SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		04.40						I2C5MIF	12C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF						
1050	IFS2	31:16			_														0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	SPI1TXIE	SPI1RXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	—	—	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
4000	15.00	31:16	—	_	_	_	—	—	—	_	_	_	_	_		_	_	_	0000
1080	IEC2	15:0	—	_	_	—	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16	—	—	—		INT0IP<2:0>	•	INTOIS	S<1:0>	—	—	—		CS1IP<2:0>	•	CS1IS	S<1:0>	0000
		15:0		_	_		CS0IP<2:0>		CSOIS	S<1:0>	_				CTIP<2:0>		CTIS	<1:0>	0000
10A0	IPC1	15:0					IC1IP<2:0>	•	INTTI: IC1IS	5<1:0> i<1:0>					T1IP<2:0>	>	T1IS	<1:0> <1:0>	0000
	10.00	31:16	_	_	_		INT2IP<2:0>	•	INT2IS	S<1:0>	_	_	_		OC2IP<2:0>	•	OC2IS	6<1:0>	0000
1080	IPC2	15:0	—	_	_		IC2IP<2:0>		IC2IS	<1:0>	_	_	_		T2IP<2:0>		T2IS	<1:0>	0000
1000	IPC3	31:16	—	—	—		INT3IP<2:0>	•	INT3IS	S<1:0>	—	-	—		OC3IP<2:0>	`	OC3I	S<1:0>	0000
1000	15.03	15:0	_	_	_		IC3IP<2:0>		IC3IS	<1:0>	—	—	—		T3IP<2:0>		T3IS	<1:0>	0000
Legend	d• v =	unknow	n value on F	Reset: = I	inimplement	ed read as '	" ⁽¹⁾ Reset val	lues are sho	wn in hexad	ecimal									

TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND

0'. Reset values are shown in hexadecimal

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information.

These bits are not available on PIC32MX664 devices. 2:

This register does note have associated CLR, SET, and INV registers. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31.24				CHEW1<	31:24>	_	_					
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16	CHEW1<23:16>											
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15.6				CHEW1-	<15:8>							
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7.0				CHEW1	<7:0>							

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31.24				CHEW2<	:31:24>							
22:46	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23.10	CHEW2<23:16>											
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15.6				CHEW2	<15:8>							
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7.0				CHEW2	<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
35E0		31:16	-	-	—	—	—	—	-	—	-	—	—	—	—	—	-	—	0000
001.0	DOINOOIZ	15:0								CHSSIZ	Z<15:0>								0000
2000		31:16	—	—	_	_	_	- 1	—	—	_	_	_	_	-	_	_	_	0000
3600	DCH/DSIZ	15:0								CHDSIZ	Z<15:0>								0000
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	-	-	_	_	0000
3610	DCH/SPIR	15:0								CHSPT	R<15:0>								0000
2620		31:16	_	_	_	-	-	-	_	_	_	—	-	_	—	_	_	_	0000
3020	DCHIDPIK	15:0								CHDPT	R<15:0>								0000
2020		31:16	_	_	—	_	-	—	_	-	_	—	_	_	—	_	—	_	0000
3630	DCH/CSIZ	15:0								CHCSIZ	Z<15:0>								0000
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	—	-	_	_	0000
3640	DCH/CPIR	15:0								CHCPT	R<15:0>								0000
2650		31:16	_	—	—	—	_	_	—	—	—	—	_	—	—	_	_	_	0000
3050		15:0		_	_	_	_	_	_	—				CHPDA	AT<7:0>				0000

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—		—		—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—		—		—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				CNT	<7:0>			

REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-0 CNT<7:0>: SOF Threshold Value bits
 - Typical values of the threshold are: 01001010 = 64-byte packet 00101010 = 32-byte packet 00011010 = 16-byte packet

00010010 = 8-byte packet

REGISTER 11-17: U1BDTP1: USB BUFFER DESCRIPTOR TABLE PAGE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
7.0			В	DTPTRL<15:	9>			_

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-1 BDTPTRL<15:9>: BDT Base Address bits

This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—		—			_	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—		—			_	_
7.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

bit 1

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device enabled
 - 0 = Direct connection to a low-speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NACK'd transactions disabled
 - 0 = Retry NACK'd transactions enabled; retry done in hardware
- bit 5 Unimplemented: Read as '0'
- bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit
 - If EPTXEN = 1 and EPRXEN = 1:
 - 1 = Disable Endpoint 'n' from control transfers; only TX and RX transfers are allowed
 - 0 = Enable Endpoint 'n' for control (SETUP) transfers; TX and RX transfers are also allowed Otherwise, this bit is ignored.
- bit 3 EPRXEN: Endpoint Receive Enable bit
 - 1 = Endpoint 'n' receive is enabled
 - 0 = Endpoint 'n' receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint 'n' transmit is enabled
 - 0 = Endpoint 'n' transmit is disabled
 - EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint 'n' was stalled
 - 0 = Endpoint 'n' was not stalled
- bit 0 **EPHSHK:** Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-bit Timer
- Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous Internal 32-bit Timer
- · Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through Timer5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or Timer4; 'y' represents Timer3 or Timer5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (only Timer2 and Timer3)
- ADC event trigger (only Timer3)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (16-BIT)

17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 17-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Module On bit⁽¹⁾
 - 1 = Output Compare module is enabled
 - 0 = Output Compare module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation when CPU is in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
 - 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (only cleared in hardware)
 - 0 = PWM Fault condition has not occurred

bit 3 OCTSEL: Output Compare Timer Select bit

- 1 = Timer3 is the clock source for this Output Compare module
- 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only used when OCM < 2:0 > = 111. It is read as '0' in all other modes.

I2CxSTAT: I²C STATUS REGISTER (CONTINUED) REGISTER 19-2: **D_A:** Data/Address bit (when operating as I²C slave) bit 5 This bit is cleared by hardware upon a device address match, and is set by hardware by reception of the slave byte. 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address bit 4 P: Stop bit This bit is set or cleared by hardware when a Start, Repeated Start, or Stop condition is detected. 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last bit 3 S: Start bit This bit is set or cleared by hardware when a Start, Repeated Start, or Stop condition is detected. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last **R_W:** Read/Write Information bit (when operating as I²C slave) bit 2 This bit is set or cleared by hardware after reception of an I²C device address byte. 1 = Read – indicates data transfer is output from slave 0 = Write - indicates data transfer is input to slave **RBF:** Receive Buffer Full Status bit bit 1 This bit is set by hardware when the I2CxRCV register is written with a received byte, and is cleared by hardware when software reads I2CxRCV. 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty bit 0 TBF: Transmit Buffer Full Status bit This bit is set by hardware when software writes to the I2CxTRN register, and is cleared by hardware upon completion of data transmission.

1 = Transmit in progress, I2CxTRN is full

0 = Transmit complete, I2CxTRN is empty

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	—	—	—	1	1	—	—	-		—	—	1	1	—	—	-	0000
7000	TIMOON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010		31:16	—	—	—	_	_	—	—	_	_	—	—	_	_	—	—	—	0000
7010	FININODE	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITN	//<3:0>		WAITI	E<1:0>	0000
7020		31:16	—	—	—	_	_	—	—	_	_	—	—	_	_	—	—	—	0000
1020		15:0	CS2EN/A15	CS1EN/A14							ADDR	<13:0>							0000
7020		31:16									IT -21.05								0000
7030	FINDOUT	15:0								DATAOL	1<31.0>								0000
7040		31:16								ΠΑΤΑΙΝ	1-31.05								0000
7040	FINDIN	15:0								DATAIN	1<31.0>								0000
7050		31:16	—	—	—	_	_	—	—	-	_	—	—	_	_	—	_	—	0000
7050	FINALIN	15:0	15:0 PTEN<15:0>									0000							
7060	DMOTAT	31:16	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
1060	FIVISTAT	15:0	IBF	IBOV	_	-	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	-	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—					—	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF			OB3E	OB2E	OB1E	OB0E

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (ONLY SLAVE MODES)

Legend:	HS = Set by Hardware	SC = Cleared by software	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 - 0 = An overflow has not occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 - 0 = An underflow has not occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10	<3:0>		HR01	<3:0>				
00:40	R/W-x R/W-x R/W-x R/W-x				R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MIN10	<3:0>	•	MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10	<3:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	—	—	—	—	—	_	—	—		
	•									
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cl	eared	x = Bit is un	known				

REGISTER 22-5: ALRMTIME: ALARM TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10 digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1 digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	_		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

REGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

1 = Select ANx for input scan

0 =Skip ANx for input scan

Note 1: CSSL = ANx, where 'x' = 0-15.

bit 15-0 CSSL<15:0>: ADC Input Pin Scan Selection bits⁽¹⁾

REGISTER 24-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED)

bit 15	FLTEN29: Filter 29 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL29<1:0>: Filter 29 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL29<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN28: Filter 28 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL28<1:0>: Filter 28 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask U selected
bit 4-0	FSEL28<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

29.2 On-Chip Voltage Regulator

All PIC32MX5XX/6XX/7XX devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX-5XX/6XX/7XX family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 32.1 "DC Characteristics"**.

Note: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin.

29.2.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

29.2.2 ON-CHIP REGULATOR AND BOR

PIC32MX5XX/6XX/7XX devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset (BOR). This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in **Section 32.1 "DC Characteristics"**.

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

29.3 **Programming and Diagnostics**

PIC32MX5XX/6XX/7XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 29-2:

PROGRAMMING, DEBUGGING, AND TRACE PORTS BLOCK DIAGRAM

Revision D (May 2010)

The revision includes the following updates, as described in Table B-3:

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers"	Updated the initial Flash memory range to 64K.
	Updated the initial SRAM memory range to 16K.
	Added the following devices (see Table 1, Table 2, Table 3 and the Pin Diagrams):
	 PIC32MX534F064H PIC32MX564F064H
	• PIC32MX664F064H
	 PIC32MX564F128H PIC32MX664F128H
	 PIC32MX764F128H
	• PIC32MX534F064L
	PIC32MX564F064L
	 PIC32MX664F064L PIC32MX564F128I
	• PIC32MX664F128L
	• PIC32MX764F128L
4.0 "Memory Organization"	Added new Memory Maps (Figure 4-1, Figure 4-2 and Figure 4-3).
	The bit named I2CSIF was changed to I2C1SIF and the bit named I2CBIF was changed to I2C1BIF in the Interrupt Register Map tables (Table 4-2, Table 4-3, Table 4-4, Table 4-5, Table 4-6 and Table 4-7)
	Added the following devices to the Interrupt Register Map (Table 4-2):
	 PIC32MX534F064H PIC32MX564F064H PIC32MX564F128H
	Added the following devices to the Interrupt Register Map (Table 4-3):
	PIC32MX664F064HPIC32MX664F128H
	Added the following device to the Interrupt Register Map (Table 4-4):
	• PIC32MX764F128H
	Added the following devices to the Interrupt Register Map (Table 4-5):
	 PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L
	Added the following devices to the Interrupt Register Map (Table 4-6):
	 PIC32MX664F064L PIC32MX664F128L
	Added the following device to the Interrupt Register Map (Table 4-7):
	• PIC32MX764F128L