

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx564f064lt-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: **PIN NAMES FOR 100-PIN USB AND CAN DEVICES**

100-PIN TQFP (TOP VIEW)

PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F512L PIC32MX575F256L

100

			1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	RG15	36	Vss
2	Vdd	37	Vdd
3	PMD5/RE5	38	TCK/RA1
4	PMD6/RE6	39	AC1TX/SCK4/U5TX/U2RTS/RF13
5	PMD7/RE7	40	AC1RX/SS4/U5RX/U2CTS/RF12
6	T2CK/RC1	41	AN12/PMA11/RB12
7	T3CK/RC2	42	AN13/PMA10/RB13
8	T4CK/RC3	43	AN14/PMALH/PMA1/RB14
9	T5CK/SDI1/RC4	44	AN15/OCFB/PMALL/PMA0/CN12/RB15
10	SCK2/U6TX/U3RTS/PMA5/CN8/RG6	45	Vss
11	SDA4/SDI2/U3RX/PMA4/CN9/RG7	46	VDD
12	SCL4/SDO2/U3TX/PMA3/CN10/RG8	47	SS3/U4RX/U1CTS/CN20/RD14
13	MCLR	48	SCK3/U4TX/U1RTS/CN21/RD15
14	SS2/U6RX/U3CTS/PMA2/CN11/RG9	49	SDA5/SDI4/U2RX/PMA9/CN17/RF4
15	Vss	50	SCL5/SDO4/U2TX/PMA8/CN18/RF5
16	VDD	51	USBID/RF3
17	TMS/RA0	52	SDA3/SDI3/U1RX/RF2
18	INT1/RE8	53	SCL3/SDO3/U1TX/RF8
19	INT2/RE9	54	VBUS
20	AN5/C1IN+/VBUSON/CN7/RB5	55	VUSB3V3
21	AN4/C1IN-/CN6/RB4	56	D-/RG3
22	AN3/C2IN+/CN5/RB3	57	D+/RG2
23	AN2/C2IN-/CN4/RB2	58	SCL2/RA2
24	PGEC1/AN1/CN3/RB1	59	SDA2/RA3
25	PGED1/AN0/CN2/RB0	60	TDI/RA4
26	PGEC2/AN6/OCFA/RB6	61	TDO/RA5
27	PGED2/AN7/RB7	62	VDD
28	VREF-/CVREF-/PMA7/RA9	63	OSC1/CLKI/RC12
29	VREF+/CVREF+/PMA6/RA10	64	OSC2/CLKO/RC15
30	AVdd	65	Vss
31	AVss	66	SCL1/INT3/RA14
32	AN8/C1OUT/RB8	67	SDA1/INT4/RA15
33	AN9/C2OUT/RB9	68	RTCC/IC1/RD8
34	AN10/CVREFOUT/PMA13/RB10	69	SS1/IC2/RD9
35	AN11/PMA12/RB11	70	SCK1/IC3/PMCS2/PMA15/RD10

Shaded pins are 5V tolerant. Note 1:

Bit

Bit

Bit

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0							
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
31.24	_	_				_		—							
23.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
20.10	—	—	—	—	—	—	—								
15:8	R/W-0, HC	R/W-0	R-0, HS	R-0, HS	R-0, HSC	U-0	U-0	U-0							
	WR	WREN	WRERR	LVDERR	LVDSTAT			—							
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
	_	—	_			NVMOR	2<3:0>								
l egend:		II – Unimple	mented hit r	ad as '0'		HSC - Set an	d Cleared by	hardware							
R - Read	able bit	W – Writable	≏ hit	HS – Set by	hardware	HC – Cleared	by hardware	naraware							
-n = Value		'1' = Rit is so	ot	(0) = Bit is of	ared	x = Bit is upkr									
		1 – Dit 13 30	51		ealeu		101011								
bit 31-16	Unimpleme	nted: Read a	IS '0'												
bit 15	WR: Write C	ontrol bit													
DIC 10	This bit is wr	itable when V	VREN = 1 and	d the unlock	sequence is fo	llowed.									
	1 = Initiate a	Flash operat	tion Hardwar	e clears this h	nit when the o	neration compl	etes								
	0 = Flash operation complete or inactive WREN: Write Enable bit														
hit 14	WREN: Write Enable bit 1 = Enable writes to WR bit and enables LVD circuit														
	 WKEN: WRITE Enable bit 1 = Enable writes to WR bit and enables LVD circuit 0 = Disable writes to WR bit and disables LVD circuit 														
	 1 = Enable writes to WR bit and enables LVD circuit 0 = Disable writes to WR bit and disables LVD circuit 														
	0 = Disable writes to WR bit and disables LVD circuitNote: This is the only bit in this register that is reset by a device Reset.														
hit 13	Note: This is the only bit in this register that is reset by a device Reset. WRERR: Write Error bit ⁽¹⁾														
DIL 15	This bit is rea	ad-only and is	s automaticall	v set by hard	ware										
	1 – Program	or erase sec	wence did no	t complete si	iccessfully										
	0 = Program	or erase sec	uence compl	eted normally	/										
bit 12		w-Voltage D	etect Error bit	(IVD circuit)	must be enabl	ed)(1)									
	This bit is rea	ad-only and is	s automaticall	y set by hard	ware.										
	1 = Low-volt	age detected	(possible dat	a corruption.	if WRERR is	set)									
	0 = Voltage I	evel is accep	table for prog	ramming	-	7									
bit 11	LVDSTAT: L	ow-Voltage D	etect Status b	oit (LVD circu	it must be ena	bled) ⁽¹⁾									
	This bit is rea	ad-only and is	s automaticall	y set, and cle	eared, by hard	ware.									
	1 = Low-volt	age event is a	active												
	0 = Low-volt	age event is i	not active												
bit 10-4	Unimpleme	nted: Read a	is '0'												
bit 3-0	NVMOP<3:0	>: NVM Ope	ration bits												
	These bits a	re writable wł	nen WREN =	0.											
	1111 = Rese	erved													
	•														
	•														
	0111 = Rese	erved													
	0110 = No c	peration													
	0101 = Prog	ıram Flash (P	FM) erase op	eration: eras	es PFM if all p	ages are not v	vrite-protected	t							
	0100 = Page	e erase opera	ation: erases p	bage selected	by NVMADD	R if it is not wr	ite-protected								
	0011 = Row	program ope	eration: progra	ams row sele	cted by NVMA	UDR if it is not	t write-protect	ed							
	0010 = NOC	peration	oration: progr	ame word as	lacted by NV/		ot write prote	atod							
	0001 = 0000	peration	eration, progr	anis woru se		אואטטיא וו ונ וא f	ior while-prote	CIEU							

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Bit

Bit

Bit

Bit

Bit

Bit

Note 1: This bit is cleared by setting NVMOP == 0000b, and initiating a Flash operation (i.e., WR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
21.24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	LTAGBOOT	—	—	—	—	-	—	—						
22.16	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
23:16	LTAG<19:12>													
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
15.0		LTAG<11:4>												
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-0	R/W-0	R/W-1	U-0						
7.0		LTAG-	<3:0>		LVALID	LLOCK	LTYPE	_						

REGISTER 9-3: CHETAG: CACHE TAG REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 LTAGBOOT: Line Tag Address Boot bit

- 1 = The line is in the 0x1D000000 (physical) area of memory
- 0 = The line is in the 0x1FC00000 (physical) area of memory

bit 30-24 Unimplemented: Write '0'; ignore read

bit 23-4 LTAG<19:0>: Line Tag Address bits

LTAG<19:0> bits are compared against physical address to determine a hit. Because its address range and position of PFM in kernel space and user space, the LTAG PFM address is identical for virtual addresses, (system) physical addresses, and PFM physical addresses.

bit 3 LVALID: Line Valid bit

- 1 = The line is valid and is compared to the physical address for hit detection
- 0 = The line is not valid and is not compared to the physical address for hit detection

bit 2 LLOCK: Line Lock bit

- 1 = The line is locked and will not be replaced
- 0 = The line is not locked and can be replaced

bit 1 LTYPE: Line Type bit

- 1 = The line caches instruction words
- 0 = The line caches data words
- bit 0 Unimplemented: Write '0'; ignore read

PIC32MX5XX/6XX/7XX

REGISTER 9-12:	CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER
----------------	--

'1' = Bit is set

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31.24				CHEPFAB	Г<31:24>					
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23.10				CHEPFAB	Г<23:16>					
15.0	15:8 R/W-x R/V		R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15.6				CHEPFAB	T<15:8>					
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7.0				CHEPFAE	3T<7:0>					
Legend:	:									
R = Rea	dable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					

bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits

-n = Value at POR

Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store.

'0' = Bit is cleared

x = Bit is unknown

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess			Bits																
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	LI1ERMI (3)	31:16	_	_	—	—	—	_	—	_	—	—	_	—	_	_	—	—	0000
5200	OTINIE	15:0	—	—	—	—	—	—	—	—				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	—	_	—	—	_	—	—	_	_	—	—	—	_	_	—	—	0000
0200	0	15:0	—	_	_	-	-	_	—	—	_	-	_	—	_		FRMH<2:0>		0000
52A0	U1TOK	31:16	—	_	—	—	_	—	—	_	_	—	_	—	_	—	—	—	0000
02/10	onok	15:0	—	—	—	—	—	_	—	—		PID<	:3:0>			EP	<3:0>		0000
52P0		31:16	_	-	—	—	—	_	—	—	_	—	—	—	_	_	—	—	0000
5260	0130F	15:0	-		-	_	_		_	_				CNT<7	' :0>				0000
5000		31:16			-	-	_		_	_		—	—	—			_	_	0000
5200	UIBDIP2	15:0	-		-	_	_		_	_				BDTPTRF	H<7:0>				0000
5200		31:16		-	—	_	_		_	_	_	—	_	—	-	-	—	—	0000
52D0	UIBDIP3	15:0	_			_	—			_				BDTPTRU	J<7:0>				0000
5250		31:16		-	—	_	_		_	_	_	—	_	—	-	-	—	—	0000
52EU	UTCINFGT	15:0	Ι	_	_	-	-	_	_	_	UTEYE	UOEMON	_	USBSIDL	_	_	_	UASUSPND	0001
5200		31:16	-	_	_	-	_	_	-	_	_	—	_	—	—	_	—	_	0000
5300	UTEPU	15:0	Ι	_	_	-	-	_	_	_	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
524.0		31:16	-	_	-	-	-	_	_	_	_	-	_	_	_	_	_	_	0000
5310	UTEPT	15:0	_	_	_	_	_	_	_		—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5000		31:16	-	_	-	-	-	_	_	_	_	-	_	_	_	_	_	_	0000
5320	UTEP2	15:0	_	_	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5000		31:16	_	_	_	_	_	_	_		—	—	_	—	_	_	—	—	0000
5330	UTEP3	15:0	Ι	_	_	-	-	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240		31:16	-	_	-	-	-	_	_	_	_	-	_	_	_	_	_	_	0000
5540	UIEP4	15:0	-	_	-	-	_	_	-	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5250		31:16	Ι	_	_	-	-	_	_	_	_	—	_	—	_	_	_	_	0000
5350	UIEP5	15:0	_	_	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5000		31:16	_	_	_	_	_	_	_	_	—	_	_	—	_	_	—	_	0000
5360	UIEPo	15:0	-	_	-	-	-	_	_	_	_	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5070		31:16	_	_	_	_	_	_	_		_	_	_	—	_	_	_	_	0000
5370	U1EP7	15:0	_		_	_	_		_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5000		31:16	_	_	_	_	_	_	—	_	_	_	_	—	—	—	—	—	0000
5380	U1EP8	15:0	_	_	_	_	_	_	_	_	_		_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
		31:16		_	_	_	_	_	—	—	_	_	_	—	_			_	0000
5390	U1EP9	15:0	_	_	_	_	_	_	—	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

 5390
 U1EP9

 Legend:
 x =

 Note
 1:
 All n

end: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

PIC32MX5XX/6XX/7XX

TABLE 12-3: PORTC REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES

ess										Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6090	TRISC	31:16	—	_	_	_	_	_	_		—		—	_	—	—	_		0000
0000	TRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	-	—	-	_	_	—	_	_	_	F000
6000	DODTO	31:16	_	—	—	-	—	_	—		_				_	_	_		0000
6090	PURIC	15:0	RC15	RC14	RC13	RC12	_	—	_	-	—	-	_	_	—	_	_	_	xxxx
6040	LATC	31:16	_	—	—	-	_	_	_	_	_	_	_	-	_	_	-	_	0000
60A0	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	_	_	_	_	-	-	_	_	_	xxxx
CORO	0000	31:16	_	—	—	-	_	_	—	_	_	_	_	-	_	_	-	_	0000
0000	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	_	_	_	_	_	_	_	_	_	_	_	0000
1.0000	al.			Deest			(o) Deset		arrive lies in a surger	la sina al									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-4: PORTC REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										Bi	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6090	TRICC	31:16	_	_	_	_	_	_	_	-	_	-	—	—	_	_	-	_	0000
6080	TRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1	_	FOOF
6000	DODTO	31:16	_	_	—	—	—	_	-	—	_	-	—	—	—	_	—	—	0000
6090	PORIC	15:0	RC15	RC14	RC13	RC12	-	_	_	—	_			RC4	RC3	RC2	RC1	—	xxxx
6040		31:16		-	-	_	-	-		-		—	-	_	-		-	—	0000
OUAU	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	-	-		-		—	-	LATC4	LATC3	LATC2	LATC1	—	xxxx
60P0	00000	31:16	_	_		_	_	_	_	_	_	_	_	_		_	_	_	0000
0000	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12		—	_	-	_	-	1	ODCC4	ODCC3	ODCC2	ODCC1	_	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information

18.1 Control Registers

TABLE 18-1: SPI1 THROUGH SPI4 REGISTER MAP

SSS		Bits																	
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5500		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>		_		_	—	_	SPIFE	ENHBUF	0000
3E00	SFILCON	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	—	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5E10	SPI1STAT(2)	31:16	_	—			RX	BUFELM<4	:0>		_	_	—		ТХ	BUFELM<4	:0>		0000
5210		15:0		—	_		SPIBUSY		—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	0008
5E20	SPI1BUF ⁽²⁾	31:16 15:0								DATA	<31:0>								0000
FF20		31:16	_	_	_	_	_	_	_	_	_	_	_		_	_	_	—	0000
5E30	SPI1BRG-	15:0	-	_	_	_	_	_	—					BRG<8:0>					0000
	0010001	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	_	_	_	_		_	SPIFE	ENHBUF	0000
5800	SPI3CON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
	CDIOCTAT	31:16	-	_	—		RX	BUFELM<4	:0>		_	_	_		TX	BUFELM<4	:0>		0000
5810	SPI3STAT	15:0		_	_	-	SPIBUSY	—	_	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
5000		31:16									-21.0-								0000
5820	SPI3BUF	15:0								DATA	<31:0>								0000
5000	SDISEDC	31:16		_	_	-	—		_	_		—	_	_	—	—	_	_	0000
5830	SFISBIG	15:0		—	_		—		_					BRG<8:0>					0000
E A 00	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	—	—	—	—	—	—	SPIFE	ENHBUF	0000
5AUU	51 12001	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	—	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5 \ 10	SDI2STAT	31:16	_	—			RX	BUFELM<4	:0>		_	_	—		ТХ	BUFELM<4	:0>		0000
SATU	011201741	15:0	—	—	—	—	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
5420	SPI2BUE	31:16									<31·0>								0000
3720	0250.	15:0										1		1			1		0000
5A30	SPI2BRG	31:16	_	_		_		_	—	-	_	—	—	—	-			—	0000
0/100		15:0	_	—	—	_	—	_	—					BRG<8:0>					0000
5000	SPI4CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	—	—	—	—		—	SPIFE	ENHBUF	0000
0000		15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	—	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5C10	SPI4STAT	31:16	—	—	—		RX	BUFELM<4	:0>		—	—	—		TX	BUFELM<4	:0>		0000
00.0		15:0	—	—	—	—	SPIBUSY	—		SPITUR	SRMT	SPIROV	SPIRBE		SPITBE	—	SPITBF	SPIRBF	0008
5C20	SPI4BUF	31:16								DATA	<31:0>								0000
		15:0										-							0000
5C30	SPI4BRG	31:16	_	_	_	_	-	_	—	-	—	—	—	_	—	—	—	—	0000
		15:0	—	—	—	—	—	—	—					BRG<8:0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

bit 0

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

19.1 Control Registers

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP

SSS		Bits																	
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	1000001	31:16	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5000	12C3CON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010	12026747	31:16	—	-	_	_	_	_	—	_	_	_	_	_		_	-	_	0000
5010	12033 IAI	15:0	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5020		31:16	—	_	—	—	_	—	_	—	_	—	—	—	—	—	_	_	0000
5020	1200ADD	15:0	—	—	—	—	—	—					ADD	<9:0>					0000
5030	12C3MSK	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5050	120010101	15:0	—	_	—	—	—	—					MSK	<9:0>					0000
5040	I2C3BRG	31:16	_	_	_	—	_	—	—	—	_	—	_	—	—	—	_	—	0000
00.0	.2005.10	15:0	—	_		_					Ba	ud Rate Ger	nerator Regis	ster					0000
5050	I2C3TRN	31:16	_	_	—	—	—	—		_	—	—		—	—		—	_	0000
		15:0	_	_	—	—	—	—		_				Transmit	Register				0000
5060	I2C3RCV	31:16	—	—	—	—	—	—	-	—	—	—	—	_	—	—	—	—	0000
		15:0	_	_	—	—	—	—		_				Receive	Register				0000
5100	I2C4CON	31:16	—	_	—	—	—	—	_	—	—	—		—	_		—	_	0000
		15:0	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C4STAT	31:16	—	_	—	—	—	—	_	—	—	—		—	_		—	_	0000
		15:0	ACKSTAT	TRSTAT		—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5120	I2C4ADD	31:16	—	—	—	—	—	—	-	—	—	—	_	—	—	—	—	—	0000
		15:0	_	_	_	-	_	-					ADD	<9:0>					0000
5130	I2C4MSK	31:16	_	_	_	-	_	-	-	-	_	_	—	-	_	_	_	_	0000
		15:0				_		_					MSK	<9:0>					0000
5140	I2C4BRG	31:16	_	_	_	-	_	—	—	-			—	—	_	_	—	-	0000
		15:0				_					Ва	ud Rate Ger	erator Regi	ster					0000
5150	I2C4TRN	31:16	_		_	_	_		_		_		_		—	_	_		0000
		15:0				_		_						Transmit	Register				0000
5160	I2C4RCV	15.0									_	_	_	- Receive	— Pegister	—	—	_	0000
		31.16																	0000
5200	I2C5CON	15.0				SCI PEI	STRICT			SMEN	GCEN	STREN				DEN		SEN	1000
		31.16	_	_			_					_							0000
5210	I2C5STAT	15.0	ACKSTAT	TRSTAT	_	_	_	BCI	GOSTAT	ADD10	IWCOL	120.01/	D/A	Р	S	R/W	RBF	TBE	0000
		31.16							5001AT			12007				1./ **			0000
5220	I2C5ADD	15.0		_		_		_		_	_	_		-0:0>	_	_	_	_	0000
		15:0	—		—	_	—	_					ADD	<9.0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This register is not available on 64-pin devices.

REGISTER 23-2:	AD1CON2: ADC CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
15:8		VCFG<2:0>		OFFCAL	—	CSCNA		—
7.0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	BUFS	—	SMPI<3:0>				BUFM	ALTS

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

Bit Value	VREFH	VREFL		
1xx	AVdd	AVss		
011	External VREF+ pin	External VREF- pin		
010	AVdd	External VREF- pin		
001	External VREF+ pin	AVss		
000	AVdd	AVss		

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the S&H circuit are connected to VREFL.

- 0 = Disable Offset Calibration mode
 - The inputs to the S&H circuit are controlled by AD1CHS or AD1CSSL.

bit 11 Unimplemented: Read as '0'

- bit 10 CSCNA: Input Scan Select bit
 - 1 = Scan inputs
 - 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
- $\pm\pm\pm\pm$ = interrupts at the completion of conversion for each 15"' sample/convert sequence
- •
- 0001 = Interrupts at the completion of conversion for each 2^{nd} sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, and then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN7	MSEL7<1:0>			FSEL7<4:0>				
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	FLTEN6	MSEL6<1:0>		FSEL6<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	FLTEN5	MSEL	5<1:0>	FSEL5<4:0>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN4	MSEL	4<1:0>	FSEL4<4:0>					

REGISTER 24-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL7<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL6<1:0>: Filter 6 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL6<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

•

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

•

PIC32MX5XX/6XX/7XX

REGISTER 25-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	_	—	—	—	
23.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	—	—	
15.9	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	PMCS<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	PMCS<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
51.24	—	_	_	—	—	—	—	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	—	—	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.8	PMO<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				PMO	<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

PIC32MX5XX/6XX/7XX

REGISTER 25-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_		—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_		—	—	—	—
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSEIE ⁽¹⁾	RXBUSEIE ⁽²⁾	_	—	—	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONEIE ⁽²⁾	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾		TXDONEIE ⁽¹⁾	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾
 - 1 = Enable TXBUS Error Interrupt
 - 0 = Disable TXBUS Error Interrupt
- bit 13 **RXBUSEIE:** Receive BVCI Bus Error Interrupt Enable bit⁽²⁾
 - 1 = Enable RXBUS Error Interrupt 0 = Disable RXBUS Error Interrupt
 - 0 = Disable RABUS Erfor Interrup
- bit 12-10 Unimplemented: Read as '0'

bit 9	EWMARKIE: Empty Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable EWMARK Interrupt
	0 = Disable EWMARK Interrupt
bit 8	FWMARKIE: Full Watermark Interrupt Enable bit ⁽²⁾
	1 = Enable FWMARK Interrupt
	0 = Disable FWMARK Interrupt
bit 7	RXDONEIE: Receiver Done Interrupt Enable bit ⁽²⁾
	1 = Enable RXDONE Interrupt
	0 = Disable RXDONE Interrupt
bit 6	PKTPENDIE: Packet Pending Interrupt Enable bit ⁽²⁾
	1 = Enable PKTPEND Interrupt
	0 = Disable PKTPEND Interrupt
bit 5	RXACTIE: RX Activity Interrupt Enable bit
	1 = Enable RXACT Interrupt
	0 = Disable RXACT Interrupt
bit 4	Unimplemented: Read as '0'
bit 3	TXDONEIE: Transmitter Done Interrupt Enable bit ⁽¹⁾
	1 = Enable TXDONE Interrupt
	0 = Disable TXDONE Interrupt
bit 2	TXABORTIE: Transmitter Abort Interrupt Enable bit ⁽¹⁾
	1 = Enable TXABORT Interrupt
	0 = Disable TXABORT Interrupt
bit 1	RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit ⁽²⁾
	1 = Enable RXBUFNA Interrupt
	0 = Disable RXBUFNA Interrupt
bit 0	RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit ⁽²⁾
	1 = Enable RXOVFLW Interrupt
	0 = Disable RXOVELW Interrupt

- **Note 1:** This bit is only used for TX operations.
 - **2:** This bit is only used for RX operations.

REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER (CONTINUED)

- VLANPAD: VLAN Pad Enable bit^(1,2) bit 6 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames PADENABLE: Pad/CRC Enable bit^(1,3) bit 5 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit LENGTHCK: Frame Length checking bit bit 1 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit 1 = The MAC operates in Full-Duplex mode 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 25-6 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - **3:** This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 25-6:PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	x	х	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	х	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC

REGISTER 25-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	—	—	_	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
	—	—	—	PHYADDR<4:0>				
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			_	REGADDR<4:0>				

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	_	—	—	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
	ON ⁽¹⁾	COE	CPOL ⁽²⁾	—	—	—	—	COUT
7:0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
	EVPOL<1:0>			CREF	_		CCH	<1:0>

REGISTER 26-1: CMxCON: COMPARATOR 'x' CONTROL REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: Comparator ON bit⁽¹⁾

Clearing this bit does not affect the other bits in this register.

- 1 = Module is enabled. Setting this bit does not affect the other bits in this register
- 0 = Module is disabled and does not consume current.
- bit 14 COE: Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted

bit 12-9 Unimplemented: Read as '0'

- bit 8 COUT: Comparator Output bit
 - 1 =Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled

bit 5 Unimplemented: Read as '0'

- bit 4 **CREF:** Comparator Positive Input Configure bit
 - 1 = Comparator non-inverting input is connected to the internal CVREF
 - 0 = Comparator non-inverting input is connected to the CxIN+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the C2IN+ pin for C1 and C1IN+ pin for C2
 - 01 = Comparator inverting input is connected to the C1IN+ pin for C1 and C2IN+ pin for C2
 - 00 = Comparator inverting input is connected to the C1IN- pin for C1 and C2IN- pin for C2
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V							
		(unless otherwise stated)							
			Uperating temperature $-40^{\circ}C \le IA \le +85^{\circ}C$ for Industrial $-40^{\circ}C < TA \le \pm105^{\circ}C$ for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O Pins:							
		with TTL Buffer	Vss		0.15 Vdd	V			
		with Schmitt Trigger Buffer	Vss		0.2 Vdd	V			
DI15		MCLR ⁽²⁾	Vss	_	0.2 Vdd	V			
DI16		OSC1 (XT mode)	Vss	_	0.2 Vdd	V	(Note 4)		
DI17		OSC1 (HS mode)	Vss		0.2 Vdd	V	(Note 4)		
DI18		SDAx, SCLx	Vss		0.3 Vdd	V	SMBus disabled		
							(Note 4)		
DI19		SDAx, SCLx	Vss		0.8	V	SMBus enabled		
							(Note 4)		
	Vih	Input High Voltage							
DI20		I/O Pins not 5V-tolerant(3)	0.65 VDD		VDD	V	(Note 4,6)		
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	—	5.5	V	(Note 4,6)		
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 Vdd	_	5.5	V			
DI28		SDAx, SCLx	0.65 VDD		5.5	V	SMBus disabled		
							(Note 4,6)		
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled,		
							$2.3V \le VPIN \le 5.5$		
							(Note 4,6)		
DI30	ICNPU	Change Notification	-	_	-50	μA	VDD = 3.3V, VPIN = VSS		
		Change Netification		50					
0131	ICNPD	Pull-down Current ⁽⁴⁾	_	50	_	μΑ	VDD = 3.3V, VPIN = VDD		

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (Vss 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

APPENDIX B: REVISION HISTORY

Revision A (August 2009)

This is the initial released version of this document.

Revision B (November 2009)

The revision includes the following global update:

Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits.

Other major changes are referenced by their respective chapter/section in Table B-1.

Section Name	Update Description				
"High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers"	Added the following devices: - PIC32MX575F256L - PIC32MX695F512L - PIC32MX695F512H				
	The 100-pin TQFP pin diagrams have been updated to reflect the current pin name locations (see the " Pin Diagrams " section).				
	Added the 121-pin Ball Grid Array (XBGA) pin diagram.				
	Updated Table 1: "PIC32 USB and CAN – Features"				
	Added the following tables:				
	 Table 4: "Pin Names: PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L and PIC32MX575F512L Devices" 				
	 Table 5: "Pin Names: PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L and PIC32MX695F512L Devices" 				
	 Table 6: "Pin Names: PIC32MX775F256L, PIC32MX775F512L and PIC32MX795F512L Devices" 				
	Updated the following pins as 5V tolerant:				
	- 64-pin QFN: Pin 36 (D-/RG3) and Pin 37 (D+/RG2)				
	- 64-pin TQFP: Pin 36 (D-/RG3) and Pin 37 (D+/RG2)				
	- 100-pin TQFP: Pin 56 (D-/RG3) and Pin 57 (D+/RG2)				
1.0 "Guidelines for Getting Started	Removed the last sentence of 1.3.1 "Internal Regulator Mode".				
with 52-bit Microcontrollers"	Removed Section 2.3.2 "External Regulator Mode"				

TABLE B-1: MAJOR SECTION UPDATES