

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

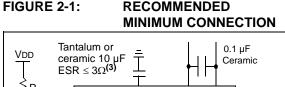
Details

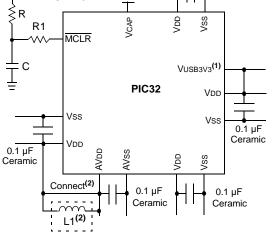
E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx564f064lt-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


PIC32MX5XX/6XX/7XX


TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Nun	nber ⁽¹⁾		Pin	Buffer			
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Ріп Туре	Type	Description		
TMS	23	17	G3	B9	I	ST	JTAG Test mode select pin		
ТСК	27	38	J6	A26	I	ST	JTAG test clock input pin		
TDI	28	60	G11	A40	I	ST	JTAG test data input pin		
TDO	24	61	G9	B33	0		JTAG test data output pin		
RTCC	42	68	E9	B37	0		Real-Time Clock alarm output		
CVREF-	15	28	L2	A21	I	Analog	Comparator Voltage Reference (low)		
CVREF+	16	29	K3	B17	I	Analog	Comparator Voltage Reference (high)		
CVREFOUT	23	34	L5	A24	0	Analog	Comparator Voltage Reference output		
C1IN-	12	21	H2	B11	I	Analog	Comparator 1 negative input		
C1IN+	11	20	H1	A12	I	Analog	Comparator 1 positive input		
C1OUT	21	32	K4	A23	0		Comparator 1 output		
C2IN-	14	23	J2	B13	I	Analog	Comparator 2 negative input		
C2IN+	13	22	J1	A13	I	Analog	Comparator 2 positive input		
C2OUT	22	33	L4	B19	0		Comparator 2 output		
PMA0	30	44	L8	A29	I/O	TTL/ST	Parallel Master Port Address bit 0 inpu (Buffered Slave modes) and output (Master modes) Parallel Master Port Address bit 1 inpu		
PMA1	29	43	K7	B24	I/O	TTL/ST			
PMA2	8	14	F3	A9	0	_	Parallel Master Port address		
PMA3	6	12	F2	A8	0		(Demultiplexed Master modes)		
PMA4	5	11	F4	B6	0	_			
PMA5	4	10	E3	A7	0	_			
PMA6	16	29	K3	B17	0	—			
PMA7	22	28	L2	A21	0	—			
PMA8	32	50	L11	A32	0	_			
PMA9	31	49	L10	B27	0	_			
PMA10	28	42	L7	A28	0	_			
PMA11	27	41	J7	B23	0				
PMA12	24	35	J5	B20	0				
PMA13	23	34	L5	A24	0	_	1		
PMA14	45	71	C11	A46	0	_	1		
PMA15	44	70	D11	B38	0	_	1		
PMCS1	45	71	C11	A46	0		Parallel Master Port Chip Select 1 strobe		
PMCS2	44	70	D11	B38	0	_	Parallel Master Port Chip Select 2 strobe		
5	CMOS = CMO ST = Schmitt 1 TL = TTL inp	rigger input				nalog = A = Outpu	Analog input P = Power t I = Input		

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Note 1: If the USB module is not used, this pin must be connected to VDD.

2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 3Ω and the inductor capacity greater than 10 mA.

Where:

$$f = \frac{F_{CNV}}{2}$$
 (i.e., ADC conversion rate/2)
$$f = \frac{1}{(2\pi\sqrt{LC})}$$
$$L = \left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$$

3: Aluminum or electrolytic capacitors should not be used. ESR $\leq 3\Omega$ from -40°C to 125°C @ SYSCLK frequency (i.e., MIPS).

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

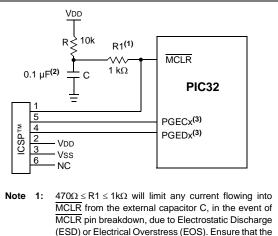
2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (1 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 32.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met without interfering with the Debug/Programmer tools.

- 2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
- **3:** No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.9 Configuration of Analog and Digital Pins During ICSP Operations

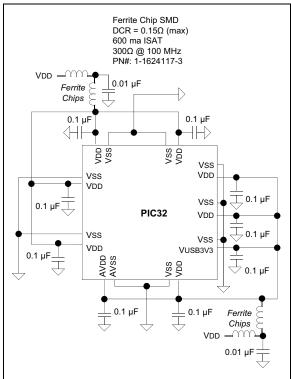
If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins by setting all bits in the AD1PCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.11 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-4. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-4: EMI/EMC/EFT SUPPRESSION CIRCUIT

TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES (CONTINUED)

ess										B	ts																																
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets																								
10D0	IPC4	31:16	_	-	—		INT4IP<2:0>		INT4IS	S<1:0>	_	—	—		OC4IP<2:0>		OC4IS	S<1:0>	0000																								
1000	IFC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>		_	_		T4IP<2:0>		T4IS	<1:0>	0000																								
10E0	IPC5	31:16	_				-		-	_	_		—		OC5IP<2:0>		OC5IS	S<1:0>	0000																								
IUEU	IFC5	15:0	_	_			IC5IP<2:0>		IC5IS	<1:0>	-		_		T5IP<2:0>		T5IS	<1:0>	0000																								
		31:16	_	_	_		AD1IP<2:0>		AD1IS	6<1:0>		_	_		CNIP<2:0>		CNIS	<1:0>	0000																								
10F0	IPC6														U1IP<2:0>		U1IS	<1:0>																									
TUFU	IPC6	15:0	—	_	_		I2C1IP<2:0>		I2C1IS<1:0>		_	_	_		SPI3IP<2:0>		SPI3IS	6<1:0>	0000																								
														12C3IP<2:0>			12C31	6<1:0>	1																								
							U3IP<2:0>		U3IS<1:0>																																		
1100	IPC7	31:16	—	—	_		SPI2IP<2:0>		SPI2IP<2:0>		SPI2IS	S<1:0>	—	_	—	(CMP2IP<2:0:	>	CMP2I	S<1:0>	0000																						
1100	IFC7						I2C4IP<2:0>		12C418	S<1:0>																																	
		15:0	_			(CMP1IP<2:0>		CMP1I	S<1:0>	_		—		PMPIP<2:0>	•	PMPIS	S<1:0>	0000																								
		31:16	_	_		F	RTCCIP<2:0	>	RTCCI	RTCCIS<1:0>			_	F	SCMIP<2:0	>	FSCMI	S<1:0>	0000																								
1110	IPC8																																						U2IP<2:0>		U2IS	<1:0>	
1110	IFCo	15:0	—	—	_	_	_	—	—	—	_	_	—		SPI4IP<2:0>		SPI4IS	6<1:0>	0000																								
															I2C5IP<2:0>		12C518	6<1:0>	1																								
1120	IPC9	31:16		—	-	[DMA3IP<2:0	>	DMA3I	S<1:0>		-	_	[DMA2IP<2:0	>	DMA2I	S<1:0>	0000																								
1120	IPC9	15:0	_				DMA1IP<2:0		DMA1I	S<1:0>	_		—	[DMA0IP<2:0	>	DMA0I	S<1:0>	0000																								
1130	IPC10	31:16	_	_	_	DI	MA7IP<2:0>	(2)	DMA7IS	S<1:0> ⁽²⁾		_	_	D	MA6IP<2:0>	(2)	DMA6IS	i<1:0> ⁽²⁾	0000																								
1130	IFC10	15:0	_	_	_	DI	MA5IP<2:0>	(2)	DMA5IS	S<1:0> ⁽²⁾	_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	i<1:0> ⁽²⁾	0000																								
11.10	IPC11	31:16	_	_		C	AN2IP<2:0>	(2)	CAN2IS	5<1:0> (2)	_		—	(CAN1IP<2:0:	>	CAN1I	S<1:0>	0000																								
1140	IPUTI	15:0	_	_	_		USBIP<2:0>		USBIS	S<1:0>	_	_	—		FCEIP<2:0>		FCEIS	S<1:0>	0000																								
1150	IPC12	31:16	_	_	_		U5IP<2:0>		U5IS	<1:0>	_	_	_		U6IP<2:0>		U6IS	<1:0>	0000																								
1150	IPU12	15:0	_	_			U4IP<2:0>		U4IS	<1:0>	_		—		ETHIP<2:0>		ETHIS	6<1:0>	0000																								

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers.

2:

3:

TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES (CONTINUED)

ess										Bi	its																		
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets										
10D0	IPC4	31:16	_	—	-		INT4IP<2:0>	P<2:0> INT4IS<1:0>		S<1:0>	_	—	-		OC4IP<2:0>		OC4IS	6<1:0>	0000										
1000	IPC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		T4IP<2:0>		T4IS-	<1:0>	0000										
4050	IPC5	31:16	—	_	_		SPI1IP<2:0>		SPI1IS	6<1:0>	_	_	_		OC5IP<2:0>		OC5IS	S<1:0>	0000										
10E0	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS	<1:0>	-		_		T5IP<2:0>		T5IS-	<1:0>	0000										
		31:16	_	_	_		AD1IP<2:0>		AD1IS	S<1:0>	_	_	_		CNIP<2:0>		CNIS	<1:0>	0000										
10F0	IPC6														U1IP<2:0>		U1IS-	<1:0>											
IUFU	IFCO	15:0	—	—	—		I2C1IP<2:0>		I2C1IS<1:0>		—	—	—		SPI3IP<2:0>	•	SPI3IS	S<1:0>	0000										
							1131P~2.0>			I2C3IP<2:0>		I2C3IS<1:0>																	
							U3IP<2:0>		U3IS<1:0>																				
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>		SPI2IS<1:0>		—	—	—	(CMP2IP<2:0	>	CMP2IS<1:0>		0000										
1100	11 07					I2C4IP<2:0>		12C415	S<1:0>																				
		15:0	_			CMP1IP<2:0>				CMP1IS<1:0>		_		PMPIP<2:0>			PMPIS<1:0>		0000										
		31:16	_			F	RTCCIP<2:0> RTCCIS<1:0> — — —			FSCMIP<2:0>			FSCMIS<1:0>		0000														
1110	IPC8																U2IP<2:0>		U2IS-	<1:0>									
1110	11 00	15:0	—	—	—		I2C2IP<2:0>		12C215	I2C2IS<1:0>		I2C2IS<1:0>		I2C2IS<1:0>		I2C2IS<1:0>		I2C2IS<1:0>		I2C2IS<1:0>		—	—		SPI4IP<2:0>		SPI4IS	S<1:0>	0000
															I2C5IP<2:0>		12C515	S<1:0>											
1120	IPC9	31:16	_	_			DMA3IP<2:0		DMA3I	S<1:0>	_				DMA2IP<2:0		DMA2I	S<1:0>	0000										
1120	11 03	15:0	_	_			DMA1IP<2:0		DMA1I		_				DMA0IP<2:0		DMA0I	S<1:0>	0000										
1130	IPC10	31:16	—	—	—	DI	MA7IP<2:0>	(2)	DMA7IS<1:0> ⁽²⁾		—	_	—	D	MA6IP<2:0>	(2)	DMA6IS	<1:0> ⁽²⁾	0000										
1130	11 010	15:0	—	—	—	DI	MA5IP<2:0>	(2)	DMA5IS	i<1:0> ⁽²⁾	_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	<1:0> ⁽²⁾	0000										
1140	IPC11	31:16	—	-	_	_	_		_				_	_	—		—		0000										
1140	IFCII	15:0	—	—	—		USBIP<2:0>		USBIS	S<1:0>	_	_	—		FCEIP<2:0>		FCEIS	<1:0>	0000										
1150	IPC12	31:16	_	_	-		U5IP<2:0>		U5IS-	<1:0>	_		-		U6IP<2:0>		U6IS-	<1:0>	0000										
1150	IFUIZ	15:0	_	-			U4IP<2:0>		U4IS-	<1:0>					ETHIP<2:0>		ETHIS	i<1:0>	0000										

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX664 devices.

3: This register does note have associated CLR, SET, and INV registers.

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)

REGIST	
bit 12-10	IP01<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 9-8	IS01<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP00<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 1-0	IS00<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
Nete	This projection proposed to a proposite definition of the IDOs projection Defaulty T-11 T-1 () ()
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

8.1 Control Registers

TABLE 8-1: OSCILLATOR REGISTER MAP

ess		Ð						Bits									(2)		
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10 25/9 24/8			23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	OSCCON	31:16	—	_	P	LLODIV<2:0	>	FRCDIV<2:0>			—	SOSCRDY	SOSCRDY — PBDIV<1:0> PLLMU		LLMULT<2:0	MULT<2:0>			
FUUU	USCCON	15:0	_		COSC<2:0>	C<2:0> —			NOSC<2:0>		CLKLOCK	ULOCK	SLOCK	SLPEN	CF	UFRCEN	SOSCEN	OSWEN	0000
E010	OSCTUN	31:16	—	_	_			_		-	—	—	_	—	—	_	_	—	0000
FUIU	USCIUN	15:0	_		_						_	—			TUN	<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

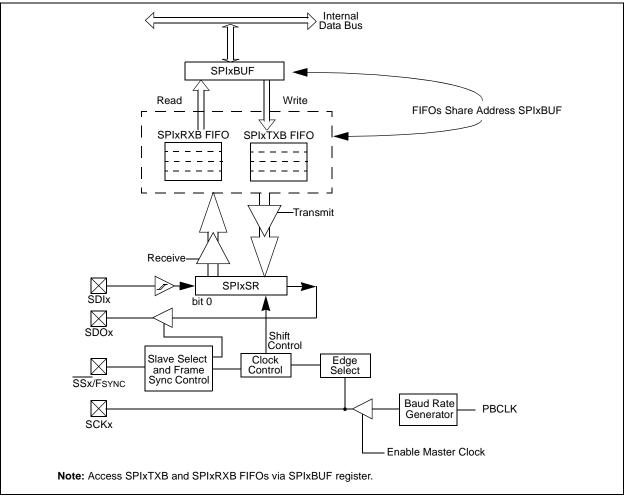
2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_		_	_	_	_	_	_	—	_	_	_	_	_	_	_	0000
3290	DCH2DAT	15:0	_		_	_	_	_	_	_				CHPDA	AT<7:0>				0000
32A0	DCH3CON	31:16	_		_	_	_	_		_	_		_	_	—	—	_	_	0000
32A0	Denseon	15:0	CHBUSY	-	—	—	—	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
32B0	DCH3ECON	31:16		_	—	—	—	—		—		1	1		Q<7:0>				00FF
		15:0					Q<7:0>			-	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	—	—	FF00
32C0	DCH3INT	31:16	—	_	—	—	_	_	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0		—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
32D0	DCH3SSA	31:16								CHSSA	A<31:0>								0000
		15:0 31:16																	0000
32E0	DCH3DSA	15:0								CHDSA	A<31:0>								0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
32F0	DCH3SSIZ	15:0								CHSSIZ	Z<15:0>								0000
		31:16	_									0000							
3300	DCH3DSIZ	15:0								CHDSI	Z<15:0>								0000
	DOLIGODTO	31:16	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	0000
3310	DCH3SPTR	15:0				•	•			CHSPT	R<15:0>		•		•				0000
2220	DCH3DPTR	31:16	_		_	—	_	_	_	—	_	_	_	_	—	—	_	_	0000
3320	DCH3DFTK	15:0								CHDPT	R<15:0>								0000
3330	DCH3CSIZ	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	DOI 130012	15:0								CHCSI	Z<15:0>		-		-				0000
3340	DCH3CPTR	31:16	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—	0000
		15:0				-	-			CHCPT	R<15:0>		-		-				0000
3350	DCH3DAT	31:16	_	_	—	_		_	_		_		_	—	—	_	_		0000
		15:0	_		_			_	-						AT<7:0>	1			0000
3360	DCH4CON	31:16	-		_	_	_	_	_	-	-	-	-	-	-		-	—	0000
		15:0	CHBUSY		-		_		_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	(1<1:0>	0000
3370	DCH4ECON	31:16 15:0	_				 Q<7:0>			—	CFORCE	CABORT	PATEN	SIRQEN	Q<7:0> AIRQEN		_	_	00FF FF00
		31:16	_	_						_	CHSDIE	CABORT	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
3380	DCH4INT	15:0		_	_	_	_	_		_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		31:16						1				Shorm	51000		0110011	0110011	JIIAI	SHER	0000
3390	DCH4SSA	15:0								CHSSA	A<31:0>								0000
		31:16																	0000
33A0	DCH4DSA	15:0								CHDSA	\<31:0>								0000
Legen	d: x = u	nknown	value on Re	value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.															

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.


18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The following are some of the key features of the SPI module:

- Master mode and Slave mode support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs
- based on 32/16/8-bit data width
 Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	-	—	—	—	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 19-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Set by hardware	HSC = Hardware set/cleared				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ACKSTAT:** Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) This bit is set or cleared by hardware at the end of a slave Acknowledge.
 - 1 = NACK received from slave
 - 0 = ACK received from slave
- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) This bit is set by hardware at the beginning of a master transmission, and is cleared by hardware at the end of a slave Acknowledge.
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress
- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

This bit is set by hardware at the detection of a bus collision.

- 1 = A bus collision has been detected during a master operation
- 0 = No collision
- bit 9 GCSTAT: General Call Status bit

This bit is set by hardware when the address matches the general call address, and is cleared by hardware clear at a Stop detection.

- 1 = General call address was received
- 0 = General call address was not received

bit 8 ADD10: 10-bit Address Status bit

This bit is set by hardware upon a match of the 2nd byte of the matched 10-bit address, and is cleared by hardware at a Stop detection.

- 1 = 10-bit address was matched
- 0 = 10-bit address was not matched

bit 7 IWCOL: Write Collision Detect bit

- This bit is set by hardware at the occurrence of a write to I2CxTRN while busy (cleared by software).
- 1 = An attempt to write the I2CxTRN register failed because the I^2C module is busy
- 0 = No collision

bit 6 I2COV: Receive Overflow Flag bit

- This bit is set by hardware at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
- 1 = A byte was received while the I2CxRCV register is still holding the previous byte
- 0 = No overflow

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (has at least 1 data character) **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) bit 5 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 **RIDLE:** Receiver Idle bit (read-only) 1 =Receiver is idle 0 = Data is being received bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected FERR: Framing Error Status bit (read-only) bit 2 1 = Framing error has been detected for the current character 0 = Framing error has not been detected bit 1 **OERR:** Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to an empty state.
 - 1 = Receive buffer has overflowed
 - 0 = Receive buffer has not overflowed
- bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 CLRASAM: Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set
 - 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC S&H circuit is sampling
 - 0 = The ADC S&H circuit is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC < 2:0 > = 000, writing '0' to this bit will end sampling and start conversion.

bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾

- Clearing this bit will not affect any operation in progress.
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write a '0' to end sampling and start conversion. If SSRC<2:0> ≠ '000', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

REGISTER 24-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)

- bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = A bus wake-up activity interrupt has occurred 0 = A bus wake-up activity interrupt has not occurred CERRIF: CAN Bus Error Interrupt Flag bit bit 13 1 = A CAN bus error has occurred 0 = A CAN bus error has not occurred bit 12 SERRIF: System Error Interrupt Flag bit 1 = A system error occurred (typically an illegal address was presented to the system bus) 0 = A system error has not occurred bit 11 **RBOVIF:** Receive Buffer Overflow Interrupt Flag bit 1 = A receive buffer overflow has occurred 0 = A receive buffer overflow has not occurred bit 10-4 Unimplemented: Read as '0' MODIF: CAN Mode Change Interrupt Flag bit bit 3 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) 0 = A CAN module mode change has not occurred bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit 1 = A CAN timer (CANTMR) overflow has occurred 0 = A CAN timer (CANTMR) overflow has not occurred bit 1 **RBIF:** Receive Buffer Interrupt Flag bit 1 = A receive buffer interrupt is pending 0 = A receive buffer interrupt is not pending bit 0 TBIF: Transmit Buffer Interrupt Flag bit 1 = A transmit buffer interrupt is pending
 - 1 = A transmit buffer interrupt is pending
 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN31	MSEL3	51<1:0>			FSEL31<4:0>		
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN30	MSEL3	0<1:0>			FSEL30<4:0>		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN29	MSEL2	9<1:0>			FSEL29<4:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN28	MSEL2	8<1:0>			FSEL28<4:0>		

REGISTER 24-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN31: Filter 31 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL31<1:0>: Filter 31 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL31<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN30: Filter 30Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL30<1:0>: Filter 30Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL30<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp. Range	Max. Frequency			
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX5XX/6XX/7XX			
DC5	2.3-3.6V	-40°C to +85°C	80 MHz			
DC5b	2.3-3.6V	-40°C to +105°C	80 MHz			

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

TABLE 32-2: THERMAL OPERATING CONDITIONS

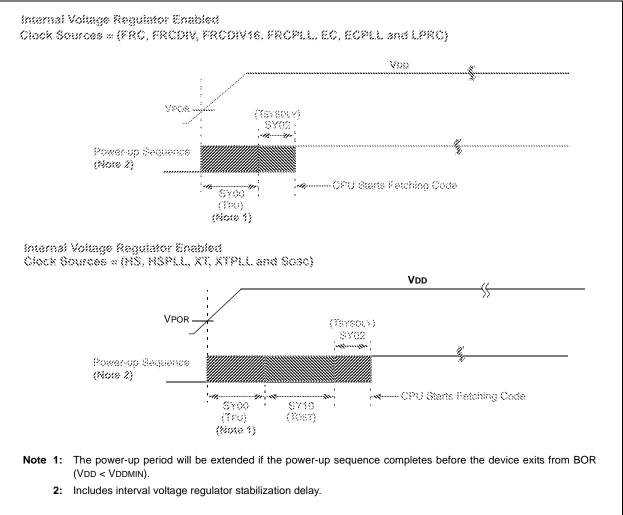
Rating		Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-Temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range		-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)		Pint + Pi/o		W	
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation		(Tj – Ta)/θja			W

TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics		Typical	Max.	Unit	See Note
Package Thermal Resistance, 121-Pin TFBGA (10x10x1.1 mm)	θJA	40		°C/W	1
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)	θJA	43	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θJA	43	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θJA	47	—	°C/W	1
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 124-Pin VTLA (9x9x0.9 mm)	θJA	21		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)


DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$					
Parameter No.	Typical ⁽²⁾	Max.	Units	Conditions				
Idle Current (IIDLE) ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices								
DC30a	1.5	5		-40°C, +25°C, +85°C	— 4 MHz			
DC30c	3.5	6	mA	mA +105°C				
DC31a	7	11		-40°C, +25°C, +85°C	—	25 MHz (Note 3)		
DC32a	13	20	mA	-40°C, +25°C, +85°C	—	60 MHz (Note 3)		
DC33a	17	25	- mA	-40°C, +25°C, +85°C		80 MHz		
DC33c	20	27	mA	+105°C	—			
DC34c		40		-40°C				
DC34d			75		+25°C	2.3V		
DC34e			800	μA	+85°C	2.3V		
DC34f		1000		+105°C		LPRC (31 kHz) (Note 3)		
DC35c	30			-40°C				
DC35d	55		μA	+25°C	3.3V			
DC35e	230	_		+85°C				
DC35f	800			+105°C				
DC36c		43		-40°C				
DC36d	1	106		+25°C	2.01/			
DC36e		800	μA	+85°C	3.6V			
DC36f	1000		1	+105ºC				

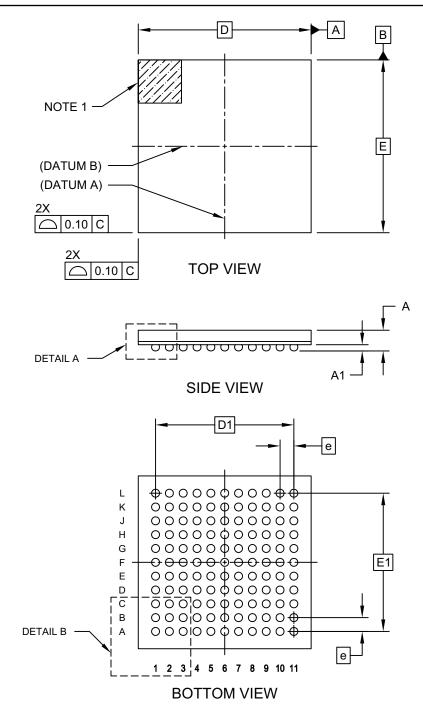
Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

PIC32MX5XX/6XX/7XX

FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS

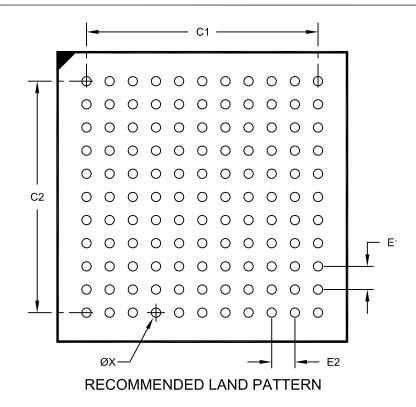
TABLE 32-22: RESETS TIMING


AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	cteristics ⁽¹⁾ Min. Typical ⁽²⁾ Max. Units Conditions				Conditions
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS	-40°C to +85°C
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	-40°C to +85°C
SY20	TMCLR	MCLR Pulse Width (low)	—	2	_	μS	-40°C to +85°C
SY30	TBOR	BOR Pulse Width (low)	—	1		μS	-40°C to +85°C

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	s MILLIMETERS				
Dimensior	l Limits	MIN	NOM	MAX		
Contact Pitch			0.80 BSC			
Contact Pitch E		0.80 BSC				
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Diameter (X121)	X			0.32		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D