

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx564f064lt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 100-PIN USB AND CAN DEVICES (CONTINUED)

100-PIN TQFP (TOP VIEW) PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F512L PIC32MX575F256L 100 1 Pin # **Full Pin Name** Pin # Full Pin Name 71 IC4/PMCS1/PMA14/RD11 86 Vdd 72 SDO1/OC1/INT0/RD0 87 C1RX/PMD11/RF0 SOSCI/CN1/RC13 C1TX/PMD10/RF1 88 73 SOSCO/T1CK/CN0/RC14 74 89 PMD9/RG1 Vss PMD8/RG0 75 90 TRCLK/RA6 76 OC2/RD1 91 77 OC3/RD2 92 TRD3/RA7 78 OC4/RD3 93 PMD0/RE0 PMD1/RE1 79 IC5/PMD12/RD12 94 80 PMD13/CN19/RD13 95 TRD2/RG14 OC5/PMWR/CN13/RD4 96 TRD1/RG12 81 PMRD/CN14/RD5 TRD0/RG13 82 97 PMD14/CN15/RD6 98 PMD2/RE2 83 PMD15/CN16/RD7 PMD3/RE3 84 99 85 VCAP 100 PMD4/RE4

Note 1: Shaded pins are 5V tolerant.

1.0 DEVICE OVERVIEW

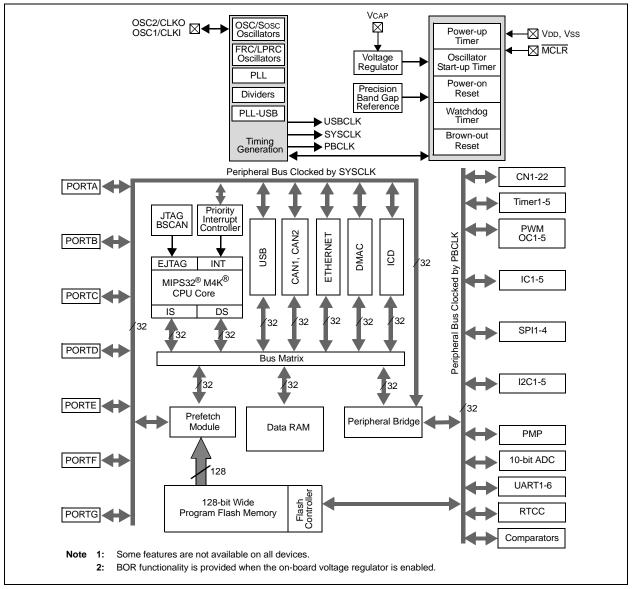

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

FIGURE 1-1: BLOCK DIAGRAM^(1,2)

This document contains device-specific information for PIC32MX5XX/6XX/7XX devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX5XX/6XX/7XX family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

		P	IC32M>	(795F51	2H DE	/ICES													
sse										В	lits								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	_	—	—	—	_	_	—	—		_		_	_	SS0	0000
1000	INTCOM	15:0	—	_	—	MVEC	—		TPC<2:0>		-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	_	—	—	_	_	—	—		-	_	—	—	—	—	—	—	0000
1010		15:0	—	—	—	_	—		SRIPL<2:0>		—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0			IPTMR<31:0>											0000			
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF ⁽²⁾	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	_	_	_	U2TXIF SPI4TXIF	U2RXIF SPI4RXIF	U2EIF SPI4EIF	U3TXIF SPI2TXIF	U3RXIF SPI2RXIF	U3EIF SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16	_			_		I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF	_		_	_	_	0000
1050	IFS2	15:0		_			U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	_	-	-	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE ⁽²⁾	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	_	-	_	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
1080	IEC2	31:16	_	_	_	-	_	_	_	_	_	-	-	_	_	-	_	_	0000
1060	IEC2	15:0	—	_	_	—	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16	—	—	—		INT0IP<2:0>		INTOIS	S<1:0>	—	—	—		CS1IP<2:0>	,		S<1:0>	0000
1000		15:0	_	_	_		CS0IP<2:0>			S<1:0>	_	-	_		CTIP<2:0>			<1:0>	0000
10A0	IPC1	31:16	_	-	—	ļ	INT1IP<2:0>	•		S<1:0>	-	-	_		OC1IP<2:0:	>		S<1:0>	0000
		15:0	_	_	_		IC1IP<2:0>			<1:0>	_	_	_	T1IP<2:0>			_	<1:0>	0000
10B0	IPC2	31:16	_	_	_		INT2IP<2:0>	•		S<1:0>	_				OC2IP<2:0:	`		S<1:0>	0000
		15:0	_	_	_	<u> </u>	IC2IP<2:0>		IC2IS		—				T2IP<2:0>		-	<1:0>	0000
10C0	IPC3	31:16 15:0	_	_			INT3IP<2:0> IC3IP<2:0>	•		S<1:0> <1:0>					OC3IP<2:0: T3IP<2:0>	>		S<1:0> <1:0>	0000
Legend	1: x=1			Reset: — = u	nimplement	ed, read as '		ues are sho	wn in hexade						1011 \2.02		1010	<1.0Z	0000

TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers.

PIC32MX5XX/6XX/7XX

2:

3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24				CHEW1<	:31:24>							
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16	CHEW1<23:16>											
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8	CHEW1<15:8>											
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7:0	CHEW1<7:0>											

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24	CHEW2<31:24>											
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16	CHEW2<23:16>											
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8				CHEW2	<15:8>							
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7:0	CHEW2<7:0>											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess		0								В	its								ú
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
34D0	DCH5DAT	31:16	—	_	—	—	_	—	_	_	_	_	_	_	_	_	_	_	0000
5400	DOI IODAI	15:0	_	_	—	—	_	—	_	—				CHPDA	T<7:0>				0000
34E0	DCH6CON	31:16	—	—	_	—	_	_	_	—	—	—	—	—	_	—	—	—	0000
		15:0	CHBUSY												0000				
34F0	DCH6ECON	31:16													00FF				
		15:0				CHSIR					CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	-	-	-	FF00
3500	DCH6INT	31:16	_	_	_	_				_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	—	_	—	—	—	—	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3510	DCH6SSA	31:16								CHSSA	<31:0>								0000
		15:0																	0000
3520	DCH6DSA	31:16 15:0								CHDSA	<31:0>								0000
		31:16		_			_		_		_	_		_	_		_	_	0000
3530	DCH6SSIZ	15:0								CHSSIZ	 Z<15:0>								0000
		31:16	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	0000
3540	DCH6DSIZ	15:0													0000				
		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3550	DCH6SPTR	15:0								CHSPT	R<15:0>								0000
		31:16	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3560	DCH6DPTR	15:0								CHDPT	R<15:0>								0000
0570	00100017	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	_	—	—	0000
3570	DCH6CSIZ	15:0								CHCSI	Z<15:0>								0000
3580	DCH6CPTR	31:16	_	—	—	_		_		_	-	_	_	_		—	-	—	0000
3360	DCHOCFTK	15:0								CHCPT	R<15:0>								0000
3590	DCH6DAT	31:16	_	_		—		_		—		—		_		—	_	-	0000
0000	DOI IODAI	15:0	—	_	_	—	_	_	_	—				CHPDA	AT<7:0>				0000
35A0	DCH7CON	31:16	_	_	—	—	_	—	_	—	_	—	—	—	_	_	—	—	0000
00/10	Donnoon	15:0	CHBUSY	_	—	—	_	—	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
35B0	DCH7ECON	31:16	—	—	—	—	—	—	_	—		r	r	CHAIR	r				00FF
		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—		—	FF00
35C0	DCH7INT	31:16	_		—	—	—	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	-	_	—	—	_	-	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
35D0	DCH7SSA	31:16	CHSSA<31:0>										0000						
		15:0																	0000
35E0	DCH7DSA	31:16	CHDSA<31:05										0000						
Legen		15:0				d, read as '0													0000

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. 2:

DS60001156J-page 117

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24		_	_	_	—	—	_	—
22.10	U-0	U-0						
23:16	_	_	_	_	_	—	_	—
15:8	U-0	U-0						
10.0		_	_	_	—	—	_	—
	R/W-0	R/W-0						
7:0	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ⁽¹⁾	
	DISEE	DIVIXEE	DIVIAEE	DIVEE	DENGEE	URUIDEE	EOFEE ⁽²⁾	PIDEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8	Unimplemented: Read as '0'
bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit
	1 = BTSEF interrupt is enabled0 = BTSEF interrupt is disabled
bit 6	BMXEE: Bus Matrix Error Interrupt Enable bit
	1 = BMXEF interrupt is enabled
	0 = BMXEF interrupt is disabled
bit 5	DMAEE: DMA Error Interrupt Enable bit
	1 = DMAEF interrupt is enabled0 = DMAEF interrupt is disabled
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
	1 = BTOEF interrupt is enabled

- 0 = BTOEF interrupt is disabled
- bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾ bit 1
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

13.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the low-power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

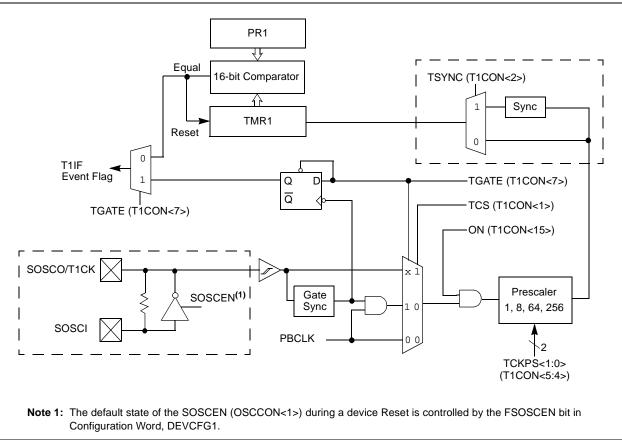

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

13.1 Additional Supported Features

- Selectable clock prescaler
- Timer operation during Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

A simplified block diagram of the Timer1 module is illustrated in Figure 13-1.

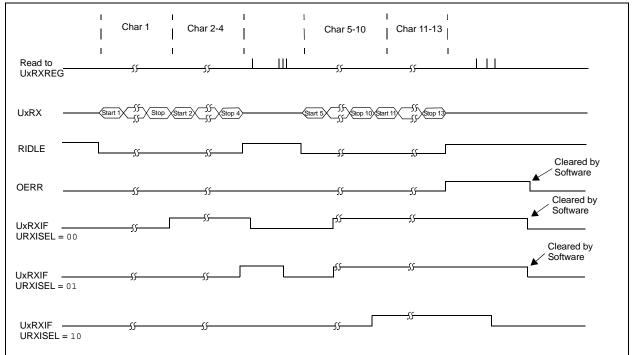
19.1 Control Registers

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP

ss										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	I2C3CON	31:16	_	_	—	_			_	_			—	_	—				0000
		15:0	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010	I2C3STAT	31:16 15:0	— ACKSTAT	— TRSTAT			_	BCL	— GCSTAT	— ADD10		– I2COV	— D/A	— P		— R/W	— RBF	— TBF	0000
	1000100	31:16	—	-	_	_	_	-		-	—	-		-	_	-	—	—	0000
5020	I2C3ADD	15:0	_	_	_	_	_	— — ADD<9:0>										0000	
5000	IOCOMOK	31:16	_	_	—	—	—	_	—	_	—	_	—	—	—	_	—	_	0000
5030	I2C3MSK	15:0	_	_	—	_	_						MSK	<9:0>					0000
5040	I2C3BRG	31:16	_	_	—	_	_	-	_	_	-	_	_	_	_	_	_	_	0000
5040	IZCODKG	15:0	_	_	—	—					Ba	ud Rate Ger	nerator Regi	ster					0000
5050	I2C3TRN	31:16	—	—			—			_		—	-	_	-	—	—	—	0000
5050	120311(1)	15:0	—	—			—			_			-	Transmit	Register				0000
5060	I2C3RCV	31:16	—	—	—	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
0000	12001101	15:0	_	_	—	_	—	_	_	—				Receive	Register	-	-		0000
5100	I2C4CON	31:16	_	_	—	_	_	_	_	—	_	—	_	_	_	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C4STAT	31:16	—	—	—		_	—	—	_	—	—		—		—	—	—	0000
L		15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5120	I2C4ADD	31:16	_	_	—	_	_	_	—		—	—	—	—	—	_	_	—	0000
		15:0	_	_	_	_	_						ADD	<9:0>					0000
5130	I2C4MSK	31:16	_	_						_	_	_					_	_	0000
┢────┼		15:0		_			_						MSK	<9:0>					0000
5140	I2C4BRG	31:16		_	_			—	—		-	—	—	—	—	_	_	—	0000
		15:0 31:16	_	_	_							ud Rate Ger	erator Regi	ster					0000
5150	I2C4TRN	15:0									_	_	_	 Transmit	— Register	—	—	—	0000
ł		31:16														_	_	_	0000
5160	I2C4RCV	15:0	_	_						_	_			Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5200	I2C5CON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5040	10050747	31:16	_	_	—	—	_	_	—		_	_	—	—	—	_	_	_	0000
5210	I2C5STAT	15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5000	1005405	31:16	_	_	—	—	_	—	—	_	—	_	—	—	—	_	_	_	0000
5220	I2C5ADD	15:0	_	_	_	_	_	_					ADD	<9:0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.


PIC32MX5XX/6XX/7XX

2: This register is not available on 64-pin devices.

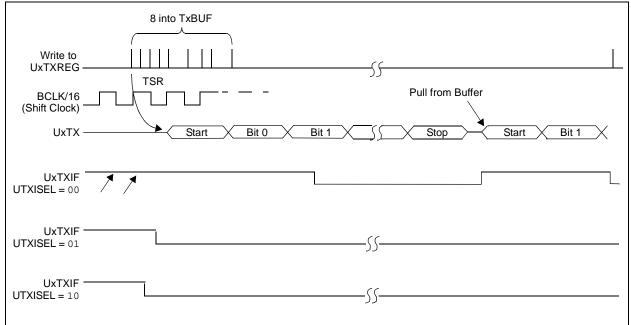

PIC32MX5XX/6XX/7XX

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10-	<3:0>			HR01	<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MIN10	<3:0>		MIN01<3:0>					
45.0	R/W-x R/W-x		R/W-x R/W-x		R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10	<3:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0 U-0		U-0 U-0		U-0	U-0		
7:0	—	—	—	—	—	—	—	—		
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'					

REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

IX – IXeauable bit			it, read as 0
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 31-28 HR10<3:0>: Binary-0	Coded Decimal Value of Hou	rs bits, 10 digits; contains a	value from 0 to 2

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits, contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9
bit 17-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

REGISTER 24-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED)

bit 15	FLTEN29: Filter 29 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL29<1:0>: Filter 29 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL29<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN28: Filter 28 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 6-5	MSEL28<1:0>: Filter 28 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL28<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

PIC32MX5XX/6XX/7XX

						•		,
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	_	—	_	_	—
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	FSIZE<4:0> ⁽¹⁾				
15.0	U-0	S/HC-0	S/HC-0	R/W-0	U-0	U-0	U-0	U-0
15:8	—	FRESET	UINC	DONLY ⁽¹⁾	—	—	_	—
7.0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	TXEN	TXABAT ⁽²⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ	RTREN	TXPR	<1:0>

REGISTER 24-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20-16 FSIZE<4:0>: FIFO Size bits'	bit 20-16	E<4:0>: FIFO Size bits ⁽¹⁾
---------------------------------------	-----------	---------------------------------------

- 11111 = FIFO is 32 messages deep
- •
- 00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep

00000 = FIFO is 1 message deep

bit 15 Unimplemented: Read as '0'

bit 14 FRESET: FIFO Reset bits

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll whether this bit is clear before taking any action.

0 = No effect

bit 13 UINC: Increment Head/Tail bit

 $\frac{TXEN = 1:}{When this bit is set the FIFO head will increment by a single message$ $<math display="block">\frac{TXEN = 0:}{When this bit is set the FIFO tail will increment by a single message$ When this bit is set the FIFO tail will increment by a single message $<math display="block">\frac{TXEN = 0}{When this bit is set the FIFO tail will increment by a single message }$

bit 12 DONLY: Store Message Data Only bit⁽¹⁾

 $\frac{\text{TXEN} = 1:}{\text{TXEN} = 1:}$ (FIFO configured as a Transmit FIFO) This bit is not used and has no effect. $\frac{\text{TXEN} = 0:}{\text{TXEN} = 0:}$ (FIFO configured as a Receive FIFO)

- 1 =Only data bytes will be stored in the FIFO
- 0 = Full message is stored, including identifier

bit 11-8 Unimplemented: Read as '0'

- bit 7 **TXEN:** TX/RX Buffer Selection bit
 - 1 = FIFO is a Transmit FIFO
 - 0 = FIFO is a Receive FIFO
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

PIC32MX5XX/6XX/7XX

REGISTER 25-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_		—	—		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	—	—	—	—
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSEIE ⁽¹⁾	RXBUSEIE ⁽²⁾	_	—	—	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONEIE ⁽²⁾	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾		TXDONEIE ⁽¹⁾	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾
 - 1 = Enable TXBUS Error Interrupt
 - 0 = Disable TXBUS Error Interrupt
- bit 13 **RXBUSEIE:** Receive BVCI Bus Error Interrupt Enable bit⁽²⁾
 - 1 = Enable RXBUS Error Interrupt 0 = Disable RXBUS Error Interrupt
- bit 12-10 Unimplemented: Read as '0'

bit 9	EWMARKIE: Empty Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable EWMARK Interrupt
	0 = Disable EWMARK Interrupt
bit 8	FWMARKIE: Full Watermark Interrupt Enable bit ⁽²⁾
	1 = Enable FWMARK Interrupt
	0 = Disable FWMARK Interrupt
bit 7	RXDONEIE: Receiver Done Interrupt Enable bit ⁽²⁾
	1 = Enable RXDONE Interrupt
	0 = Disable RXDONE Interrupt
bit 6	PKTPENDIE: Packet Pending Interrupt Enable bit ⁽²⁾
	1 = Enable PKTPEND Interrupt
	0 = Disable PKTPEND Interrupt
bit 5	RXACTIE: RX Activity Interrupt Enable bit
	1 = Enable RXACT Interrupt 0 = Disable RXACT Interrupt
bit 4	Unimplemented: Read as '0'
bit 3	TXDONEIE: Transmitter Done Interrupt Enable bit ⁽¹⁾
DIL 3	1 = Enable TXDONE Interrupt
	0 = Disable TXDONE Interrupt
bit 2	TXABORTIE: Transmitter Abort Interrupt Enable bit ⁽¹⁾
on L	1 = Enable TXABORT Interrupt
	0 = Disable TXABORT Interrupt
bit 1	RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit ⁽²⁾
	1 = Enable RXBUFNA Interrupt
	0 = Disable RXBUFNA Interrupt
bit 0	RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit ⁽²⁾
	1 = Enable RXOVFLW Interrupt

- 0 = Disable RXOVFLW Interrupt
- **Note 1:** This bit is only used for TX operations.
 - **2:** This bit is only used for RX operations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—		_	_	_	_	_	_
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	BUFCNT<7:0>							
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—		_	_	_	_	_	_
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7:0	ETHBUSY ⁽¹⁾	TXBUSY ⁽²⁾	RXBUSY ⁽²⁾	—		_		_

REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x000. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit⁽¹⁾

1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- bit 6 **TXBUSY:** Transmit Busy bit⁽²⁾
 - 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

- **Note 1:** This bit will be *set* when the ON bit (ETHCON1<15>) = 1.
 - **2:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

28.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MX5XX/6XX/7XX family of devices. These devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

28.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the Peripheral Bus Clock (PBCLK) and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

28.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- **Posc Idle mode:** the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.

- **Sosc Idle mode:** the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

28.3 Power-Saving Operation

Peripherals and the CPU can be halted or disabled to further reduce power consumption.

28.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 28.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit, if enabled, remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp. Range	Max. Frequency
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX5XX/6XX/7XX
DC5	2.3-3.6V	-40°C to +85°C	80 MHz
DC5b	2.3-3.6V	-40°C to +105°C	80 MHz

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

TABLE 32-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-Temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD	PINT + PI/O		W	
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	See Note
Package Thermal Resistance, 121-Pin TFBGA (10x10x1.1 mm)	θJA	40		°C/W	1
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)	θJA	43	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θJA	43	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θJA	47	—	°C/W	1
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 124-Pin VTLA (9x9x0.9 mm)	θJA	21		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
Operating Voltage								
DC10	Vdd	Supply Voltage	2.3		3.6	V		
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.75			V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75		2.1	V		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005		0.115	V/µs	—	

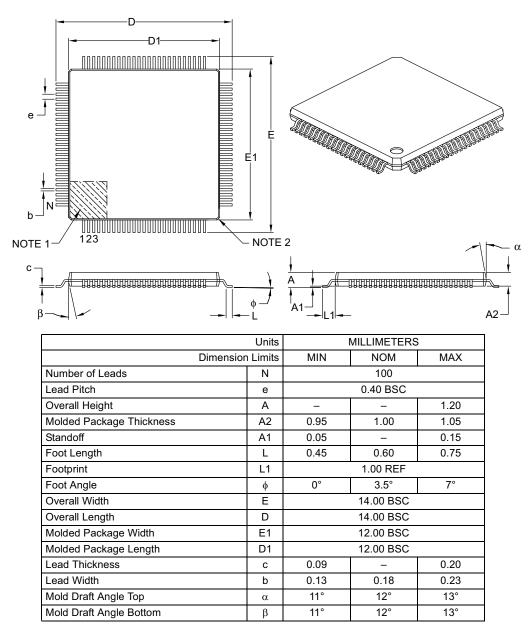
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

TABLE 32-38: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CHARACTERISTICS			$\label{eq:standard operating Conditions (see Note 4): 2.5V to 3.6V (unless otherwise stated) \\ Operating temperature & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \\ \end{tabular}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
Clock P	arameters	S	•	•	·			
AD50	Tad	Analog-to-Digital Clock Period ⁽²⁾	65		—	ns	See Table 32-37	
Convers	sion Rate							
AD55	TCONV	Conversion Time	—	12 TAD	—	_	—	
AD56	FCNV	Throughput Rate	—	—	1000	ksps	AVDD = 3.0V to 3.6V	
		(Sampling Speed)	—	—	400	ksps	AVDD = 2.5V to 3.6V	
AD57	TSAMP	Sample Time	1 Tad	—	—	_	TSAMP must be \geq 132 ns	
Timing	Paramete	rs						
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	_	—	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 TAD	_	1.5 TAD	_	—	
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	_	0.5 Tad	—	_	_	
AD63	TDPU	Time to Stabilize Analog Stage from Analog-to-Digital Off to Analog-to-Digital On ⁽³⁾	_		2	μS	—	

Note 1: These parameters are characterized, but not tested in manufacturing.


2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support