

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx564f128l-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 8: PIN NAMES FOR 100-PIN USB AND ETHERNET DEVICES

100-PIN TQFP (TOP VIEW)

PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L

100

Pin #	Full Pin Name
1	AERXERR/RG15
2	Vdd
3	PMD5/RE5
4	PMD6/RE6
5	PMD7/RE7
6	T2CK/RC1
7	T3CK/RC2
8	T4CK/RC3
9	T5CK/SDI1/RC4
10	ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6
11	ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7
12	ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8
13	MCLR
14	ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9
15	Vss
16	VDD
17	TMS/RA0
18	AERXD0/INT1/RE8
19	AERXD1/INT2/RE9
20	AN5/C1IN+/VBUSON/CN7/RB5
21	AN4/C1IN-/CN6/RB4
22	AN3/C2IN+/CN5/RB3
23	AN2/C2IN-/CN4/RB2
24	PGEC1/AN1/CN3/RB1
25	PGED1/AN0/CN2/RB0
26	PGEC2/AN6/OCFA/RB6
27	PGED2/AN7/RB7
28	Vref-/CVref-/AERXD2/PMA7/RA9
29	VREF+/CVREF+/AERXD3/PMA6/RA10
30	AVDD
31	AVss
32	AN8/C1OUT/RB8
33	AN9/C2OUT/RB9
34	AN10/CVREFOUT/PMA13/RB10
35	AN11/ERXERR/AETXERR/PMA12/RB11

Pin #	Full Pin Name
36	Vss
37	Vdd
38	TCK/RA1
39	SCK4/U5TX/U2RTS/RF13
40	SS4/U5RX/U2CTS/RF12
41	AN12/ERXD0/AECRS/PMA11/RB12
42	AN13/ERXD1/AECOL/PMA10/RB13
43	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14
44	AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15
45	Vss
46	Vdd
47	AETXD0/SS3/U4RX/U1CTS/CN20/RD14
48	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15
49	SDA5/SDI4/U2RX/PMA9/CN17/RF4
50	SCL5/SDO4/U2TX/PMA8/CN18/RF5
51	USBID/RF3
52	SDA3/SDI3/U1RX/RF2
53	SCL3/SDO3/U1TX/RF8
54	VBUS
55	VUSB3V3
56	D-/RG3
57	D+/RG2
58	SCL2/RA2
59	SDA2/RA3
60	TDI/RA4
61	TDO/RA5
62	Vdd
63	OSC1/CLKI/RC12
64	OSC2/CLKO/RC15
65	Vss
66	AETXCLK/SCL1/INT3/RA14
67	AETXEN/SDA1/INT4/RA15
68	RTCC/EMDIO/AEMDIO/IC1/RD8
69	SS1/IC2/RD9
70	SCK1/IC3/PMCS2/PMA15/RD10

1

Note 1: Shaded pins are 5V tolerant.

NOTES:

7.1 **Control Registers**

TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES

ess										Bits									
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AII Resets
1000		31:16	—	—	_	—	_	_	_	_	_	—	_	—	_	_	—	SS0	0000
1000	INTCON	15:0		_		MVEC	_		TPC<2:0>			_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT(3)	31:16	_	—	_	—	—	_	—	_	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	—		SRIPL<2:0>		—	—			VEC<5:0	>			0000
1020	IPTMR	31:16								IPTMR<3'	1:0>								0000
		15:0								0000									
		24.40												TEIE		00415		TAIE	0000
1030	IFS0	31:10	12C TIMIF	1201515	IZC I DIF	12C2MIE	SPISKAIF	SPIJEIF	_	_	_	OCOIF	ICOIF	IDIF	IN 141F	OC4IF	IC4IF	141	0000
		15.0	INITSIE	OCSIE	ICSIE	TSIE	INT2IF		IC2IE	T2IE	INIT1IE	OC1IE	IC1IE	T1IF	INTOIE	CS1IE	CSOIE	CTIE	0000
		31.16	IC3EIE	IC2FIF	IC1FIF	_	—	CAN1IF	USBIE	FCEIE	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IE	DMA2IF	DMA1IF	DMA0IE	0000
1040		00			10121			U2TXIF	F U2RXIF U2EIF	U2EIF	U3TXIF	U3RXIF	U3EIF	Distin	2111/1011	5	2	2.1.7.1011	0000
	IFS1	15:0	RTCCIF	FSCMIF	_	_	_	SPI4TXIF	SPI4RXIF	SPI4EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
								I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF						
4050	1500	31:16	_	—	_	_	_		_	—		—	—	—	_	_	_		0000
1050	152	15:0	_	—	_	—	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
						U1TXIE	U1RXIE	U1EIE											
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	SPI3TXIE	SPI3RXIE	SPI3EIE	—	—	—	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
1000	IL00					I2C3MIE	I2C3SIE	I2C3BIE											
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	—	_	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	45.0	DTOOLE	500145				U2TXIE	U2RXIE	U2EIE	U3TXIE	U3RXIE	U3EIE					0115	
		15:0	RICCIE	FSCMIE	_	_	_	SPIATXIE	SPI4RXIE	SPI4EIE	SPI2TXIE	SPI2RXIE	SPIZEIE	CMP2IE	CMPTIE	PMPIE	ADTIE	CNIE	0000
		21.16						12C5IVITE	120551E	I2C5BIE	12C4IVIIE	120451E	I2C4BIE						0000
1080	IEC2	15:0																	0000
		31.16	_		_			UUINAIE	INTOIS	<1.0>					S1IP<2.0>		CS1IS	104LIE	0000
1090	IPC0	15:0					CS0IP<2:0>		CSOIS	<1:0>				CTIP<2:0> CTIS<		<1:0>	0000		
Leaen	d: x=≀	unknowr	n value on l	Reset: — =	unimpleme	ented read a	s '0' Reset v	alues are sh	own in hexad	ecimal									

Legend:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET Note 1: and INV Registers" for more information.

These bits are not available on PIC32MX534/564/664/764 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1	
31:24	—	—	P	LLODIV<2:0:	>	FRCDIV<2:0>			
00.40	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	
23:16	—	SOSCRDY	PBDIVRDY	PBDI\	/<1:0>	<1:0> PLLMULT<2:0>			
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y	
15:8	—		COSC<2:0>		—	NOSC<2:0>			
7.0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0	
7:0	CLKLOCK	ULOCK	SLOCK	SLPEN	CF	UFRCEN	SOSCEN	OSWEN	

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:

y = Value set from Configuration bits on POR

- R = Readable bit -n = Value at POR
- W = Writable bit U = Unimplemented bit, read as '0'
- '1' = Bit is set
- 0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-27 PLLODIV<2:0>: Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

PIC32MX5XX/6XX/7XX

REGISTER 10-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	—	—		—	—				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	—	—	—	—	_	—	—				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	CHPDAT<7:0>											

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CHPDAT<7:0>:** Channel Data Register bits <u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

> All other modes: Unused.

TABLE 12-5: PORTD REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES

ess	Register Name ⁽¹⁾	6								Bi	ts								9
Virtual Addr (BF88_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	TDICD	31:16	_	_	_	_	-	—	_	_	_	_	_	_	_	_	_	_	0000
6000	IRISD	15:0		_		_	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
6000		31:16	_	—	_	—		—	-		_	_	_	_	_	_	_	_	0000
0000	FORTD	15:0	—	—	—	—	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0		31:16		—	_	—		_			_	_	_	_	_	-		_	0000
00E0	LAID	15:0	-	_	_	—	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60E0	0000	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
60F0 O	ODCD	15:0	_	_	_	—	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-6: PORTD REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F512L, AND PIC32MX795F512L DEVICES

ess		Ó								В	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6000	TRICD	31:16	-	_	_	-	—	—	—	—	-	—	_	_	—	—	_	_	0000
6000	TRISD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
6000		31:16	_	_	_	_	_	—	_	_		_	_	_	—	—	_	_	0000
00D0	FORTD	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6050		31:16	—	—	—	—		_	—	_	_	—	—	—	—	—	—	—	0000
OUEU	LAID	15:0	LAT15	LAT14	LAT13	LAT12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6050	0000	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
00F0	UDUD	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Ļ

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	—	—	—	—	—	—	_
7.0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
7:0	_		S	WDTWINEN	WDTCLR			

REGISTER 15-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	y = Values set from Configuration bits on POR					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 0

- bit 15 **ON:** Watchdog Timer Enable bit^(1,2)
 - 1 = Enables the WDT if it is not enabled by the device configuration 0 = Disable the WDT if it was enabled in software
- bit 14-7 **Unimplemented:** Read as '0'
- bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> Configuration bits.
- bit 1 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
 - WDTCLR: Watchdog Timer Reset bit
 - 1 = Writing a '1' will clear the WDT
 - 0 = Software cannot force this bit to a '0'
- Note 1: A read of this bit results in a '1' if the Watchdog Timer is enabled by the device configuration or software.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard. Figure 19-1 illustrates the I^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31.24	U-0	U-0 U-0		U-0	U-0	U-0	U-0	R/W-0
31:24	—	—	—	—	—	—	—	ADM_EN
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				ADDR	<7:0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0	R-1
15:8	UTXISE	:L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0, HS	R-0
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:	HS = Set by hardware	HC = Cleared by hardwa	re
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
- bit 13 UTXINV: Transmit Polarity Inversion bit
 - If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
 - 1 = UxTX Idle state is '0'
 - 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by port.
- bit 11 UTXBRK: Transmit Break bit
 - 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion.
 - 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by port.
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
15:8	BUSY	IRQM	<1:0>	INCM<1:0>		—	MODE	<1:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	WAITB<1:0> ⁽¹⁾			WAITM<3:0> ⁽¹⁾				WAITE<1:0> ⁽¹⁾	

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (only Master mode)
 - 1 = Port is busy
 - 0 = Port is not busy
- bit 14-13 IRQM<1:0>: Interrupt Request Mode bits
 - 11 = Reserved
 - 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (only Addressable Slave mode)
 - 01 = Interrupt generated at the end of the read/write cycle
 - 00 = Interrupt is not generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (only PMMODE<1:0> = 00)
 - 10 = Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address

bit 10 Unimplemented: Read as '0'

- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<7:0>)
 - 10 = Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<7:0>)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<7:0>, and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

- bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽²⁾
 11111111 = Alarm will trigger 256 times
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <li
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is only reset on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	S/HC-0	R/W-1	R/W-0	R/W-0	
31.24	—	—	—	—	ABAT	REQOP<2:0>			
22.16	R-1	R-0	R-0	R/W-0	U-0	U-0	U-0	U-0	
23.10	OPMOD<2:0>			CANCAP	—	—	—	—	
15.0	R/W-0	U-0	R/W-0	U-0	R-0	U-0	U-0	U-0	
10.0	ON ⁽¹⁾	—	SIDLE	—	CANBUSY	—	—	—	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
1.0	_	_				DNCNT<4:0>			

REGISTER 24-1: CICON: CAN MODULE CONTROL REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

- bit 27 **ABAT:** Abort All Pending Transmissions bit
 - 1 = Signal all transmit buffers to abort transmission
 - 0 = Module will clear this bit when all transmissions aborted

bit 26-24 REQOP<2:0>: Request Operation Mode bits

- 111 = Set Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Set Configuration mode
- 011 = Set Listen Only mode
- 010 = Set Loopback mode
- 001 = Set Disable mode
- 000 = Set Normal Operation mode

bit 23-21 OPMOD<2:0>: Operation Mode Status bits

- 111 = Module is in Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Module is in Configuration mode
- 011 = Module is in Listen Only mode
- 010 = Module is in Loopback mode
- 001 = Module is in Disable mode
- 000 = Module is in Normal Operation mode

bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit

- 1 = CANTMR value is stored on valid message reception and is stored with the message
- 0 = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power
- bit 19-16 Unimplemented: Read as '0'
- bit 15 ON: CAN On bit⁽¹⁾
 - 1 = CAN module is enabled
 - 0 = CAN module is disabled
- bit 14 Unimplemented: Read as '0'
- **Note 1:** If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

REGISTER 24-1: CICON: CAN MODULE CONTROL REGISTER (CONTINUED)

bit 13 **SIDLE:** CAN Stop in Idle bit 1 = CAN Stops operation when system enters Idle mode 0 = CAN continues operation when system enters Idle mode

bit 12 Unimplemented: Read as '0'

- bit 11 CANBUSY: CAN Module is Busy bit
 - 1 = The CAN module is active
 - 0 = The CAN module is completely disabled
- bit 10-5 Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)

- 10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>)
- •
- •
- •

00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>) 00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

29.2 On-Chip Voltage Regulator

All PIC32MX5XX/6XX/7XX devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX-5XX/6XX/7XX family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 32.1 "DC Characteristics"**.

Note: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin.

29.2.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

29.2.2 ON-CHIP REGULATOR AND BOR

PIC32MX5XX/6XX/7XX devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset (BOR). This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in **Section 32.1 "DC Characteristics"**.

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

29.3 **Programming and Diagnostics**

PIC32MX5XX/6XX/7XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 29-2:

PROGRAMMING, DEBUGGING, AND TRACE PORTS BLOCK DIAGRAM

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks only allowed in EC and ECPLL modes)	DC 4	_	50 50	MHz MHz	EC (Note 4) ECPLL (Note 3)
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 4)
OS12			4		10	MHz	XTPLL (Notes 3,4)
OS13			10	—	25	MHz	HS (Note 4)
OS14			10	—	25	MHz	HSPLL (Notes 3,4)
OS15			32	32.768	100	kHz	Sosc (Note 4)
OS20	Tosc	Tosc = 1/Fosc = Tcy ⁽²⁾	—	_	—	_	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	—	ns	EC (Note 4)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	0.05 x Tosc	ns	EC (Note 4)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12	_	mA/V	VDD = 3.3V, TA = +25°C (Note 4)

TABLE 32-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

3: PLL input requirements: 4 MHz ≤ FPLLIN ≤ 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but is only tested at 10 MHz at manufacturing.

4: This parameter is characterized, but not tested in manufacturing.

PIC32MX5XX/6XX/7XX

FIGURE 32-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2			ns	—
SP71	TscH	SCKx Input High Time ⁽³⁾	Тscк/2			ns	—
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	_			ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—			ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—			ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	_		15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—		20	ns	Vdd < 2.7V
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	—	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	5	-	25	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20			ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 32-36: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHARACTERISTICS			Standard O (unless oth Operating te	perating C erwise stat mperature	onditions (ted) -40°C ≤ TA -40°C ≤ TA	see Not ≤ +85°0 ≤ +105°	e 5): 2.5V to 3.6V C for Industrial C for V-Temp	
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
ADC Accuracy – Measurements with Internal VREF+/VREF-								
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)	
AD21d	INL	Integral Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD22d	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)	
AD23d	Gerr	Gain Error	> -4	_	< 4	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD24d	EOFF	Offset Error	> -2	_	< 2	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD25d	—	Monotonicity	—	—	_	_	Guaranteed	
Dynami	c Performa	ince						
AD31b	SINAD	Signal to Noise and Distortion	55	58.5		dB	(Notes 3,4)	
AD34b	ENOB	Effective Number of Bits	9.0	9.5	_	bits	(Notes 3,4)	

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

PIC32MX5XX/6XX/7XX

FIGURE 32-25: PARALLEL SLAVE PORT TIMING

AC CHARACTERISTICS			$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PS1	TdtV2wrH	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20	_		ns	_
PS2	TwrH2dtl	WR or CS Inactive to Data-In Invalid (hold time)	40	—		ns	_
PS3	TrdL2dtV	RD and CS Active to Data-Out Valid	—	—	60	ns	_
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	—	10	ns	_
PS5	Tcs	CS Active Time	Трв + 40		_	ns	_
PS6	Twr	WR Active Time	Трв + 25	—	_	ns	—
PS7	Trd	RD Active Time	Трв + 25	_	_	ns	_

TABLE 32-39: PARALLEL SLAVE PORT REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2

Revision C (February 2010)

The revision includes the following updates, as described in Table B-2:

TABLE B-2: MAJOR SECTION UPDATES

Section Name	Update Description			
"High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers"	Added the following devices: • PIC32MX675F256H • PIC32MX775F256H • PIC32MX775F512H • PIC32MX675F256L • PIC32MX775F256L • PIC32MX775F512L			
	Added the following pins: • EREFCLK • ECRSDV • AEREFCLK • AECRSDV Added the EREECLK and ECRSDV pins to Table 5 and Table 6			
1.0 "Device Overview"	Updated the pin number pinout I/O descriptions for the following pin names in			
4.0 "Memory Organization"	Table 1-1: • SCL3 • SCL5 • RTCC • C1OUT • SDA3 • SDA5 • CVREF- • C2IN- • SCL2 • TMS • CVREF+ • C2IN+ • SDA2 • TCK • CVREFOUT • C2OUT • SCL4 • TDI • C1IN- • PMA0 • SDA4 • TDO • C1IN+ • PMA1 Added the following pins to the Pinout I/O Descriptions table (Table 1-1): • EREFCLK • EREFCLK • AEREFCLK • AEREFCLK • AEREFCLK • AEREFCLK • AEREFCLK			
	Added new devices to Figure 4-5.			
	Added new devices to the following register maps:			
	 Table 4-3, Table 4-4, Table 4-6 and Table 4-7 (Interrupt Register Maps) Table 4-12 (I2C2 Register Map) Table 4-15 (SPI1 Register Map) Table 4-24 through Table 4-35 (PORTA-PORTG Register Maps) Table 4-36 and Table 4-37 (Change Notice and Pull-up Register Maps) Table 4-45 (CAN1 Register Map) Table 4-46 (CAN2 Register Map) Table 4-47 (Ethernet Controller Register Map) 			
	Changed the bits named POSCMD to POSCMOD in Table 4-42 (Device Configuration Word Summary).			
1.0 "Special Features"	Changed all references of POSCMD to POSCMOD in the Device Configuration Word 1 register (see Register 1-2).			
Appendix A: "Migrating from PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX Devices"	Added the new section Appendix .			