

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx564f128l-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1:PIC32MX5XX USB AND CAN FEATURES

	USB and CAN															
Device	Pins	Program Memory (KB)	Data Memory (KB)	USB	CAN	Timers/Capture/Compare	DMA Channels (Programmable/Dedicated)	UART ^(2,3)	Spl ⁽³⁾	I ² C ⁽³⁾	10-bit 1 Msps ADC (Channels)	Comparators	dSd/dWd	JTAG	Trace	Packages ⁽⁴⁾
PIC32MX534F064H	64	64 + 12 ⁽¹⁾	16	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX564F064H	64	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX564F128H	64	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX575F256H	64	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX575F512H	64	512 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX534F064L	100	64 + 12 ⁽¹⁾	16	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX564F064L	100	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX564F128L	100	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX575F256L	100	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX575F512L	100	512 + 12 (1)	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
Legend: PF, PT =	TQFP	MR = Q	FN		BG =	TFBG/	4	TL =	VTLA	(5)						

Note 1: This device features 12 KB boot Flash memory.

2: CTS and RTS pins may not be available for all UART modules. Refer to the "Device Pin Tables" section for more information.

3: Some pins between the UART, SPI and I²C modules may be shared. Refer to the "**Device Pin Tables**" section for more information.

4: Refer to 34.0 "Packaging Information" for more information.

5: 100-pin devices in the VTLA package are available upon request. Please contact your local Microchip Sales Office for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	—	_	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8				BMXDU	DBA<15:8>					
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0	BMXDUDBA<7:0>									

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	—	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	_	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0		_	_	—	—			SWRST ⁽¹⁾

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Le	gend:	HC = Cleared by hardware						
R =	= Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'				
-n :	= Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾ 1 = Enable software Reset event 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

		P	IC32M>	(795F51	2H DE	/ICES													
sse										В	lits								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	_	—	—	—	_	_	—	—		_		_	_	SS0	0000
1000	INTCOM	15:0	—	_	—	MVEC	—		TPC<2:0>		-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	_	—	—	_	_	—	—		-	_	—	—	—	—	—	—	0000
1010		15:0	—	—	—	_	—		SRIPL<2:0>		—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMF	R<31:0>								0000
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF ⁽²⁾	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	_	_	_	U2TXIF SPI4TXIF	U2RXIF SPI4RXIF	U2EIF SPI4EIF	U3TXIF SPI2TXIF	U3RXIF SPI2RXIF	U3EIF SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16	_			_		I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF	_		_	_	_	0000
1050	IFS2	15:0		_			U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	_	-	-	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE ⁽²⁾	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	_	-	_	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
1080	IEC2	31:16	_	_	_	-	_	_	_	_	_	-	-	_	-	-	_	_	0000
1060	IEC2	15:0	—	_	_	—	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16	—	—	—		INT0IP<2:0>		INTOIS	S<1:0>	—	—	—		CS1IP<2:0>	,		S<1:0>	0000
1000		15:0	_	_	—		CS0IP<2:0>			S<1:0>	_	-	_		CTIP<2:0>			<1:0>	0000
10A0	IPC1	31:16	—	-	—	ļ	INT1IP<2:0>	•		S<1:0>	-	-	_		OC1IP<2:0:	>		S<1:0>	0000
		15:0	_	_	_		IC1IP<2:0>			<1:0>	_	_	_		T1IP<2:0>		_	<1:0>	0000
10B0	IPC2	31:16	_	_	_		INT2IP<2:0>	•		S<1:0>	_				OC2IP<2:0:	`		S<1:0>	0000
		15:0	_	_	_	<u> </u>	IC2IP<2:0>		IC2IS		—				T2IP<2:0>		-	<1:0>	0000
10C0	IPC3	31:16 15:0	_	_			INT3IP<2:0> IC3IP<2:0>	•		S<1:0> <1:0>					OC3IP<2:0: T3IP<2:0>	>		S<1:0> <1:0>	0000
Legend	1: x=1			Reset: — = u	nimplement	ed, read as '		ues are sho	wn in hexade						1011 \2.02		1010	<1.0Z	0000

TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers.

PIC32MX5XX/6XX/7XX

2:

3:

Т	ABLE 12	PORTG REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H	Н.
		PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES	,
	ssa	Bits	

ö		Φ											<i>(</i> 0						
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6180	TRISG	31:16	—	—	—	_	—	—	_	—	—	—	_	_	-	_	_	_	0000
6160	TRIBU	15:0	_	_	_	_	_		TRISG9	TRISG8	TRISG7	TRISG6	_		TRISG3	TRISG2	-		03CC
6100	PORTG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
6190	PURIG	15:0	_	_	_	_	_		RG9	RG8	RG7	RG6	_		RG3	RG2	-		xxxx
61A0	LATG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
OTAU	LAIG	15:0	_	_	_	_	_		LATG9	LATG8	LATG7	LATG6	_		LATG3	LATG2	-		xxxx
61B0	ODCG	31:16	_	_	_	_	-	_	_	_	_	-	_			-	_		0000
0180	ODCG	15:0	-	_	_	_	-	_	ODCG9	ODCG8	ODCG7	ODCG6	_		ODCG3	ODCG2	_		0000
Laware				Divisi			fal Deset	all and a second		dia statistical									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 12-12: PORTG REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										Bi	ts								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	_	—	_	-	_	—	-	—	—	-	—	-	-	-	-	-	0000
0100	TRISG	15:0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6100	PORTG	31:16		_		_		-	-	-	-	—	-	—	—	—	_	—	0000
6190	PURIG	15:0	RG15	RG14	RG13	RG12			RG9	RG8	RG7	RG6		-	RG3	RG2	RG1	RG0	xxxx
61A0	LATG	31:16	-	_		_	-	-	-	-	-	—	-	—	—	—	—	—	0000
61A0	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	-	LATG3	LATG2	LATG1	LATG0	xxxx
61B0	ODCG	31:16		—	_	_		_		_	_	—	_	—	—	—	—	—	0000
0160	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	-	ODCG9	ODCG8	ODCG7	ODCG6	-	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—	_	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	—	_	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

REGISTER 19-1: I2CxCON: I²C CONTROL REGISTER

Legend:	HC = Cleared by hardwar	e	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** I²C Enable bit⁽¹⁾
 - 1 = Enables the I²C module and configures the SDA and SCL pins as serial port pins
 - 0 = Disables the I²C module; all I²C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation when device enters Idle mode
- bit 12 **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock

0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

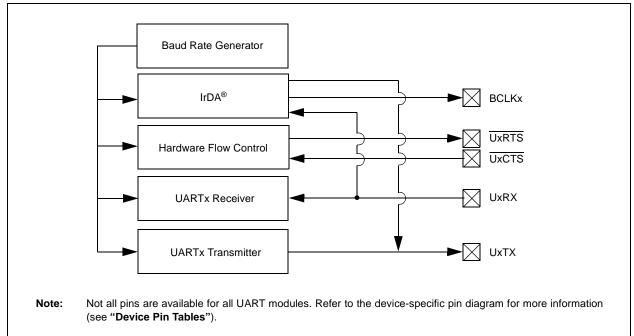
Bit is R/W (software can write '0' to initiate stretch and write '1' to release clock). Cleared by hardware at the beginning of a slave transmission and at the end of slave reception.

If STREN = 0:

Bit is R/S (software can only write '1' to release clock). Cleared by hardware at the beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C reserved address rule is not enabled
- bit 10 A10M: 10-bit Slave Address bit
 - 1 = I2CxADD is a 10-bit slave address
 - 0 = I2CxADD is a 7-bit slave address
- bit 9 DISSLW: Disable Slew Rate Control bit
 - 1 = Slew rate control is disabled
 - 0 = Slew rate control is enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The UART module is one of the serial I/O modules available in the PIC32MX5XX/6XX/7XX family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN 1.2 and IrDA[®]. The module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

The following are primary features of the UART module:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 20 Mbps at 80 MHz
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (ninth bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- LIN 2.1 Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 20-1 illustrates a simplified block diagram of the UART module.

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31:24		YEAR1	0<3:0>		YEAR01<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16 MC			10<3:0>		MONTH01<3:0>			
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8		DAY10	<3:0>	3:0>		DAY01<3:0>		
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
7:0	—	—	_	_		WDAYC)1<3:0>	
		•			•			
Legend:								
R = Readable bit			W = Writable bit		U = Unimple	emented bit, re	ead as '0'	

0' = Bit is cleared

REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

'1' = Bit is set

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

-n = Value at POR

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

x = Bit is unknown

						•	/	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	_	—	—	_	—
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	FSIZE<4:0> ⁽¹⁾				
15.0	U-0	S/HC-0	S/HC-0	R/W-0	U-0	U-0	U-0	U-0
15:8	—	FRESET	UINC	DONLY ⁽¹⁾	—	—	_	—
7.0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	TXEN	TXABAT ⁽²⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ	RTREN	TXPR	<1:0>

REGISTER 24-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20-16 FSIZE<4:0>: FIFO Size bits'	bit 20-16	E<4:0>: FIFO Size bits ⁽¹⁾
---------------------------------------	-----------	---------------------------------------

- 11111 = FIFO is 32 messages deep
- •
- 00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep

00000 = FIFO is 1 message deep

bit 15 Unimplemented: Read as '0'

bit 14 FRESET: FIFO Reset bits

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll whether this bit is clear before taking any action.

0 = No effect

bit 13 UINC: Increment Head/Tail bit

 $\frac{TXEN = 1:}{When this bit is set the FIFO head will increment by a single message$ $<math display="block">\frac{TXEN = 0:}{When this bit is set the FIFO tail will increment by a single message$ When this bit is set the FIFO tail will increment by a single message $<math display="block">\frac{TXEN = 0:}{When this bit is set the FIFO tail will increment by a single message }$

bit 12 DONLY: Store Message Data Only bit⁽¹⁾

 $\frac{\text{TXEN} = 1:}{\text{This bit is not used and has no effect.}}$ $\frac{\text{TXEN} = 0:}{\text{TXEN} = 0:}$ (FIFO configured as a Receive FIFO)

1 =Only data bytes will be stored in the FIFO

0 = Full message is stored, including identifier

bit 11-8 Unimplemented: Read as '0'

- bit 7 **TXEN:** TX/RX Buffer Selection bit
 - 1 = FIFO is a Transmit FIFO
 - 0 = FIFO is a Receive FIFO
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 25-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	_	_	_	_	—	—		
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	_	_	_	—	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8 FRMTXOKCNT<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		FRMTXOKCNT<7:0>								

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_		—	_	—	—	-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	_	_	—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	—		LINKFAIL	NOTVALID	SCAN	MIIMBUSY

Legend:

5				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	1

bit 31-4 Unimplemented: Read as '0'

bit 3 LINKFAIL: Link Fail bit

When '1' is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register.

bit 2 NOTVALID: MII Management Read Data Not Valid bit When '1' is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid.

bit 1 SCAN: MII Management Scanning bit When '1' is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress.

bit 0 MIIMBUSY: MII Management Busy bit

When '1' is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—	—	—		—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		-		—	—			—
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	SIDL	—	—	—		—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
7:0	—	—	—	—		—	C2OUT	C1OUT

REGISTER 26-2: CMSTAT: COMPARATOR STATUS REGISTER

-	-	
	ond	
Leu	ena:	

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in Idle Control bit
 - 1 = All Comparator modules are disabled while in Idle mode
 - 0 = All Comparator modules continue to operate while in Idle mode

bit 12-2 Unimplemented: Read as '0'

- bit 1 **C2OUT:** Comparator Output bit
 - 1 = Output of Comparator 2 is a '1'
 - 0 = Output of Comparator 2 is a '0'
- bit 0 C1OUT: Comparator Output bit
 - 1 = Output of Comparator 1 is a '1'
 - 0 = Output of Comparator 1 is a '0'

28.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MX5XX/6XX/7XX family of devices. These devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

28.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the Peripheral Bus Clock (PBCLK) and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

28.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- **Posc Idle mode:** the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.

- **Sosc Idle mode:** the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

28.3 Power-Saving Operation

Peripherals and the CPU can be halted or disabled to further reduce power consumption.

28.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

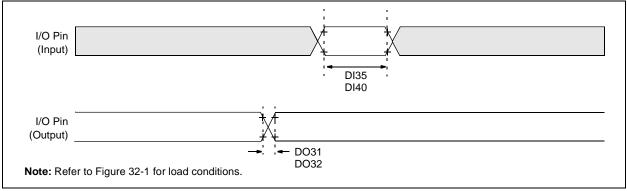

- The CPU is halted
- The system clock source is typically shutdown. See Section 28.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit, if enabled, remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

TABLE 32-20: INTERNAL RC ACCURACY

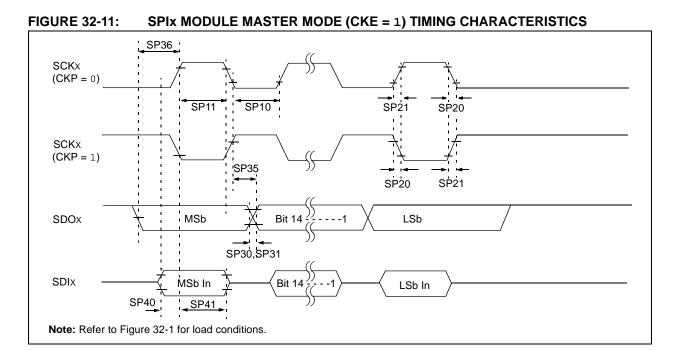
AC CHA	AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.3V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \le TA \le +85^\circ C \ for \ Industrial \\ & -40^\circ C \le TA \le +105^\circ C \ for \ V-Temp \end{array}$						
Param. No. Characteristics		Min.	Typical	Max.	Units	Conditions			
LPRC @	LPRC @ 31.25 kHz ⁽¹⁾								
F21	LPRC	-15	-15 — +15 % —						

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 32-3: I/O TIMING CHARACTERISTICS

TABLE 32-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	Port Output Rise Tin	ne	_	5	15	ns	Vdd < 2.5V
				—	5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Time		_	5	15	ns	Vdd < 2.5V
				—	5	10	ns	VDD > 2.5V
DI35	TINP	INTx Pin High or Low Time		10	_	_	ns	—
DI40	Trbp	CNx High or Low Time (input)		2	_	_	TSYSCLK	_


Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 32-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS (U				(unless	0 1	; ≤ TA ≤	+85°C	6∨ for Industrial C for V-Temp		
Param. No.	Symbol	Characteristics ⁽¹⁾			Min.	Max.	Units	Condit	ions	
TB10	ТтхН	TxCK High Time	Synchronous, with prescaler		[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	value (1, 2, 4, 8,	
TB11	ΤτxL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 ТРВ)/N] + 25 ns		ns	Must also meet parameter TB15	16, 32, 64, 256)	
TB15	ΤτχΡ	TxCK Input	Synchrono prescaler	ous, with	[(Greater of [(25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V		
		Period			[(Greater of [(25 ns or 2 Трв)/N] + 50 ns	—	ns	VDD < 2.7V		
TB20	TCKEXTMRL	Delay from Clock Edge			_	1	Трв	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 32-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	—	_	ns	—
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2	—	_	ns	—
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	—	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	_	—		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	—	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—	—	20	ns	Vdd < 2.7V
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	15	—	_	ns	—
SP40	TDIV2scH,	Setup Time of SDIx Data Input to	15	—		ns	VDD > 2.7V
TDIV2scL		SCKx Edge	20	—	—	ns	Vdd < 2.7V
SP41	TscH2DIL,	Hold Time of SDIx Data Input to SCKx Edge	15	—		ns	VDD > 2.7V
	TscL2DIL		20	—	_	ns	VDD < 2.7V

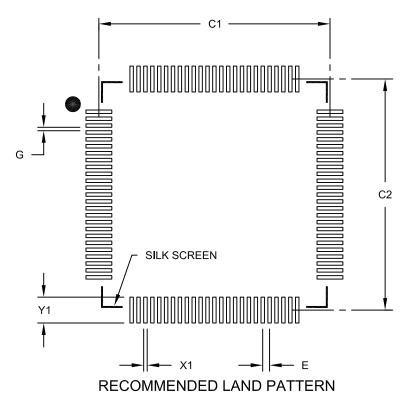
Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 32-37: 10-BIT ADC CONVERSION RATE PARAMETERS

Standard Operating Conditions (see Note 3): 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp								
ADC Speed ⁽²⁾	TAD Minimum	Sampling Time Minimum	Rs Maximum	Vdd	ADC Channels Configuration			
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX S&H ADC			
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX CHX ANX or VREF-			


Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

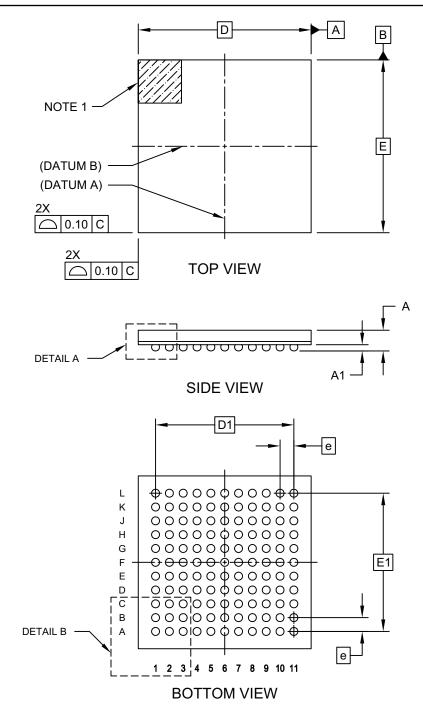
3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	Dimension Limits			MAX		
Contact Pitch	tact Pitch E			0.40 BSC		
Contact Pad Spacing	C1		13.40			
Contact Pad Spacing	C2		13.40			
Contact Pad Width (X100)	X1			0.20		
Contact Pad Length (X100)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

SPIx Slave Mode (CKE = 1)	1
Timer1, 2, 3, 4, 5 External Clock	
UART Reception204	
UART Transmission (8-bit or 9-bit Data)204	
Timing Requirements	
CLKO and I/O	1
Timing Specifications	
CAN I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture Requirements	
Output Compare Requirements	
Simple OCx/PWM Mode Requirements	,
SPIx Master Mode (CKE = 0) Requirements	i
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	,
SPIx Slave Mode Requirements (CKE = 0)	

U

UART	203
USB On-The-Go (OTG)	. 133

V

VCAP pin	
Voltage Reference Specifications	365
Voltage Regulator (On-Chip)	343

W

Watchdog Timer (WDT)	177
WWW Address	
WWW, On-Line Support	23