

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx575f256h-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

TABLE 8: PIN NAMES FOR 100-PIN USB AND ETHERNET DEVICES (CONTINUED)

100-PIN TQFP (TOP VIEW)

PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L

100

Pin #	Full Pin Name	Pin #	Full Pin Name
71	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	86	VDD
72	SDO1/OC1/INT0/RD0	87	ETXD1/PMD11/RF0
73	SOSCI/CN1/RC13	88	ETXD0/PMD10/RF1
74	SOSCO/T1CK/CN0/RC14	89	ETXERR/PMD9/RG1
75	Vss	90	PMD8/RG0
76	OC2/RD1	91	TRCLK/RA6
77	OC3/RD2	92	TRD3/RA7
78	OC4/RD3	93	PMD0/RE0
79	ETXD2/IC5/PMD12/RD12	94	PMD1/RE1
80	ETXD3/PMD13/CN19/RD13	95	TRD2/RG14
81	OC5/PMWR/CN13/RD4	96	TRD1/RG12
82	PMRD/CN14/RD5	97	TRD0/RG13
83	ETXEN/PMD14/CN15/RD6	98	PMD2/RE2
84	ETXCLK/PMD15/CN16/RD7	99	PMD3/RE3
85	VCAP/VDDCORE	100	PMD4/RE4

Note 1: Shaded pins are 5V tolerant.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

- Note 1: To access the documents listed below, browse to the documentation section of the PIC32MX795F512L product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features, and other documentation, the resulting page provides links to the related family
- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 4. "Prefetch Cache" (DS60001119)
- Section 3. "Memory Organization" (DS60001115)

reference manual sections.

- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Capture" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I2C)" (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Number ⁽¹⁾						
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA			Buffer Type	Description	
AC2TX	—	7	E4	B4	0	_	Alternate CAN2 bus transmit pin	
ERXD0	61	41	J7	B23	I	ST	Ethernet Receive Data 0 ⁽²⁾	
ERXD1	60	42	L7	A28	I	ST	Ethernet Receive Data 1 ⁽²⁾	
ERXD2	59	43	K7	B24	I	ST	Ethernet Receive Data 2 ⁽²⁾	
ERXD3	58	44	L8	A29	I	ST	Ethernet Receive Data 3 ⁽²⁾	
ERXERR	64	35	J5	B20	I	ST	Ethernet receive error input ⁽²⁾	
ERXDV	62	12	F2	A8	I	ST	Ethernet receive data valid ⁽²⁾	
ECRSDV	62	12	F2	A8	I	ST	Ethernet carrier sense data valid ⁽²⁾	
ERXCLK	63	14	F3	A9	I	ST	Ethernet receive clock ⁽²⁾	
EREFCLK	63	14	F3	A9	I	ST	Ethernet reference clock ⁽²⁾	
ETXD0	2	88	A6	A60	0	_	Ethernet Transmit Data 0 ⁽²⁾	
ETXD1	3	87	B6	B49	0	_	Ethernet Transmit Data 1 ⁽²⁾	
ETXD2	43	79	A9	B43	0	_	Ethernet Transmit Data 2 ⁽²⁾	
ETXD3	42	80	D8	A54	0	_	Ethernet Transmit Data 3 ⁽²⁾	
ETXERR	54	89	E6	B50	0	_	Ethernet transmit error ⁽²⁾	
ETXEN	1	83	D7	B45	0	_	Ethernet transmit enable ⁽²⁾	
ETXCLK	55	84	C7	A56	I	ST	Ethernet transmit clock ⁽²⁾	
ECOL	44	10	E3	A7	I	ST	Ethernet collision detect ⁽²⁾	
ECRS	45	11	F4	B6	I	ST	Ethernet carrier sense ⁽²⁾	
EMDC	30	71	C11	A46	0	_	Ethernet management data clock ⁽²⁾	
EMDIO	49	68	E9	B37	I/O	_	Ethernet management data ⁽²⁾	
AERXD0	43	18	G1	A11	I	ST	Alternate Ethernet Receive Data 0 ⁽²⁾	
AERXD1	42	19	G2	B10	I	ST	Alternate Ethernet Receive Data 1 ⁽²⁾	
AERXD2	—	28	L2	A21	I	ST	Alternate Ethernet Receive Data 2(2)	
AERXD3	—	29	K3	B17	I	ST	Alternate Ethernet Receive Data 3 ⁽²⁾	
AERXERR	55	1	B2	A2	I	ST	Alternate Ethernet receive error input ⁽²⁾	
AERXDV	—	12	F2	A8	I	ST	Alternate Ethernet receive data valid ⁽²⁾	
AECRSDV	44	12	F2	A8	I	ST	Alternate Ethernet carrier sense data valid ⁽²⁾	
AERXCLK	—	14	F3	A9	I	ST	Alternate Ethernet receive clock ⁽²⁾	
AEREFCLK	45	14	F3	A9	I	ST	Alternate Ethernet reference clock ⁽²⁾	
AETXD0	59	47	L9	B26	0		Alternate Ethernet Transmit Data 0 ⁽²⁾	
AETXD1	58	48	K9	A31	0		Alternate Ethernet Transmit Data 1 ⁽²⁾	
AETXD2		44	L8	A29	0		Alternate Ethernet Transmit Data 2 ⁽²⁾	
AETXD3		43	K7	B24	0		Alternate Ethernet Transmit Data 3 ⁽²⁾	
AETXERR		35	J5	B20	0		Alternate Ethernet transmit error ⁽²⁾	
AETXEN	54	67	E8	A44	0		Alternate Ethernet transmit enable ⁽²⁾	
AETXCLK	_	66	E11	B36	1	ST	Alternate Ethernet transmit clock ⁽²⁾	
AECOL		42	L7	A28	1	ST	Alternate Ethernet collision detect ⁽²⁾	
Leaend: C	MOS = CMO	S compatib	le input or c	butput	A	nalog = A	Analog input P = Power	

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input P = PowerO = Output I = Input

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	_	_	—	_	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	
15:8	BMXDUDBA<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				BMXDU	DBA<7:0>				

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			_	—	-	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23.10	—	—	—	—	_	—	—	SS0
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	—	—	MVEC	_	TPC<2:0>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Read as '0'

- bit 16 **SS0:** Single Vector Shadow Register Set bit
 - 1 = Single vector is presented with a shadow register set
 - 0 = Single vector is not presented with a shadow register set
- bit 15-13 Unimplemented: Read as '0'
- bit 12 MVEC: Multiple Vector Configuration bit
 - 1 = Interrupt controller configured for Multi-vector mode
 - 0 = Interrupt controller configured for Single-vector mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 **INT1EP:** External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24		—	—		IP03<2:0>	IS03<1:0>		
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10		—	—		IP02<2:0>	IS02<1:0>		
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0		—	—		IP01<2:0>	IS01-	<1:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_			IP00<2:0>	IS00-	<1:0>	

Legend:

3					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP03<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• 010 = Interrupt priority is 2
	010 = Interrupt priority is 2 001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS03<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 23-21	Unimplemented: Read as '0'
bit 20-18	IP02<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1 000 = Interrupt is disabled
hit 17 16	•
DIL 17-10	IS02<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
hit 15-13	Unimplemented: Read as '0'
511 10 10	Chimpionionicu. Nodu do 0
Note:	This register represents a generic definition
1	· · · ·

definitions.

ister represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit ns.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24	CHEW1<31:24>								
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16	CHEW1<23:16>								
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8	CHEW1<15:8>								
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
7:0	CHEW1<7:0>								

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:					
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24		CHEW2<31:24>									
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16	CHEW2<23:16>										
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8				CHEW2	<15:8>						
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0				CHEW2	<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Control Registers 10.1

TABLE 10-1: DMA GLOBAL REGISTER MAP

ess		â								Bi	its								ő
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	DMACON ⁽¹⁾	31:16	_	_	-	_	_		_	_	_	_	_	_	_	_	_	_	0000
3000	DMACON	15:0	ON	_	_	SUSPEND	DMABUSY	_	_	_	_	_	_	_	_	_	_	_	0000
2010	DMASTAT	31:16	_	_	_	_	—	_	_	_	_	-	_	_	—	_	_	_	0000
3010	DIVIASTAT	15:0	_	<u> </u>															
2020	DMAADDR	31:16		DMAADDR<31:0>															
3020	DIVIAADDR	15:0																	
Legen																			

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

DMACH<3> bit is not available on PIC32MX534/564/664/764 devices. 2:

TABLE 10-2: DMA CRC REGISTER MAP⁽¹⁾

ess		0								В	ts								ú
Virtual Address (BF88_#)	(BF88_#) Register Name ⁽¹⁾ Bit Range		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2020	DCRCCON	31:16	_	_	BYTO	<1:0>	WBO	_	—	BITO	—	_		_	_	—	—	_	0000
3030	DURCUUN	15:0	—	—	—			PLEN<4:0>			CRCEN	CRCAPP	CRCTYP	_	—	(CRCCH<2:0	>	0000
3040	DCRCDATA	31:16									TA-31:05								0000
3040	DONODAIA	15:0		DCRCDATA<31:0> 0000															
3050	DCRCXOR	31:16		DCPCYOR-31:0- 0000															
3030	DUNUAUK	15:0		DCRCXOR<31:0> 0000															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—		_		_	_	_	—
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16				CHAIRQ<	<7:0> ⁽¹⁾			
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8				CHSIRQ<	<7:0> ⁽¹⁾			
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	—

REGISTER 10-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit
	 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0	Unimplemented: Read as '0'

Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (has at least 1 data character) **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) bit 5 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 **RIDLE:** Receiver Idle bit (read-only) 1 =Receiver is idle 0 = Data is being received bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected FERR: Framing Error Status bit (read-only) bit 2 1 = Framing error has been detected for the current character 0 = Framing error has not been detected bit 1 **OERR:** Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to an empty state.
 - 1 = Receive buffer has overflowed
 - 0 = Receive buffer has not overflowed
- bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	—	_	—	—	—	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	_	—	—	—	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0					

REGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

1 = Select ANx for input scan

0 =Skip ANx for input scan

Note 1: CSSL = ANx, where 'x' = 0-15.

bit 15-0 CSSL<15:0>: ADC Input Pin Scan Selection bits⁽¹⁾

REGISTER 25-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	_	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6		PMCS<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0 PMCS<7:0>											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	_	_	_	_	_	_	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6		PMO<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	7:0 PMO<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-34: EMAC1MWTD: ETHERNET CONTROLLER MAC MII MANAGEMENT WRITE DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24		—	_	—	_		—	_		
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	_		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	MWTD<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				MWTD<7	:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MWTD<15:0>: MII Management Write Data bits

When written, a MII Management write cycle is performed using the 16-bit data and the pre-configured PHY and Register addresses from the EMAC1MADR register.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-35: EMAC1MRDD: ETHERNET CONTROLLER MAC MII MANAGEMENT READ DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		—		—	—			_	
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_	—	_	_	—	_	_	_	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	MRDD<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				MRDD	<7:0>				

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

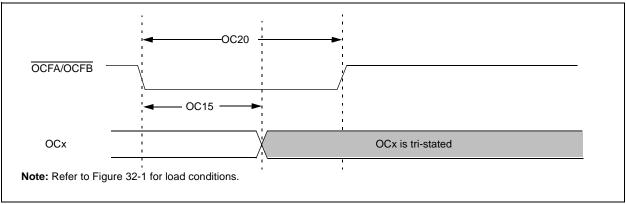
bit 15-0 MRDD<15:0>: MII Management Read Data bits

Following a MII Management Read Cycle, the 16-bit data can be read from this location.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

27.1 Control Register

TABLE 27-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP


lress ¢)	(BF80_#) Register Name ⁽¹⁾ Bit Range		Bits																
Virtual Addr (BF80_#)		Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	CVRCON	31:16			—	—	—	-	—	_	_	_		_		—		—	0000
9800	CVRCON	15:0	ON	-	_	—	_	VREFSEL ⁽²⁾	BGSEL	<1:0> ⁽²⁾	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0100

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX575/675/695/775/795 devices. On these devices, reset value for CVRCON is '0000'.

FIGURE 32-9: OCx/PWM MODULE TIMING CHARACTERISTICS

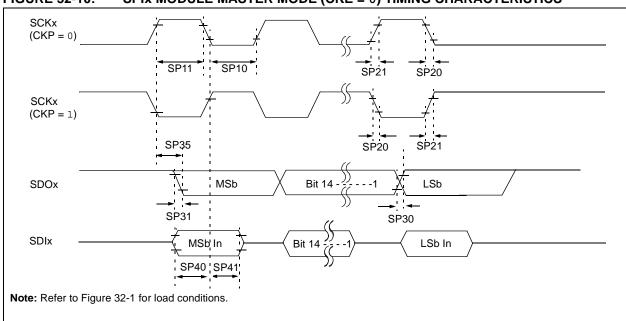


TABLE 32-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHAF	RACTERIST	rics	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol Characteristics ⁽¹⁾		Min	Typical ⁽²⁾	Max	Units	Conditions			
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns	_			
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—			

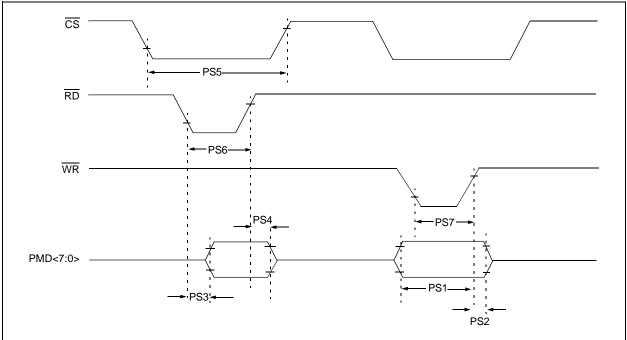
Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

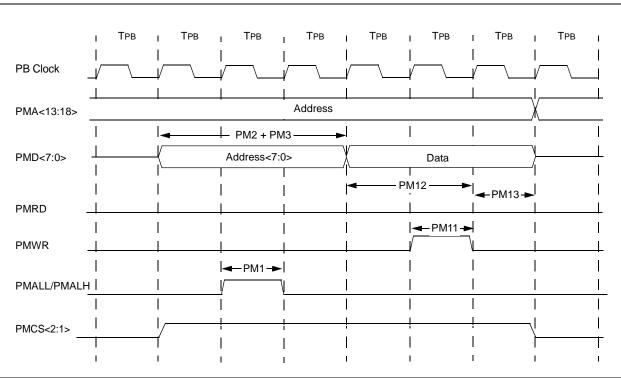
АС СНА	ARACTERIST	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	_	_	ns	—		
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2	_		ns	—		
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_		ns	See parameter DO32		
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	-	_		ns	See parameter DO31		
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	_	_	_	ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	—	_	ns	See parameter DO31		
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	15	ns	VDD > 2.7V		
	TscL2doV	SCKx Edge	_	—	20	ns	VDD < 2.7V		
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—		
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—		


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

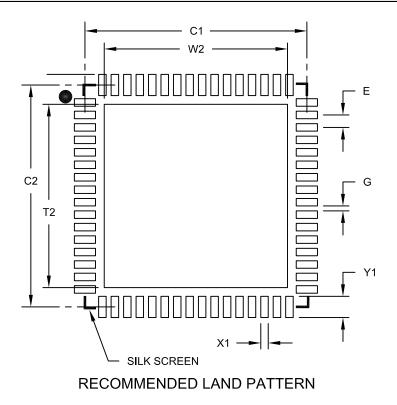

FIGURE 32-25: PARALLEL SLAVE PORT TIMING

AC CHA	RACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions		
PS1	TdtV2wrH	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20	_		ns	_		
PS2	TwrH2dtl	WR or CS Inactive to Data-In Invalid (hold time)	40	—	_	ns	—		
PS3	TrdL2dtV	RD and CS Active to Data-Out Valid	—	—	60	ns	—		
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	—	10	ns	_		
PS5	Tcs	CS Active Time	Трв + 40	_		ns	_		
PS6	Twr	WR Active Time	Трв + 25	—	_	ns	_		
PS7	Trd	RD Active Time	Трв + 25	_	_	ns			

TABLE 32-39: PARALLEL SLAVE PORT REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM


TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	$\label{eq:constraint} \begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions			
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_			
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	—	_			
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв			—			

Note 1: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	Dimension Limits					
Contact Pitch	E		0.50 BSC			
Optional Center Pad Width	W2			7.35		
Optional Center Pad Length	T2			7.35		
Contact Pad Spacing	C1		8.90			
Contact Pad Spacing	C2		8.90			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			0.85		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A