

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XE

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                      |
| Core Size                  | 32-Bit Single-Core                                                                |
| Speed                      | 80MHz                                                                             |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART, USB OTG                                |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                        |
| Number of I/O              | -                                                                                 |
| Program Memory Size        | 256КВ (256К х 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 64K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                       |
| Data Converters            | A/D 16x10b                                                                        |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 121-TFBGA                                                                         |
| Supplier Device Package    | 121-TFBGA (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx575f256lt-80i-bg |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 5: PIN NAMES FOR 64-PIN USB AND ETHERNET DEVICES

| 64    | 64-PIN QFN <sup>(2)</sup> AND TQFP (TOP VIEW)                                                  |        |   |                                               |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------|--------|---|-----------------------------------------------|--|--|--|--|
|       | PIC32MX664F064H<br>PIC32MX664F128H<br>PIC32MX675F256H<br>PIC32MX675F512H<br>PIC32MX695F512H 64 | 0EN(2) |   | 64                                            |  |  |  |  |
|       |                                                                                                |        |   | TQFP                                          |  |  |  |  |
| Pin # | Full Pin Name                                                                                  | Pin    | # | Full Pin Name                                 |  |  |  |  |
| 1     | ETXEN/PMD5/RE5                                                                                 | 33     | 3 | USBID/RF3                                     |  |  |  |  |
| 2     | ETXD0/PMD6/RE6                                                                                 | 34     | ļ | VBUS                                          |  |  |  |  |
| 3     | ETXD1/PMD7/RE7                                                                                 | 35     | 5 | VUSB3V3                                       |  |  |  |  |
| 4     | SCK2/U6TX/U3RTS/PMA5/CN8/RG6                                                                   | 36     | 6 | D-/RG3                                        |  |  |  |  |
| 5     | SDA4/SDI2/U3RX/PMA4/CN9/RG7                                                                    | 37     | 7 | D+/RG2                                        |  |  |  |  |
| 6     | SCL4/SDO2/U3TX/PMA3/CN10/RG8                                                                   | 38     | 3 | Vdd                                           |  |  |  |  |
| 7     | MCLR                                                                                           | 39     | ) | OSC1/CLKI/RC12                                |  |  |  |  |
| 8     | SS2/U6RX/U3CTS/PMA2/CN11/RG9                                                                   | 40     | ) | OSC2/CLKO/RC15                                |  |  |  |  |
| 9     | Vss                                                                                            | 41     |   | Vss                                           |  |  |  |  |
| 10    | Vdd                                                                                            | 42     | 2 | RTCC/AERXD1/ETXD3/IC1/INT1/RD8                |  |  |  |  |
| 11    | AN5/C1IN+/VBUSON/CN7/RB5                                                                       | 43     | 3 | AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9 |  |  |  |  |
| 12    | AN4/C1IN-/CN6/RB4                                                                              | 44     | 1 | ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10   |  |  |  |  |
| 13    | AN3/C2IN+/CN5/RB3                                                                              | 45     | 5 | ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11       |  |  |  |  |
| 14    | AN2/C2IN-/CN4/RB2                                                                              | 46     | 6 | OC1/INT0/RD0                                  |  |  |  |  |
| 15    | PGEC1/AN1/VREF-/CVREF-/CN3/RB1                                                                 | 47     | 7 | SOSCI/CN1/RC13                                |  |  |  |  |
| 16    | PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0                                                            | 48     | 3 | SOSCO/T1CK/CN0/RC14                           |  |  |  |  |
| 17    | PGEC2/AN6/OCFA/RB6                                                                             | 49     | 9 | EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1          |  |  |  |  |
| 18    | PGED2/AN7/RB7                                                                                  | 50     | ) | SDA3/SDI3/U1RX/OC3/RD2                        |  |  |  |  |
| 19    | AVdd                                                                                           | 51     | l | SCL3/SDO3/U1TX/OC4/RD3                        |  |  |  |  |
| 20    | AVss                                                                                           | 52     | 2 | OC5/IC5/PMWR/CN13/RD4                         |  |  |  |  |
| 21    | AN8/SS4/U5RX/U2CTS/C1OUT/RB8                                                                   | 53     | 3 | PMRD/CN14/RD5                                 |  |  |  |  |
| 22    | AN9/C2OUT/PMA7/RB9                                                                             | 54     | ļ | AETXEN/ETXERR/CN15/RD6                        |  |  |  |  |
| 23    | TMS/AN10/CVREFOUT/PMA13/RB10                                                                   | 55     | 5 | ETXCLK/AERXERR/CN16/RD7                       |  |  |  |  |
| 24    | TDO/AN11/PMA12/RB11                                                                            | 56     | 6 | VCAP                                          |  |  |  |  |
| 25    | Vss                                                                                            | 57     | 7 | Vdd                                           |  |  |  |  |
| 26    | VDD                                                                                            | 58     | 3 | AETXD1/ERXD3/RF0                              |  |  |  |  |
| 27    | TCK/AN12/PMA11/RB12                                                                            | 59     | 9 | AETXD0/ERXD2/RF1                              |  |  |  |  |
| 28    | TDI/AN13/PMA10/RB13                                                                            | 60     | ) | ERXD1/PMD0/RE0                                |  |  |  |  |
| 29    | AN14/SCK4/U5TX/U2RTSU2RTS/PMALH/PMA1/RB14                                                      | 61     |   | ERXD0/PMD1/RE1                                |  |  |  |  |
| 30    | AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15                                                      | 62     | 2 | ERXDV/ECRSDV/PMD2/RE2                         |  |  |  |  |
| 31    | SDA5/SDI4/U2RX/PMA9/CN17/RF4                                                                   | 63     | 3 | ERXCLK/EREFCLK/PMD3/RE3                       |  |  |  |  |
| 32    | SCL5/SDO4/U2TX/PMA8/CN18/RF5                                                                   | 64     | 1 | ERXERR/PMD4/RE4                               |  |  |  |  |

Note 1: Shaded pins are 5V tolerant.

2: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

# TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

|           | Pin Number <sup>(1)</sup>    |                 |                              |                    |             | ,                    |                                                                                                           |  |  |
|-----------|------------------------------|-----------------|------------------------------|--------------------|-------------|----------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Pin Name  | 64-Pin<br>QFN/TQFP           | 100-Pin<br>TQFP | 121-Pin<br>TFBGA             | 124-pin<br>VTLA    | Pin<br>Type | Buffer<br>Type       | Description                                                                                               |  |  |
| PMD0      | 60                           | 93              | A4                           | B52                | I/O         | TTL/ST               | Parallel Master Port data                                                                                 |  |  |
| PMD1      | 61                           | 94              | B4                           | A64                | I/O         | TTL/ST               | (Demultiplexed Master mode) or                                                                            |  |  |
| PMD2      | 62                           | 98              | B3                           | A66                | I/O         | TTL/ST               | address/data (Multiplexed Master                                                                          |  |  |
| PMD3      | 63                           | 99              | A2                           | B56                | I/O         | TTL/ST               | modes)                                                                                                    |  |  |
| PMD4      | 64                           | 100             | A1                           | A67                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD5      | 1                            | 3               | D3                           | B2                 | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD6      | 2                            | 4               | C1                           | A4                 | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD7      | 3                            | 5               | D2                           | B3                 | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD8      | _                            | 90              | A5                           | A61                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD9      | _                            | 89              | E6                           | B50                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD10     |                              | 88              | A6                           | A60                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD11     |                              | 87              | B6                           | B49                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD12     | _                            | 79              | A9                           | B43                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD13     | _                            | 80              | D8                           | A54                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD14     | —                            | 83              | D7                           | B45                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMD15     | —                            | 84              | C7                           | A56                | I/O         | TTL/ST               |                                                                                                           |  |  |
| PMALL     | 30                           | 44              | L8                           | A29                | 0           | _                    | Parallel Master Port address latch<br>enable low byte (Multiplexed Master<br>modes)                       |  |  |
| PMALH     | 29                           | 43              | K7                           | B24                | 0           |                      | Parallel Master Port address latch<br>enable high byte (Multiplexed Master<br>modes)                      |  |  |
| PMRD      | 53                           | 82              | B8                           | A55                | 0           |                      | Parallel Master Port read strobe                                                                          |  |  |
| PMWR      | 52                           | 81              | C8                           | B44                | 0           |                      | Parallel Master Port write strobe                                                                         |  |  |
| VBUS      | 34                           | 54              | H8                           | A37                | I           | Analog               | USB bus power monitor                                                                                     |  |  |
| VUSB3V3   | 35                           | 55              | H9                           | B30                | Р           | _                    | USB internal transceiver supply. If the USB module is <i>not</i> used, this pin must be connected to VDD. |  |  |
| VBUSON    | 11                           | 20              | H1                           | A12                | 0           |                      | USB Host and OTG bus power control<br>output                                                              |  |  |
| D+        | 37                           | 57              | H10                          | B31                | I/O         | Analog               | USB D+                                                                                                    |  |  |
| D-        | 36                           | 56              | J11                          | A38                | I/O         | Analog               | USB D-                                                                                                    |  |  |
| USBID     | 33                           | 51              | K10                          | A35                | I           | ST                   | USB OTG ID detect                                                                                         |  |  |
| C1RX      | 58                           | 87              | B6                           | B49                | I           | ST                   | CAN1 bus receive pin                                                                                      |  |  |
| C1TX      | 59                           | 88              | A6                           | A60                | 0           |                      | CAN1 bus transmit pin                                                                                     |  |  |
| AC1RX     | 32                           | 40              | K6                           | A27                | I           | ST                   | Alternate CAN1 bus receive pin                                                                            |  |  |
| AC1TX     | 31                           | 39              | L6                           | B22                | 0           |                      | Alternate CAN1 bus transmit pin                                                                           |  |  |
| C2RX      | 29                           | 90              | A5                           | A61                | Ι           | ST                   | CAN2 bus receive pin                                                                                      |  |  |
| C2TX      | 21                           | 89              | E6                           | B50                | 0           |                      | CAN2 bus transmit pin                                                                                     |  |  |
| AC2RX     | _                            | 8               | E2                           | A6                 | 1           | ST                   | Alternate CAN2 bus receive pin                                                                            |  |  |
| Legend: C | CMOS = CMC<br>ST = Schmitt T | S compatib      | le input or c<br>t with CMOS | output<br>S levels | A<br>O      | nalog = A<br>= Outpu | nalog input P = Power<br>t I = Input                                                                      |  |  |

#### PINOLIT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

### TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

|           | Pin Number <sup>(1)</sup> |                                        |                  |                 |             |                |                                                            |  |
|-----------|---------------------------|----------------------------------------|------------------|-----------------|-------------|----------------|------------------------------------------------------------|--|
| Pin Name  | 64-Pin<br>QFN/TQFP        | 100-Pin<br>TQFP                        | 121-Pin<br>TFBGA | 124-pin<br>VTLA | Pin<br>Type | Buffer<br>Type | Description                                                |  |
| AC2TX     | _                         | 7                                      | E4               | B4              | 0           |                | Alternate CAN2 bus transmit pin                            |  |
| ERXD0     | 61                        | 41                                     | J7               | B23             | I           | ST             | Ethernet Receive Data 0 <sup>(2)</sup>                     |  |
| ERXD1     | 60                        | 42                                     | L7               | A28             | I           | ST             | Ethernet Receive Data 1 <sup>(2)</sup>                     |  |
| ERXD2     | 59                        | 43                                     | K7               | B24             | I           | ST             | Ethernet Receive Data 2 <sup>(2)</sup>                     |  |
| ERXD3     | 58                        | 44                                     | L8               | A29             | I           | ST             | Ethernet Receive Data 3 <sup>(2)</sup>                     |  |
| ERXERR    | 64                        | 35                                     | J5               | B20             | I           | ST             | Ethernet receive error input <sup>(2)</sup>                |  |
| ERXDV     | 62                        | 12                                     | F2               | A8              | I           | ST             | Ethernet receive data valid <sup>(2)</sup>                 |  |
| ECRSDV    | 62                        | 12                                     | F2               | A8              | I           | ST             | Ethernet carrier sense data valid <sup>(2)</sup>           |  |
| ERXCLK    | 63                        | 14                                     | F3               | A9              | I           | ST             | Ethernet receive clock <sup>(2)</sup>                      |  |
| EREFCLK   | 63                        | 14                                     | F3               | A9              | I           | ST             | Ethernet reference clock <sup>(2)</sup>                    |  |
| ETXD0     | 2                         | 88                                     | A6               | A60             | 0           | —              | Ethernet Transmit Data 0 <sup>(2)</sup>                    |  |
| ETXD1     | 3                         | 87                                     | B6               | B49             | 0           | —              | Ethernet Transmit Data 1 <sup>(2)</sup>                    |  |
| ETXD2     | 43                        | 79                                     | A9               | B43             | 0           | —              | Ethernet Transmit Data 2 <sup>(2)</sup>                    |  |
| ETXD3     | 42                        | 80                                     | D8               | A54             | 0           | —              | Ethernet Transmit Data 3 <sup>(2)</sup>                    |  |
| ETXERR    | 54                        | 89                                     | E6               | B50             | 0           | —              | Ethernet transmit error <sup>(2)</sup>                     |  |
| ETXEN     | 1                         | 83                                     | D7               | B45             | 0           | _              | Ethernet transmit enable <sup>(2)</sup>                    |  |
| ETXCLK    | 55                        | 84                                     | C7               | A56             | I           | ST             | Ethernet transmit clock <sup>(2)</sup>                     |  |
| ECOL      | 44                        | 10                                     | E3               | A7              | I           | ST             | Ethernet collision detect <sup>(2)</sup>                   |  |
| ECRS      | 45                        | 11                                     | F4               | B6              | I           | ST             | Ethernet carrier sense <sup>(2)</sup>                      |  |
| EMDC      | 30                        | 71                                     | C11              | A46             | 0           | _              | Ethernet management data clock <sup>(2)</sup>              |  |
| EMDIO     | 49                        | 68                                     | E9               | B37             | I/O         | _              | Ethernet management data <sup>(2)</sup>                    |  |
| AERXD0    | 43                        | 18                                     | G1               | A11             | I           | ST             | Alternate Ethernet Receive Data 0 <sup>(2)</sup>           |  |
| AERXD1    | 42                        | 19                                     | G2               | B10             | I           | ST             | Alternate Ethernet Receive Data 1 <sup>(2)</sup>           |  |
| AERXD2    | —                         | 28                                     | L2               | A21             | I           | ST             | Alternate Ethernet Receive Data 2 <sup>(2)</sup>           |  |
| AERXD3    | —                         | 29                                     | K3               | B17             | I           | ST             | Alternate Ethernet Receive Data 3 <sup>(2)</sup>           |  |
| AERXERR   | 55                        | 1                                      | B2               | A2              | I           | ST             | Alternate Ethernet receive error input <sup>(2)</sup>      |  |
| AERXDV    | —                         | 12                                     | F2               | A8              | I           | ST             | Alternate Ethernet receive data valid <sup>(2)</sup>       |  |
| AECRSDV   | 44                        | 12                                     | F2               | A8              | Т           | ST             | Alternate Ethernet carrier sense data valid <sup>(2)</sup> |  |
| AERXCLK   | _                         | 14                                     | F3               | A9              | I           | ST             | Alternate Ethernet receive clock <sup>(2)</sup>            |  |
| AEREFCLK  | 45                        | 14                                     | F3               | A9              | I           | ST             | Alternate Ethernet reference clock <sup>(2)</sup>          |  |
| AETXD0    | 59                        | 47                                     | L9               | B26             | 0           |                | Alternate Ethernet Transmit Data 0 <sup>(2)</sup>          |  |
| AETXD1    | 58                        | 48                                     | K9               | A31             | 0           |                | Alternate Ethernet Transmit Data 1 <sup>(2)</sup>          |  |
| AETXD2    | _                         | 44                                     | L8               | A29             | 0           |                | Alternate Ethernet Transmit Data 2 <sup>(2)</sup>          |  |
| AETXD3    | —                         | 43                                     | K7               | B24             | 0           |                | Alternate Ethernet Transmit Data 3(2)                      |  |
| AETXERR   | _                         | 35                                     | J5               | B20             | 0           |                | Alternate Ethernet transmit error <sup>(2)</sup>           |  |
| AETXEN    | 54                        | 67                                     | E8               | A44             | 0           | —              | Alternate Ethernet transmit enable <sup>(2)</sup>          |  |
| AETXCLK   | _                         | 66                                     | E11              | B36             | I           | ST             | Alternate Ethernet transmit clock <sup>(2)</sup>           |  |
| AECOL     | —                         | 42                                     | L7               | A28             | I           | ST             | Alternate Ethernet collision detect <sup>(2)</sup>         |  |
| Lawand. C |                           | •••••••••••••••••••••••••••••••••••••• |                  |                 | ٨           |                | D Davies                                                   |  |

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input P = PowerO = Output I = Input

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

#### 3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

| Register<br>Number | Register<br>Name        | Function                                                                 |
|--------------------|-------------------------|--------------------------------------------------------------------------|
| 0-6                | Reserved                | Reserved.                                                                |
| 7                  | HWREna                  | Enables access via the RDHWR instruction to selected hardware registers. |
| 8                  | BadVAddr <sup>(1)</sup> | Reports the address for the most recent address-related exception.       |
| 9                  | Count <sup>(1)</sup>    | Processor cycle count.                                                   |
| 10                 | Reserved                | Reserved.                                                                |
| 11                 | Compare <sup>(1)</sup>  | Timer interrupt control.                                                 |
| 12                 | Status <sup>(1)</sup>   | Processor status and control.                                            |
| 12                 | IntCtl <sup>(1)</sup>   | Interrupt system status and control.                                     |
| 12                 | SRSCtl <sup>(1)</sup>   | Shadow register set status and control.                                  |
| 12                 | SRSMap <sup>(1)</sup>   | Provides mapping from vectored interrupt to a shadow set.                |
| 13                 | Cause <sup>(1)</sup>    | Cause of last general exception.                                         |
| 14                 | EPC <sup>(1)</sup>      | Program counter at last exception.                                       |
| 15                 | PRId                    | Processor identification and revision.                                   |
| 15                 | Ebase                   | Exception vector base register.                                          |
| 16                 | Config                  | Configuration register.                                                  |
| 16                 | Config1                 | Configuration Register 1.                                                |
| 16                 | Config2                 | Configuration Register 2.                                                |
| 16                 | Config3                 | Configuration Register 3.                                                |
| 17-22              | Reserved                | Reserved.                                                                |
| 23                 | Debug <sup>(2)</sup>    | Debug control and exception status.                                      |
| 24                 | DEPC <sup>(2)</sup>     | Program counter at last debug exception.                                 |
| 25-29              | Reserved                | Reserved.                                                                |
| 30                 | ErrorEPC <sup>(1)</sup> | Program counter at last error.                                           |
| 31                 | DESAVE <sup>(2)</sup>   | Debug handler scratchpad register.                                       |

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
|              | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |
|              | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 23:16        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R-0              | R-0              |  |
| 15:8         | BMXDUDBA<15:8>    |                   |                   |                   |                   |                   |                  |                  |  |
| 7:0          | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |  |
|              |                   |                   |                   | BMXDU             | DBA<7:0>          |                   |                  |                  |  |

#### REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

### Legend:

| Legena:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

#### bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always '0', which forces 1 KB increments

**Note 1:** At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

NOTES:

### REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)

| REGISTE   | r 7-0. IPCX. INTERROFT PRIORITY CONTROL REGISTER (CONTINUED)                                             |
|-----------|----------------------------------------------------------------------------------------------------------|
| bit 12-10 | IP01<2:0>: Interrupt Priority bits                                                                       |
|           | 111 = Interrupt priority is 7                                                                            |
|           | •                                                                                                        |
|           | •                                                                                                        |
|           | 010 = Interrupt priority is 2                                                                            |
|           | 001 = Interrupt priority is 1                                                                            |
|           | 000 = Interrupt is disabled                                                                              |
| bit 9-8   | IS01<1:0>: Interrupt Sub-priority bits                                                                   |
|           | 11 = Interrupt sub-priority is 3                                                                         |
|           | 10 = Interrupt sub-priority is 2                                                                         |
|           | 01 = Interrupt sub-priority is 1                                                                         |
|           | 00 = Interrupt sub-priority is 0                                                                         |
| bit 7-5   | Unimplemented: Read as '0'                                                                               |
| bit 4-2   | IP00<2:0>: Interrupt Priority bits                                                                       |
|           | 111 = Interrupt priority is 7                                                                            |
|           | •                                                                                                        |
|           | •                                                                                                        |
|           | • $010 = \text{Interrupt priority is } 2$                                                                |
|           | 010 = Interrupt priority is  2                                                                           |
|           | 000 = Interrupt is disabled                                                                              |
| hit 1-0   | ISON-1:0-> Interrunt Sub-priority bits                                                                   |
| DICTO     | 11 - Interrunt sub-nriority is 3                                                                         |
|           | 11 -  Interrupt sub-priority is 2                                                                        |
|           | 01 = Interrupt sub-priority is 1                                                                         |
|           | 00 = Interrupt sub-priority is 0                                                                         |
|           |                                                                                                          |
| Note:     | This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit |
|           | definitions.                                                                                             |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        |                   | —                 | —                 | _                 | _                 |                   | _                | _                |
| 00.40        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 23.10        | CHSDIE            | CHSHIE            | CHDDIE            | CHDHIE            | CHBCIE            | CHCCIE            | CHTAIE           | CHERIE           |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         |                   | —                 | —                 | _                 | _                 |                   | _                | _                |
|              | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | CHSDIF            | CHSHIF            | CHDDIF            | CHDHIF            | CHBCIF            | CHCCIF            | CHTAIF           | CHERIF           |

### REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-24 Unimplemented: Read as '0'

| bit 23   | CHSDIE: Channel Source Done Interrupt Enable bit                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------|
|          | <ul><li>1 = Interrupt is enabled</li><li>0 = Interrupt is disabled</li></ul>                                                    |
| bit 22   | CHSHIE: Channel Source Half Empty Interrupt Enable bit                                                                          |
|          | 1 = Interrupt is enabled                                                                                                        |
|          | 0 = Interrupt is disabled                                                                                                       |
| bit 21   | CHDDIE: Channel Destination Done Interrupt Enable bit                                                                           |
|          | 1 = Interrupt is enabled                                                                                                        |
|          | 0 = Interrupt is disabled                                                                                                       |
| bit 20   | CHDHIE: Channel Destination Half Full Interrupt Enable bit                                                                      |
|          | 1 = Interrupt is enabled                                                                                                        |
| hit 10   | CHRCIE: Channel Black Transfer Complete Interrupt Enchle hit                                                                    |
| DIL 19   |                                                                                                                                 |
|          | 0 = Interrupt is disabled                                                                                                       |
| bit 18   | CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit                                                                     |
|          | 1 = Interrupt is enabled                                                                                                        |
|          | 0 = Interrupt is disabled                                                                                                       |
| bit 17   | CHTAIE: Channel Transfer Abort Interrupt Enable bit                                                                             |
|          | 1 = Interrupt is enabled                                                                                                        |
|          | 0 = Interrupt is disabled                                                                                                       |
| bit 16   | CHERIE: Channel Address Error Interrupt Enable bit                                                                              |
|          | 1 = Interrupt is enabled                                                                                                        |
|          | 0 = Interrupt is disabled                                                                                                       |
| bit 15-8 | Unimplemented: Read as '0'                                                                                                      |
| bit 7    | CHSDIF: Channel Source Done Interrupt Flag bit                                                                                  |
|          | <ul> <li>1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)</li> <li>0 = No interrupt is pending</li> </ul> |
| bit 6    | CHSHIF: Channel Source Half Empty Interrupt Flag bit                                                                            |
|          | 1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)                                                   |
|          | 0 = No interrupt is pending                                                                                                     |
|          |                                                                                                                                 |

#### REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 5 **CHDDIF:** Channel Destination Done Interrupt Flag bit
  - 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
  - 0 = No interrupt is pending
- bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit
  - 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
     0 = No interrupt is pending

#### bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit

- 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
- 0 = No interrupt is pending

#### bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit

- 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
- 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
  - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
  - 0 = No interrupt is pending

#### bit 0 CHERIF: Channel Address Error Interrupt Flag bit

- 1 = A channel address error has been detected (either the source or the destination address is invalid)
- 0 = No interrupt is pending

#### REGISTER 11-11: U1CON: USB CONTROL REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5        | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0     |
|--------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|------------------|----------------------|
| 21.24        | U-0               | U-0               | U-0                      | U-0               | U-0               | U-0               | U-0              | U-0                  |
| 31.24        | —                 | —                 | —                        | —                 | —                 | —                 |                  | _                    |
| 22.10        | U-0               | U-0               | U-0                      | U-0               | U-0               | U-0               | U-0              | U-0                  |
| 23.10        | —                 | —                 | —                        | —                 | —                 | —                 |                  | —                    |
| 15.0         | U-0               | U-0               | U-0                      | U-0               | U-0               | U-0               | U-0              | U-0                  |
| 15.0         | —                 | —                 | —                        | —                 | —                 | —                 |                  | -                    |
|              | R-x               | R-x               | R/W-0                    | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0                |
| 7:0          | JSTATE            | JSTATE SE0        | PKTDIS <sup>(4)</sup>    | USBRST            |                   | DECLIME(3)        | пререт           | USBEN <sup>(4)</sup> |
|              |                   |                   | TOKBUSY <sup>(1,5)</sup> |                   |                   | RESUME            | PPBR51           | SOFEN <sup>(5)</sup> |

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

#### bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
  - 0 = JSTATE was not detected
- bit 6 SE0: Live Single-Ended Zero flag bit
  1 = Single-ended zero was detected on the USB
  0 = Single-ended zero was not detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit<sup>(4)</sup>
  - 1 = Token and packet processing disabled (set upon SETUP token received)
  - 0 = Token and packet processing enabled

TOKBUSY: Token Busy Indicator bit<sup>(1,5)</sup>

- 1 = Token being executed by the USB module
- 0 = No token being executed
- bit 4 USBRST: Module Reset bit<sup>(5)</sup>
  - 1 = USB reset is generated
  - 0 = USB reset is terminated

#### bit 3 HOSTEN: Host Mode Enable bit<sup>(2)</sup>

- 1 = USB host capability is enabled
- 0 = USB host capability is disabled
- bit 2 **RESUME:** RESUME Signaling Enable bit<sup>(3)</sup>
  - 1 = RESUME signaling is activated
  - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
  - 2: All host control logic is reset any time that the value of this bit is toggled.
  - 3: Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
  - 4: Device mode.
  - 5: Host mode.

# TABLE 12-7: PORTE REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES

#### Virtual Address (BF88\_#) Bits Resets Bit Range Register Name<sup>(1)</sup> 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 ₹ 31:16 \_ 0000 \_ 6100 TRISE 15:0 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 00FF \_ \_ \_ \_ \_ \_ 31:16 0000 PORTE 6110 15:0 \_ \_ \_ \_ \_ \_ RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx \_ \_ 0000 31:16 \_ \_ \_ \_ 6120 LATE 15:0 \_ \_ \_ \_ \_ \_ \_ \_ LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 xxxx 31:16 0000 \_ \_ \_ \_ \_ \_ \_ \_ 6130 ODCE 15:0 \_ \_ \_ ODCE7 0DCE6 ODCE5 ODCE4 ODCE3 ODCE2 ODCE1 ODCE0 0000 Leaend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

#### TABLE 12-8: PORTE REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES

| ess                      |                                 | 0         |       |       |       |       |       |       |        | Bi     | ts     |        |        |        |        |        |        |        | s          |
|--------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|
| Virtual Addr<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9   | 24/8   | 23/7   | 22/6   | 21/5   | 20/4   | 19/3   | 18/2   | 17/1   | 16/0   | All Resets |
| 6100                     | TDICE                           | 31:16     | _     | _     | _     | _     | _     | _     | _      | _      | _      | _      | -      | _      | _      | —      | -      | _      | 0000       |
| 6100                     | IRISE                           | 15:0      | _     | _     | _     | _     | _     | _     | TRISE9 | TRISE8 | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISE0 | 03FF       |
| 6110                     |                                 | 31:16     | _     | _     | _     | _     | _     | _     | _      | _      | _      | _      | _      | _      | _      |        | _      | _      | 0000       |
| 0110                     | FURTE                           | 15:0      | _     | _     | _     | _     | _     | _     | RE9    | RE8    | RE7    | RE6    | RE5    | RE4    | RE3    | RE2    | RE1    | RE0    | xxxx       |
| 6120                     |                                 | 31:16     | _     | —     | _     | —     | _     | _     | _      |        | _      | _      | _      |        | _      |        | _      |        | 0000       |
| 0120                     | LATE                            | 15:0      |       | _     |       | -     |       |       | LATE9  | LATE8  | LATE7  | LATE6  | LATE5  | LATE4  | LATE3  | LATE2  | LATE1  | LATE0  | xxxx       |
| 6120                     | ODCE                            | 31:16     | _     | _     | _     | _     | _     | _     | _      | _      | _      | _      | _      | _      | _      | _      | _      |        | 0000       |
| 0130                     | ODCE                            | 15:0      | _     | _     | _     | _     | _     | _     | ODCE9  | ODCE8  | ODCE7  | 0DCE6  | ODCE5  | ODCE4  | ODCE3  | ODCE2  | ODCE1  | ODCE0  | 0000       |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information

### 22.1 Control Registers

#### TABLE 22-1: RTCC REGISTER MAP

| Addr<br>me (1)<br>me (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VII Resets |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Image: Bit in the second se | ٩          |
| AND DISCOUL 31:16 CAL<9:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000       |
| D200 RTCCON 15:0 ON - SIDL RTSECSEL RTCCLKON RTCWREN RTCSYNC HALFSEC RTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000       |
| UZIO RICALKW 15:0 ALRMEN CHIME PIV ALRMSYNC AMASK<3:0> ARPT<7:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000       |
| DOCUME         31:16         HR10<3:0>         MIN10<3:0>         MIN10<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | xxxx       |
| VOLUME         15:0         SEC10<3:0>         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | xx00       |
| DATE         31:16         YEAR10         YEAR01         MONTH10         MONTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xxxx       |
| DASO         RECEARE         15:0         DAY10         DAY01<3:0>         -         -         -         -         WDAY01<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xx00       |
| 0240 AL DATINE 31:16 HR10<3:0> HR01<3:0> MIN10<3:0> MIN01<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xxxx       |
| 0240 ALRWITINE 15:0 SEC10<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xx00       |
| 2350 AL PMDATE 31:16 MONTH10<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00xx       |
| DESUGATION         DAY10         DAY01<3:0>         -         -         -         -         WDAY01<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | xx0x       |

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        |                   | —                 | —                 | —                 | _                 |                   | —                | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 15:8         | CSSL15            | CSSL14            | CSSL13            | CSSL12            | CSSL11            | CSSL10            | CSSL9            | CSSL8            |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | CSSL7             | CSSL6             | CSSL5             | CSSL4             | CSSL3             | CSSL2             | CSSL1            | CSSL0            |

#### REGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
|-------------------|------------------|----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

1 = Select ANx for input scan

0 =Skip ANx for input scan

Note 1: CSSL = ANx, where 'x' = 0-15.

bit 15-0 CSSL<15:0>: ADC Input Pin Scan Selection bits<sup>(1)</sup>

#### REGISTER 24-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED)

| FLTEN9: Filter 9 Enable bit                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>1 = Filter is enabled</li><li>0 = Filter is disabled</li></ul>                                                                                                         |
| MSEL9<1:0>: Filter 9 Mask Select bits                                                                                                                                          |
| <ul> <li>11 = Acceptance Mask 3 selected</li> <li>10 = Acceptance Mask 2 selected</li> <li>01 = Acceptance Mask 1 selected</li> <li>00 = Acceptance Mask 0 selected</li> </ul> |
| FSEL9<4:0>: FIFO Selection bits                                                                                                                                                |
| 11111 = Message matching filter is stored in FIFO buffer 31                                                                                                                    |
| 11110 = Message matching filter is stored in FIFO buffer 30                                                                                                                    |
| •                                                                                                                                                                              |
|                                                                                                                                                                                |
| 00001 = Message matching filter is stored in FIFO buffer 1<br>00000 = Message matching filter is stored in FIFO buffer 0                                                       |
| FLTEN8: Filter 8 Enable bit                                                                                                                                                    |
| <ul><li>1 = Filter is enabled</li><li>0 = Filter is disabled</li></ul>                                                                                                         |
| MSEL8<1:0>: Filter 8 Mask Select bits                                                                                                                                          |
| <ul> <li>11 = Acceptance Mask 3 selected</li> <li>10 = Acceptance Mask 2 selected</li> <li>01 = Acceptance Mask 1 selected</li> <li>00 = Acceptance Mask 0 selected</li> </ul> |
| FSEL8<4:0>: FIFO Selection bits                                                                                                                                                |
| 11111 = Message matching filter is stored in FIFO buffer 31                                                                                                                    |
| 11110 = Message matching filter is stored in FIFO buffer 30                                                                                                                    |
| •                                                                                                                                                                              |
|                                                                                                                                                                                |
| 00001 = Message matching filter is stored in FIFO buffer 1<br>00000 = Message matching filter is stored in FIFO buffer 0                                                       |
|                                                                                                                                                                                |

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
| 21.24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 31.24        | FLTEN23           | MSEL2             | 23<1:0>           |                   | F                 | SEL23<4:0>        | >                |                  |  |
| 22.16        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 23.10        | FLTEN22           | MSEL2             | 2<1:0>            | FSEL22<4:0>       |                   |                   |                  |                  |  |
| 15.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 15.6         | FLTEN21           | MSEL21<1:0>       |                   |                   | FSEL21<4:0>       |                   |                  |                  |  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 7.0          | FLTEN20           | MSEL2             | 20<1:0>           |                   | FSEL20<4:0>       |                   |                  |                  |  |

#### REGISTER 24-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

#### Legend:

| R = Readable bit W = Writable bit |                  | U = Unimplemented bit, re | ad as '0'          |
|-----------------------------------|------------------|---------------------------|--------------------|
| -n = Value at POR                 | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

| bit 31    | FLTEN23: Filter 23 Enable bit                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
|           | 1 = Filter is enabled                                                                                                    |
|           | 0 = Filter is disabled                                                                                                   |
| bit 30-29 | MSEL23<1:0>: Filter 23 Mask Select bits                                                                                  |
|           | 11 = Acceptance Mask 3 selected                                                                                          |
|           | 10 = Acceptance Mask 2 selected                                                                                          |
|           | 01 = Acceptance Mask 1 selected                                                                                          |
| hit 28 24 | ESEL 23 - 4:0> : ELEO Soloction bits                                                                                     |
| DIL 20-24 | <b>F3EL23&lt;4.0&gt;.</b> FIFO Selection bits                                                                            |
|           | 11111 = Message matching filter is stored in FIFO buffer 30                                                              |
|           | •                                                                                                                        |
|           | •                                                                                                                        |
|           | •<br>00001 - Maaaaa matahing filtar is stared in EIEO huffer 1                                                           |
|           | 00000 = Message matching filter is stored in FIFO buffer 1<br>00000 = Message matching filter is stored in FIFO buffer 0 |
| bit 23    | FLTEN22: Filter 22 Enable bit                                                                                            |
|           | 1 = Filter is enabled                                                                                                    |
|           | 0 = Filter is disabled                                                                                                   |
| bit 22-21 | MSEL22<1:0>: Filter 22 Mask Select bits                                                                                  |
|           | 11 = Acceptance Mask 3 selected                                                                                          |
|           | 10 = Acceptance Mask 2 selected                                                                                          |
|           | 01 = Acceptance Mask 1 selected                                                                                          |
| bit 20.16 | ESEL 22-4:0>: ELEO Soloction bits                                                                                        |
| DIL 20-10 | 11111 - Message matching filter is stored in EIEO buffer 31                                                              |
|           | 11110 – Message matching filter is stored in FIFO buffer 30                                                              |
|           | •                                                                                                                        |
|           | •                                                                                                                        |
|           | •<br>00001 - Message matching filter is stored in EIEO buffer 1                                                          |
|           | 00000 = Message matching filter is stored in FIFO buffer 0                                                               |
|           |                                                                                                                          |
| r         |                                                                                                                          |

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

| Bit<br>Range | Bit<br>31/23/15/7      | Bit<br>30/22/14/6     | Bit<br>29/21/13/5     | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |
|--------------|------------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|
| 21.24        | U-0                    | U-0                   | U-0                   | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |
| 31.24        | —                      | —                     | —                     | —                 | —                 | —                 | _                | _                |  |  |
| 22.16        | R/W-0                  | R/W-0                 | R/W-0                 | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 23.10        | BUFCNT<7:0>            |                       |                       |                   |                   |                   |                  |                  |  |  |
| 15.0         | U-0                    | U-0                   | U-0                   | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |
| 15.0         | —                      | —                     | —                     | —                 | —                 | —                 | -                |                  |  |  |
| 7.0          | R/W-0                  | R/W-0                 | R/W-0                 | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |
| 7.0          | ETHBUSY <sup>(1)</sup> | TXBUSY <sup>(2)</sup> | RXBUSY <sup>(2)</sup> | _                 | _                 | _                 | _                | _                |  |  |
|              | •                      | •                     | •                     | •                 | •                 |                   |                  |                  |  |  |

### REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

## Legend:

| Logena.           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

#### bit 31-24 Unimplemented: Read as '0'

#### bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x000. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit<sup>(1)</sup>

1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- bit 6 **TXBUSY:** Transmit Busy bit<sup>(2)</sup>
  - 1 = TX logic is receiving data
  - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

- **Note 1:** This bit will be *set* when the ON bit (ETHCON1<15>) = 1.
  - **2:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

## 29.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MX5XX/6XX/7XX family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. Key features include:

- Flexible device configuration
- Watchdog Timer (WDT)
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>)

### 29.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- DEVID: Device and Revision ID Register

| DC CHARACTERISTICS |        |                                                                                                                            | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |      |      |       |                                                             |  |
|--------------------|--------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------------------------------------------------------------|--|
| Param.             | Symbol | Characteristic                                                                                                             | Min.                                                                                                                                                                                                                                                                                  | Тур. | Max. | Units | Conditions                                                  |  |
| DO10 Vol           |        | Output Low Voltage<br>I/O Pins:<br>4x Sink Driver Pins - All I/O<br>output pins not defined as 8x<br>Sink Driver pins      | _                                                                                                                                                                                                                                                                                     | _    | 0.4  | V     | $\text{IOL} \leq 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ |  |
|                    |        | Output Low Voltage<br>I/O Pins:<br>8x Sink Driver Pins - RC15                                                              | _                                                                                                                                                                                                                                                                                     | _    | 0.4  | V     | $\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ |  |
| DO20               | Vон    | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins - All I/O<br>output pins not defined as 8x<br>Source Driver pins | 2.4                                                                                                                                                                                                                                                                                   | _    | _    | v     | Ioh $\ge$ -10 mA, Vdd = 3.3V                                |  |
|                    |        | Output High Voltage<br>I/O Pins:<br>8x Source Driver Pins - RC15                                                           | 2.4                                                                                                                                                                                                                                                                                   |      | _    | V     | Ioh $\ge$ -15 mA, Vdd = 3.3V                                |  |
|                    |        | Output High Voltage                                                                                                        | 1.5 <sup>(1)</sup>                                                                                                                                                                                                                                                                    | —    | —    |       | $\text{IOH} \geq \text{-14 mA},  \text{VDD} = 3.3 \text{V}$ |  |
|                    |        | 4x Source Driver Pins - All I/O                                                                                            | 2.0 <sup>(1)</sup>                                                                                                                                                                                                                                                                    | —    | —    | V     | $\text{IOH} \geq \text{-12 mA}, \text{ VDD} = 3.3 \text{V}$ |  |
|                    | V∩µ1   | output pins not defined as 8x<br>Sink Driver pins                                                                          | 3.0 <sup>(1)</sup>                                                                                                                                                                                                                                                                    | —    | _    |       | Ioh $\geq$ -7 mA, Vdd = 3.3V                                |  |
| DOZUA              | VOITI  | Output High Voltage                                                                                                        | 1.5 <sup>(1)</sup>                                                                                                                                                                                                                                                                    | _    |      |       | $\text{IOH} \geq \text{-22 mA}, \text{ VDD} = 3.3 \text{V}$ |  |
|                    |        | 8x Source Driver Pins - RC15                                                                                               | 2.0 <sup>(1)</sup>                                                                                                                                                                                                                                                                    | —    | —    | V     | $\text{IOH} \geq \text{-18 mA},  \text{VDD} = 3.3 \text{V}$ |  |
|                    |        |                                                                                                                            | 3.0 <sup>(1)</sup>                                                                                                                                                                                                                                                                    | —    | —    |       | $\text{IOH} \geq \text{-10 mA},  \text{Vdd} = 3.3 \text{V}$ |  |

#### TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: This driver pin only applies to devices with less than 64 pins.

**3:** This driver pin only applies to devices with 64 pins.

#### TABLE 32-10: ELECTRICAL CHARACTERISTICS: BOR

| DC CHARACTERISTICS |        |                                                           | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$ |         |      |       |            |  |
|--------------------|--------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------|--|
| Param.<br>No.      | Symbol | Characteristics                                           | Min. <sup>(1)</sup>                                                                                                                                                                                                                                                                   | Typical | Max. | Units | Conditions |  |
| BO10               | VBOR   | BOR Event on VDD transition high-to-low ( <b>Note 2</b> ) | 2.0                                                                                                                                                                                                                                                                                   |         | 2.3  | V     |            |  |

**Note 1:** Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

### TABLE 32-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V)

| AC CHARACTERISTICS |        |                                                                     | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$ |       |         |       |       |                                      |  |
|--------------------|--------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------|-------|--------------------------------------|--|
| Param.<br>No.      | Symbol | Characteristics <sup>(1)</sup>                                      |                                                                                                                                                                                                                                                                                       | Min.  | Typical | Max.  | Units | Conditions                           |  |
| OS50               | Fplli  | PLL Voltage Controlled<br>Oscillator (VCO) Input<br>Frequency Range |                                                                                                                                                                                                                                                                                       | 3.92  | _       | 5     | MHz   | ECPLL, HSPLL, XTPLL,<br>FRCPLL modes |  |
| OS51               | Fsys   | On-Chip VCO System<br>Frequency                                     |                                                                                                                                                                                                                                                                                       | 60    |         | 120   | MHz   | _                                    |  |
| OS52               | TLOCK  | PLL Start-up Time (Lock Time)                                       |                                                                                                                                                                                                                                                                                       | —     |         | 2     | ms    | —                                    |  |
| OS53               | DCLK   | CLKO Stability <sup>(2)</sup><br>(Period Jitter or Cumulative)      |                                                                                                                                                                                                                                                                                       | -0.25 | _       | +0.25 | %     | Measured over 100 ms<br>period       |  |

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 80 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{80}{20}}} = \frac{D_{CLK}}{2}$$

#### TABLE 32-19: INTERNAL FRC ACCURACY

| AC CHARACTERISTICS                                                                            |                 | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |         |      |       |            |  |  |
|-----------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------|---------|------|-------|------------|--|--|
| Param.<br>No.                                                                                 | Characteristics | Min.                                                  | Typical | Max. | Units | Conditions |  |  |
| Internal FRC Accuracy @ 8.00 MHz <sup>(1)</sup> for PIC32MX575/675/695/775/795 Family Devices |                 |                                                       |         |      |       |            |  |  |
| F20a                                                                                          | FRC             | -2                                                    | —       | +2   | %     | —          |  |  |
| Internal FRC Accuracy @ 8.00 MHz <sup>(1)</sup> for PIC32MX534/564/664/764 Family Devices     |                 |                                                       |         |      |       |            |  |  |
| F20b                                                                                          | FRC             | -0.9                                                  | _       | +0.9 | %     | _          |  |  |

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.