

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx575f256lt-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 100-PIN USB AND CAN DEVICES (CONTINUED)

100-PIN TQFP (TOP VIEW) PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F512L PIC32MX575F256L 100 1 Pin # **Full Pin Name** Pin # Full Pin Name 71 IC4/PMCS1/PMA14/RD11 86 Vdd 72 SDO1/OC1/INT0/RD0 87 C1RX/PMD11/RF0 SOSCI/CN1/RC13 C1TX/PMD10/RF1 88 73 SOSCO/T1CK/CN0/RC14 74 89 PMD9/RG1 Vss PMD8/RG0 75 90 TRCLK/RA6 76 OC2/RD1 91 77 OC3/RD2 92 TRD3/RA7 78 OC4/RD3 93 PMD0/RE0 PMD1/RE1 79 IC5/PMD12/RD12 94 80 PMD13/CN19/RD13 95 TRD2/RG14 OC5/PMWR/CN13/RD4 96 TRD1/RG12 81 PMRD/CN14/RD5 TRD0/RG13 82 97 PMD14/CN15/RD6 98 PMD2/RE2 83 PMD15/CN16/RD7 PMD3/RE3 84 99 85 VCAP 100 PMD4/RE4

Note 1: Shaded pins are 5V tolerant.

PIC32MX5XX/6XX/7XX

NOTES:

2.9 Configuration of Analog and Digital Pins During ICSP Operations

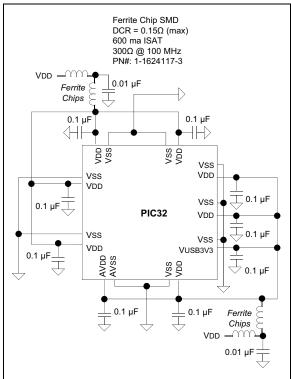
If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins by setting all bits in the AD1PCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.11 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-4. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-4: EMI/EMC/EFT SUPPRESSION CIRCUIT

3.2 Architecture Overview

The MIPS32 M4K processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e[®] Support
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32 M4K processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bit-wise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

MIPS32 M4K processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16 bit wide *rs*, 15 iterations are skipped and for a 24 bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Opcode	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	1	1
MSUB/MSUBU	32 bits	2	2
MUL	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

TABLE 3-1:MIPS32[®] M4K[®] CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT
LATENCIES AND REPEAT RATES

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31:24				CHEW3<	:31:24>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16				CHEW3<	:23:16>			
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8				CHEW3	<15:8>			
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7:0		•	•	CHEW3	<7:0>		•	

REGISTER 9-8: CHEW3: CACHE WORD 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW3<31:0>:** Word 3 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Note: This register is a window into the cache data array and is only readable if the device is not code-protected.

REGISTER 9-9: CHELRU: CACHE LRU REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
31.24	—	—			—	_	—	CHELRU<24>
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16				CHELRI	J<23:16>			
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8				CHELR	U<15:8>			
7:0	7:0 R-0		R-0	R-0	R-0	R-0	R-0	R-0
7.0				CHELF	RU<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Write '0'; ignore read

bit 24-0 **CHELRU<24:0>:** Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded Host, full-speed Device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Endpoint buffering anywhere in system RAM
- Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, as well as other third party may specifications or technologies, require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

11.1 **Control Registers**

TABLE 11-1: USB REGISTER MAP

Signature Signature 5040 U10TGIR ⁽²⁾ 5050 U10TGIR ⁽²⁾ 5060 U10TGSTAT 5070 U10TGCO 5080 U11PWRC 5200 U11R ⁽²⁾ 5210 U11EIR ⁽²⁾ 5220 U1EIR ⁽²⁾ 5220 U1EIR ⁽²⁾	2) 31: 15: 15: 15: 15: 15: 15: 15: 1	i:16 5:0 1:16 5:0 1:16 5:0 1:16 5:0 1:16	31/15 	30/14 	29/13 	28/12	27/11	26/10	25/9	24/8	Bits 23/7	22/6	04/5					r	Resets
5040 U10TGIR ⁽²⁾ 5050 U10TGIE 5060 U10TGSTAT 5070 U10TGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	2) 31: 15: 15: 15: 15: 15: 15: 15: 1	1:16 5:0 1:16 5:0 1:16 5:0 1:16		-		-			25/9	24/8	23/7	22/6	04/5			ļ			eset
5050 U10TGIE 5060 U10TGSTAT 5070 U10TGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	2) 15 31: 15 (3) 31: (3) 31: 15 15 31: 31: 31	5:0 1:16 5:0 1:16 5:0 1:16	— — — —	-	_		_					22/0	21/5	20/4	19/3	18/2	17/1	16/0	All Re
5050 U10TGIE 5060 U10TGSTAT 5070 U10TGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	15 31: 15 (3) 31: 15 31: Ν 31: 31:	1:16 5:0 1:16 5:0 1:16	- - -					—	-	_	_	—	—	—	_	—	—	—	0000
5060 U1OTGSTAT 5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	15 (3) 31: 15: Ν 31: 15: 31: 31: 31: 31: 31: 31: 31: 31	5:0 1:16 5:0 1:16	-	—			-			—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF	0000
5060 U1OTGSTAT 5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	15: T ⁽³⁾ 31: 15: N 31: 15: 31: 31:	1:16 5:0 1:16	-	-	—		-			—	_	—	_	-	_	—	_	_	0000
5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	N 15: 31: 31: 31:	5:0 1:16				_	_		_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	0000
5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	N 31: 31: 31: 31:	1:16		-	_		-			—	_	—	_	-	—	—		—	0000
5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	N 15		_	-	_		-			—	ID	—	LSTATE	-	SESVD	SESEND		VBUSVD	0000
5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	31	E:0	_	_	_	_	—	_	_	-		_	—	—	—	—	—	—	0000
5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	31:	5.0	_	_	_	_	—	_			DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾		1:16	_	-	_		-			—	_	—	_	-	—	_		—	0000
5210 U1IE 5220 U1EIR ⁽²⁾	15	5:0	_	_	_	_	—	_	_	-	UACTPND ⁽⁴⁾	_	—	USLPGRD	USBBUSY	—	USUSPEND	USBPWR	0000
5210 U1IE 5220 U1EIR ⁽²⁾	31:	1:16	_	_	_	_	—	_				_	—	—	—	—	—	—	0000
5220 U1EIR ⁽²⁾	15	5:0	_	_	_		_			_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
5220 U1EIR ⁽²⁾	_										-							DETACHIF	0000
5220 U1EIR ⁽²⁾	31:	1:16	_	_	—	—	—	—	—	_	—	—	—	—	—	—	—		0000
	15	5:0	_	_	_	_	_	_	_	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
																			0000
	31:	1:16	_	_	_	_	_	_	_	_	—		—	—	_		_	—	0000
5230 U1EIE	15	5:0	_	_	_	_	_	_	_	—	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF EOFEF	PIDEF	0000
5230 U1EIE	31.	1:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
SZSO OTELE	51.	1.10															CRC5EE		0000
	15	5:0	—	—	—	—	—	—	—	—	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE	0000
(2)	、 31:	1:16	_	_	_	_	_		_	_	_	_	_	_	_		_	_	0000
5240 U1STAT ⁽³⁾	,	5:0	_	_	_	_	_	_	_	_		ENDPT	<3:0> ⁽⁴⁾		DIR	PPBI	_	_	0000
	-	1:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5250 U1CON											10TATE(4)	0.5 0(4)	PKTDIS					USBEN	0000
		5:0	—	_	_	—	—	—	—		JSTATE ⁽⁴⁾	SE0 ⁽⁴⁾	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
5260 U1ADDR	15	1:16	_	_	_	_	_	_	_	_		—	_	_	—	—	_	—	0000
5200 UTADDR	31:	5:0	—	_	—	_	—	_	_	_	LSPDEN			DE	VADDR<6:0	1>			0000
5270 U1BDTP1	31:		—	_	—	_	—	_	_	_	_	_	—	_	_	—		—	0000
JZIU UIBDIPI	31: 15:	1:16		_	_	_	_	_		_			BD	TPTRL<7:1>					0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for Note 1: more information.

2:

This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

TABLE 12-5: PORTD REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, AND PIC32MX795F512H DEVICES

ess										Bi	ts								ú
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
60C0	TRISD	31:16	-	-	-	_	_	-	—	—	—	—	—	-	_	-	-	—	0000
6000	TRISD	15:0	_	_	_	-	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
6000	PORTD	31:16	_			_	_		-					_	_		_	_	0000
6000	PORID	15:0	-	-	_	_	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0	LATD	31:16	_	_	_	-	_	-	_	_	_	_	_	_	-	_	_	_	0000
60E0	LAID	15:0	_	_	_	-	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60F0	ODCD	31:16	_	-	_	_	_	—	-	-	-			—	_	_	_	-	0000
OUFU	ODCD	15:0		_	—	_	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-6: PORTD REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F512L, AND PIC32MX795F512L DEVICES

ess		Ċ,								Bi	ts								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
60C0	TRISD	31:16	_	_	_	-	-	_		_	-	-	_		-	-	—	—	0000
6000	TRISD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
60D0	PORTD	31:16	_	_				-					-				_	_	0000
0000	FORID	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0	LATD	31:16	—	_	_	_	_	_	_	_	-	_	_	_	_	_	—	—	0000
OUEU	LAID	15:0	LAT15	LAT14	LAT13	LAT12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60F0	ODCD	31:16	_	_				_	-				_	-			_		0000
OUFU	ODCD	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Ļ

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	-	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0 R/W-0 F		R/W-0
7:0	_	—	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 17-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Module On bit⁽¹⁾
 - 1 = Output Compare module is enabled
 - 0 = Output Compare module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation when CPU is in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
 - 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 **OCFLT:** PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (only cleared in hardware)
 - 0 = PWM Fault condition has not occurred

bit 3 OCTSEL: Output Compare Timer Select bit

- 1 = Timer3 is the clock source for this Output Compare module
- 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only used when OCM < 2:0 > = 111. It is read as '0' in all other modes.

TABLE 20-1: UART1 THROUGH UART6 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6620	U6TXREG	31:16	_	_	—	—			—	—		—	_		—	—	—	—	0000
0020	UUTAREG	15:0	_	_	_	—	_	_	_	TX8				Transmit	Register	-		-	0000
6630	U6RXREG	31:16	_	-	_	—	_	_	_		_	—	_		_	_	—	_	0000
0030	UUKAREG	15:0	_	_	—	—	—	—	_	RX8				Receive	Register				0000
6640	U6BRG ⁽¹⁾	31:16	_	_	—	—	—	—	_		_	—	—	—	—	_	—	_	0000
0040	OODING	15:0			-	-				BRG<	15:0>				-	-		-	0000
6800	U2MODE ⁽¹⁾	31:16	_	_	_	—	_	_	_	—	_	-	—	_	_	_	-	_	0000
0000	OZIVIODE	15:0	ON - SIDL IREN RTSMD - UEN<1:0> WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL									0000							
6810	U2STA ⁽¹⁾	31:16	ADDR<7:0>								-	0000							
0010	02017	15:0	UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXI						URXDA	0110									
6820	U2TXREG	31:16	_	_	_	—	_	_	_	—	_	-	—	_	—	—	-	—	0000
0020	OZTARLO	15:0	-	_		—	_	—	_	TX8				Transmit	Register	-		-	0000
6830	U2RXREG	31:16	-	_		—	_	—	_	—	_	-	—	_	_	_	-		0000
0000	OZIVAREO	15:0	-	_		—	—	—	_	RX8				Receive	Register	-		-	0000
6840	U2BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010		15:0								BRG<	15:0>								0000
6A00	U5MODE ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0/100		15:0	ON	_	SIDL	IREN	_	—	_	—	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6A10	U5STA ⁽¹⁾	31:16	—	—	—	—	_	—	—	ADM_EN				ADDR		-		-	0000
0,110									URXDA	0110									
6A20	U5TXREG	31:16	-	_	_	_	_	_		—	_	-	—	_			-		0000
		15:0	—	_	_	_	_	_		TX8			1	Transmit	Register	1		1	0000
6A30	U5RXREG	31:16	-	_	_	_	_	_		—	_	-	—	_			-		0000
		15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6A40	U5BRG ⁽¹⁾	31:16	—	—		—	—	—	—	—	—	—	—	_			—		0000
Legen		15:0				d, read as '0				BRG<	15:0>								0000

DS60001156J-page 206

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16								—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (ONLY SLAVE MODES)

Legend: HS = Set by Hardware		SC = Cleared by software				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 - 0 = An overflow has not occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 - 0 = An underflow has not occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess										В	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16	_	_	—	—	_						CAL<	9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	—	_			RTSECSEL	RTCCLKON			RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	_	_	_	—	—	_			—	_			—		_	—	0000
0210	RICALKI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>					ARPT	<7:0>				0000
0220	RTCTIME	31:16		HR10	0<3:0>			HR01	<3:0>		MIN10<3:0>				MIN01<3:0>				xxxx
0220	RICTIVIE	15:0		SEC1	0<3:0>			SEC0 ²	<3:0>		_	_	-		-	-	_	—	xx00
0000	RTCDATE	31:16		YEAR'	10<3:0>			YEAR0	1<3:0>		MONTH10<3:0>				MONTH01<3:0>			xxxx	
0230	RICDATE	15:0		DAY1	0<3:0>			DAY01	l<3:0>		_	_	-			WDAYC)1<3:0>		xx00
0040		31:16		HR10)<3:0>			HR01<3:0>				MIN10<	:3:0>			MIN01	<3:0>		xxxx
0240	ALRMTIME	15:0		SEC1	0<3:0>			SEC0 ²	<3:0>		_	_	_	—	_	—	_	_	xx00
0050		31:16	_		_	—	_	_	_	_		MONTH1	0<3:0>			MONTH	01<3:0>		00xx
0250	ALRMDATE	15:0		DAY1	0<3:0>			DAY01<3:0>			— — — WDAY01<3:0>				xx0x				
l egen	، بام		n voluo on D	aaati u		0' as hear ha	Desetual		المعديم والمرا	alian al									

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	_	—	—	—	—	—	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_		—	—	—		_	—	
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾) AMASK<3:0> ⁽²⁾				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	ARPT<7:0> ⁽²⁾								

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 **CHIME:** Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽³⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read.
 The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

1111 = Reserved

- 1010 = Reserved
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1000 = Once a month
- 0111 = Once a week
- 0110 = Once a day
- 0101 = Every hour
- 0100 = Every 10 minutes
- 0011 = Every minute
- 0010 = Every 10 seconds
- 0001 = Every second
- 0000 = Every half-second
- Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0 > = 0.0 and CHIME = 0.
 - **2:** This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is only reset on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	S/HC-0	R/W-1	R/W-0	R/W-0
31:24	—	—	_	-	ABAT	REQOP<2:0>		
22:16	R-1	R-0	R-0	R/W-0	U-0	U-0	U-0	U-0
23:16	C	OPMOD<2:0>		CANCAP	—	_	—	—
45.0	R/W-0	U-0	R/W-0	U-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDLE	-	CANBUSY	_	—	—
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_	_			DNCNT<4:0>		

REGISTER 24-1: CICON: CAN MODULE CONTROL REGISTER

Legend: HC = Hardware Clear		S = Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-28 Unimplemented: Read as '0'

- bit 27 **ABAT:** Abort All Pending Transmissions bit
 - 1 = Signal all transmit buffers to abort transmission
 - 0 = Module will clear this bit when all transmissions aborted

bit 26-24 REQOP<2:0>: Request Operation Mode bits

- 111 = Set Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Set Configuration mode
- 011 = Set Listen Only mode
- 010 = Set Loopback mode
- 001 = Set Disable mode
- 000 = Set Normal Operation mode

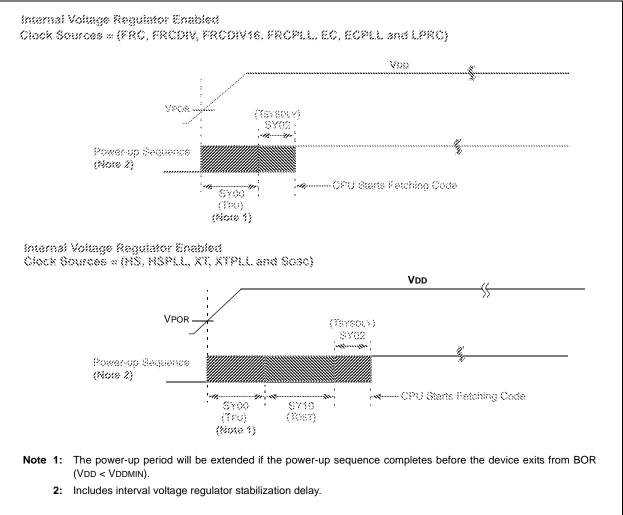
bit 23-21 OPMOD<2:0>: Operation Mode Status bits

- 111 = Module is in Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Module is in Configuration mode
- 011 = Module is in Listen Only mode
- 010 = Module is in Loopback mode
- 001 = Module is in Disable mode
- 000 = Module is in Normal Operation mode

bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit

- 1 = CANTMR value is stored on valid message reception and is stored with the message
- 0 = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power
- bit 19-16 Unimplemented: Read as '0'
- bit 15 ON: CAN On bit⁽¹⁾
 - 1 = CAN module is enabled
 - 0 = CAN module is disabled
- bit 14 Unimplemented: Read as '0'
- **Note 1:** If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

DC CHA	RACTERIS	TICS	(unless	d Operatin otherwise ng temperat	stated) ure -4	itions: 2.3V to 3.6V $0^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $0^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp		
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions				
Power-Down Current (IPD) ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices								
DC40g	12	40		-40°C				
DC40h	20	120		+25°C	2.3V	Base Power-Down Current (Note 6)		
DC40i	210	600		+85°C	2.30	Base Power-Down Current (Note 6)		
DC40o	400	1000		+105°C				
DC40j	20	120		+25°C	3.3V	Base Power-Down Current		
DC40k	15	80	μA	-40°C				
DC40I	20	120		+25°C				
DC40m	113	350 ⁽⁵⁾		+70°C	3.6V	Base Power-Down Current		
DC40n	220	650		+85°C				
DC40p	500	1000		+105°C				
Module	Differential	Current fo	or PIC32N	IX534/564/0	664/764	Family Devices		
DC41c	_	10			2.5V	Watchdog Timer Current: AIWDT (Notes 3,6)		
DC41d	5		μA	—	3.3V	Watchdog Timer Current: AIWDT (Note 3)		
DC41e	_	20			3.6V	Watchdog Timer Current: AIWDT (Note 3)		
DC42c	—	40			2.5V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6)		
DC42d	23	_	μA	—	3.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)		
DC42e	—	50			3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)		
DC43c	—	1300			2.5V	ADC: ΔIADC (Notes 3,4,6)		
DC43d	1100		μA	—	3.3V	ADC: △IADC (Notes 3,4)		
DC43e	_	1300			3.6V	ADC: ΔIADC (Notes 3,4)		


TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}} = \text{VDD}$
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

PIC32MX5XX/6XX/7XX

FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS

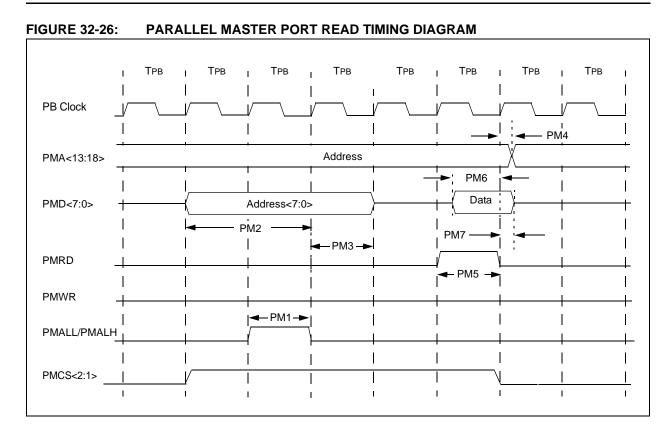
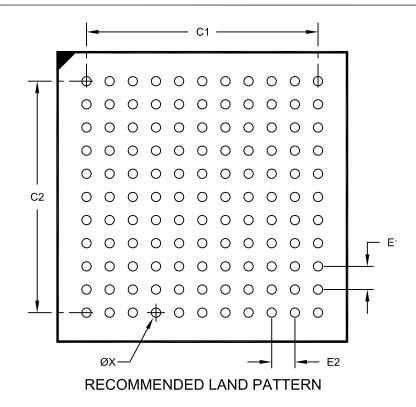


TABLE 32-22: RESETS TIMING

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS	-40°C to +85°C		
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	-40°C to +85°C		
SY20	TMCLR	MCLR Pulse Width (low)	—	2	_	μS	-40°C to +85°C		
SY30	TBOR	BOR Pulse Width (low)	—	1		μS	-40°C to +85°C		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.


TABLE 32-40: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions		
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	—	_	—		
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 Трв	—	—	—		
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	—	—	—		
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	—		
PM5	Trd	PMRD Pulse Width	—	1 Трв	—		—		
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_	_	ns	_		
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 TPBCLK	—	—	ns	PMP PBCLK		

Note 1: These parameters are characterized, but not tested in manufacturing.

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS			
Dimensior	l Limits	MIN	NOM	MAX	
Contact Pitch	E1		0.80 BSC		
Contact Pitch	E2	0.80 BSC			
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Diameter (X121)	X			0.32	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D

TABLE B-7: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
32.0 "Electrical Characteristics"	Note 4 in the Operating Current specification was updated (see Table 32-5).
	Note 3 in the Idle Current specification was updated (see Table 32-6).
	Note 6 references in the Power-Down Current specification were updated (see Table 32-7).
	The Program Memory parameters, D135, D136, and D137, and Note 4 were updated (see Table 32-11).
	The Voltage Reference Specifications were updated (see Table 32-14).
	Parameter DO50 (Cosco) was added to the Capacitive Loading Requirements on Output Pins (see Table 32-16).
	The EJTAG Timing Characteristics were updated (see Figure 32-28).
	The maximum value for parameters ET13 and ET14 were updated in the Ethernet Module Specifications (see Table 32-35).
	Parameter PM7 (TDHOLD) was updated (see Table 32-40).
34.0 "Packaging Information"	Packaging diagrams were updated.
Product Identification System	The Speed and Program Memory Size were updated and Note 1 was added.