

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E•>< Fl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx575f512ht-80v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 13: PIN NAMES FOR 124-PIN USB, ETHERNET, AND CAN DEVICES (CONTINUED)

124	4-PIN VTLA (BOTTOM VIEW) ^(2,3)			A34		
		B13	B29		Conductive Thermal Pad	
	PIC32MX675F512L PIC32MX695F512L PIC32MX795F512L	B1	B56	B41	A51	
	A1					
	Polarity Indicator		A68			
Package Bump #	Full Pin Name		Package Bump #	F	ull Pin Name	
B8	Vss		B33	TDO/RA5		
B9	TMS/RA0		B34	OSC1/CLKI/RC	212	
B10	AERXD1/INT2/RE9		B35	No Connect (N	C)	
B11	AN4/C1IN-/CN6/RB4		B36	AETXCLK/SCL	.1/INT3/RA14	
B12	Vss		B37	RTCC/EMDIO/	AEMDIO/IC1/RD8	
B13	AN2/C2IN-/CN4/RB2		B38	SCK1/IC3/PMC	CS2/PMA15/RD10	
B14	PGED1/AN0/CN2/RB0		B39	SDO1/OC1/INT	[0/RD0	
B15	No Connect (NC)		B40	SOSCO/T1CK/	CN0/RC14	
B16	PGED2/AN7/RB7		B41	Vss		
B17	VREF+/CVREF+/AERXD3/PMA6/RA10		B42	OC3/RD2		
B18	AVss		B43	ETXD2/IC5/PN	ID12/RD12	
B19	AN9/C2OUT/RB9		B44	OC5/PMWR/CI	N13/RD4	
B20	AN11/ERXERR/AETXERR/PMA12/RB11		B45	ETXEN/PMD14	4/CN15/RD6	
B21	Vdd		B46	Vss		
B22	AC1TX/SCK4/U5TX/U2RTS/RF13		B47	No Connect (N	C)	
B23	AN12/ERXD0/AECRS/PMA11/RB12		B48	VCAP		
B24	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14		B49	C1RX ⁽¹⁾ /ETXD	1/PMD11/RF0	
B25	Vss		B50	C2TX ⁽¹⁾ /ETXE	RR/PMD9/RG1	
B26	AETXD0/SS3/U4RX/U1CTS/CN20/RD14		B51	TRCLK/RA6		
B27	SDA5/SDI4/U2RX/PMA9/CN17/RF4		B52	PMD0/RE0		
B28	No Connect (NC)		B53	Vdd		
B29	SCL3/SDO3/U1TX/RF8		B54	TRD2/RG14		
B30	VUSB3V3		B55	TRD0/RG13		
B31	D+/RG2		B56	PMD3/RE3		

This pin is only available on PIC32MX795F512L devices. Note 1:

2:

Shaded package bumps are 5V tolerant. It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout. 3:

PIC32MX5XX/6XX/7XX

NOTES:

I

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0									
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0									
31:24	—	_			_	—		—									
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0									
23:16	—	—	_	_	_	—	_	—									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0									
15:8	BMXDUPBA<15:8>																
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0									
7:0				BMXDU	PBA<7:0>		BMXDUPBA<7:0>										

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 **BMXDUPBA<9:0>:** DRM User Program Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

	PIC32MX695F512H DEVICES																		
ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16			—	—	_		_		_	—		_			_	SS0	0000
1000	INTCON	15:0	—	_	_	MVEC	_		TPC<2:0>		_	-		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1010		15:0		—	—	—	_		SRIPL<2:0>		—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0					IPTMR<31:0>						0000						
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	—	_	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	_	_	_	U2TXIF SPI4TXIF I2C5MIF	U2RXIF SPI4RXIF I2C5SIF	U2EIF SPI4EIF I2C5BIF	U3TXIF SPI2TXIF I2C4MIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF I2C4BIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16					_	_	_	_	_	_	_	_		_	_	_	0000
1050	IFS2	15:0	_	_	_	_	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	_		_	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	—	_	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	_	_	-	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
		31:16			_	_	_	_		_	_	_	_	_		_	_	_	0000
1080	IEC2	15:0	_	_	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
		31:16	_	_	_		INT0IP<2:0>		INTOIS		_	_	_		CS1IP<2:0>		CS1IS		0000
1090	IPC0	15:0	_	_	_		CS0IP<2:0>		CSOIS	S<1:0>	_	_	_		CTIP<2:0>		CTIS		0000
1040	IPC1	31:16	_	_	_		INT1IP<2:0>		INT1IS	S<1:0>	_	_	_	(OC1IP<2:0>		OC1IS	S<1:0>	0000
10A0	IPUT	15:0	_	_	_		IC1IP<2:0>		IC1IS	<1:0>	_	_			T1IP<2:0>		T1IS-	<1:0>	0000
10B0	IPC2	31:16		—	_		INT2IP<2:0>		INT2IS	S<1:0>	—	—	_	(OC2IP<2:0>	•	OC2IS	S<1:0>	0000
IUD0	1602	15:0	_	—	—		IC2IP<2:0>		IC2IS	<1:0>	—	—	_		T2IP<2:0>		T2IS-	<1:0>	0000
10C0	IPC3	31:16	—	—	-		INT3IP<2:0>		INT3IS	S<1:0>	—	—		(OC3IP<2:0>		OC3IS	S<1:0>	0000
1000	1 00	15:0		—	—		IC3IP<2:0>		IC3IS	<1:0>	—	—	—		T3IP<2:0>		T3IS-	<1:0>	0000
Legend	d: x =	unknow	n value on	Reset; — = I	unimplement	ted, read as	'0'. Reset va	lues are sho	wn in hexad	ecimal.									

TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND DIC22MV605E512U DEVICES

DS60001156J-page 79

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information.

These bits are not available on PIC32MX664 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

© 2009-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24	CHEW1<31:24>										
00:40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16	CHEW1<23:16>										
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8	CHEW1<15:8>										
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
		•	•	CHEW1	<7:0>			•			

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24		CHEW2<31:24>										
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16	CHEW2<23:16>											
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8	CHEW2<15:8>											
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
				CHEW2	<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		_		_				_	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16		-		-					
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.6	—	—	—	—	—	_	_	—	
7.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

bit 1

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device enabled
 - 0 = Direct connection to a low-speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NACK'd transactions disabled
 - 0 = Retry NACK'd transactions enabled; retry done in hardware
- bit 5 Unimplemented: Read as '0'
- bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit
 - If EPTXEN = 1 and EPRXEN = 1:
 - 1 = Disable Endpoint 'n' from control transfers; only TX and RX transfers are allowed
 - 0 = Enable Endpoint 'n' for control (SETUP) transfers; TX and RX transfers are also allowed Otherwise, this bit is ignored.
- bit 3 EPRXEN: Endpoint Receive Enable bit
 - 1 = Endpoint 'n' receive is enabled
 - 0 = Endpoint 'n' receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint 'n' transmit is enabled
 - 0 = Endpoint 'n' transmit is disabled
 - EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint 'n' was stalled
 - 0 = Endpoint 'n' was not stalled
- bit 0 **EPHSHK:** Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

Т	ABLE 12	PORTG REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H	Н.
		PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES	,
	ssa	Bits	

ö		Φ										<i>(</i> 0							
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6180	TRISG	31:16	—	—	—	_	—	—	_	—	—	—	_	_	-	_	_	_	0000
6160	TRIBU	15:0	_	_	_	_	_		TRISG9	TRISG8	TRISG7	TRISG6	_		TRISG3	TRISG2	-		03CC
6100	PORTG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
6190	PURIG	15:0	_	_	_	_	_		RG9	RG8	RG7	RG6	_		RG3	RG2	-		xxxx
61A0	LATG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
OTAU	LAIG	15:0	_	_	_	_	_		LATG9	LATG8	LATG7	LATG6	_		LATG3	LATG2	-		xxxx
61B0	ODCG	31:16	_	_	_	_	-	_	_	_	_	-	_			-	_		0000
01B0	ODCG	15:0	_	_	_	_	-	_	ODCG9	ODCG8	ODCG7	ODCG6	_		ODCG3	ODCG2	_		0000
Laware				Deret			fal Deset	alter a successful		dia statistical									

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 12-12: PORTG REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess				Bits													<i>(</i> 0		
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	_	—	_	-	_	—	-	—	—	-	—	-	-	-	-	-	0000
0100	TRISG	15:0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6100	PORTG	31:16		_		_		-	-	-	-	—	-	—	—	—	_	—	0000
6190	PURIG	15:0	RG15	RG14	RG13	RG12			RG9	RG8	RG7	RG6			RG3	RG2	RG1	RG0	xxxx
61A0	LATG	31:16	-	_		_	-	-	-	-	-	—	-	—	—	—	—	—	0000
61A0	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	-	LATG3	LATG2	LATG1	LATG0	xxxx
61B0	ODCG	31:16		—	_	_		_		_	_	—	_	—	—	—	—	—	0000
0160	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	-	ODCG9	ODCG8	ODCG7	ODCG6	-	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	-	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 17-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Module On bit⁽¹⁾
 - 1 = Output Compare module is enabled
 - 0 = Output Compare module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation when CPU is in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
 - 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 **OCFLT:** PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (only cleared in hardware)
 - 0 = PWM Fault condition has not occurred

bit 3 OCTSEL: Output Compare Timer Select bit

- 1 = Timer3 is the clock source for this Output Compare module
- 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only used when OCM < 2:0 > = 111. It is read as '0' in all other modes.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN15 MSEL15<1:0>			FSEL15<4:0>						
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN13	MSEL1	3<1:0>		F	SEL13<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0>				

REGISTER 24-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	le bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL14<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
Note:	The hits in this register can only be modified if the correspondir

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 24-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4 (CONTINUED)

	(
bit 15	FLTEN17: Filter 13 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL17<1:0>: Filter 17 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL17<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN16: Filter 16 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL16<1:0>: Filter 16 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL16<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN31	MSEL3	51<1:0>	FSEL31<4:0>						
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN30	MSEL3	0<1:0>			FSEL30<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN29	MSEL2	9<1:0>			FSEL29<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN28	MSEL2	8<1:0>			FSEL28<4:0>				

REGISTER 24-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

		0 – Dit is cleared	
bit 31	FLTEN31: Filter 31 Enable bit 1 = Filter is enabled		
	0 = Filter is disabled		
bit 30-29	MSEL31<1:0>: Filter 31 Mask Select	t bits	
	11 = Acceptance Mask 3 selected		
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected		
	00 = Acceptance Mask 0 selected		
bit 28-24	FSEL31<4:0>: FIFO Selection bits		
	11111 = Message matching filter is		
	11110 = Message matching filter is	stored in FIFO buffer 30	
	•		
	•	atored in FIFO buffer (
	00001 = Message matching filter is 00000 = Message matching filter is		
bit 23	FLTEN30: Filter 30Enable bit		
	1 = Filter is enabled		
	0 = Filter is disabled		
bit 22-21	MSEL30<1:0>: Filter 30Mask Select	t bits	
	11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected		
	01 = Acceptance Mask 2 selected		
	00 = Acceptance Mask 0 selected		
bit 20-16	FSEL30<4:0>: FIFO Selection bits		
	11111 = Message matching filter is		
	11110 = Message matching filter is	stored in FIFO buffer 30	
	•		
	• 0.0001 - Magazara matching filter is	stored in EIEO buffer 1	
	00001 = Message matching filter is 00000 = Message matching filter is		
Note:	The bits in this register can only be	modified if the correspondir	ng filter enable (FLTENn) bit is '0'.

REGISTER 25-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—				—		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—				—		—
15:8	U-0	U-0	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1
10.0		—			CWINDO	W<5:0>		
7:0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
7.0	_		_	_		RETX<	<3:0>	

Legend:

Logonal				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-14 Unimplemented: Read as '0'

bit 13-8 **CWINDOW<5:0>:** Collision Window bits

This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RETX<3:0>: Retransmission Maximum bits

This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is '0xF'.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

28.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MX5XX/6XX/7XX family of devices. These devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

28.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the Peripheral Bus Clock (PBCLK) and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

28.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- **Posc Idle mode:** the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.

- **Sosc Idle mode:** the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

28.3 Power-Saving Operation

Peripherals and the CPU can be halted or disabled to further reduce power consumption.

28.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 28.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit, if enabled, remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

REGISTER 29-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit
 - 1 = PGEC2/PGED2 pair is used
 - 0 = PGEC1/PGED1 pair is used
- bit 2 Reserved: Write '1'
- bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = Debugger is disabled
 - 10 = Debugger is enabled
 - 01 = Reserved (same as '11' setting)
 - 00 = Reserved (same as '11' setting)

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

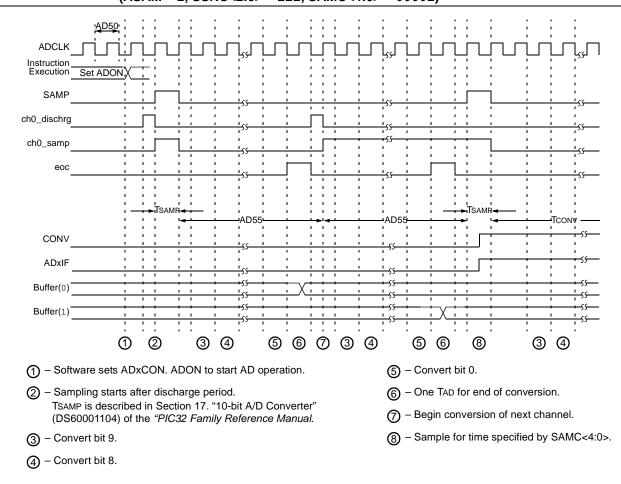
31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins:						
		with TTL Buffer	Vss	—	0.15 Vdd	V		
		with Schmitt Trigger Buffer	Vss	—	0.2 Vdd	V		
DI15		MCLR ⁽²⁾	Vss	—	0.2 Vdd	V		
DI16		OSC1 (XT mode)	Vss	—	0.2 Vdd	V	(Note 4)	
DI17		OSC1 (HS mode)	Vss	—	0.2 Vdd	V	(Note 4)	
DI18		SDAx, SCLx	Vss	_	0.3 Vdd	V	SMBus disabled (Note 4)	
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)	
	Vih	Input High Voltage						
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	—	Vdd	V	(Note 4,6)	
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	_	5.5	V	(Note 4,6)	
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 Vdd	_	5.5	V		
DI28		SDAx, SCLx	0.65 Vdd	—	5.5	V	SMBus disabled (Note 4,6)	
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)	
DI30	ICNPU	Change Notification Pull-up Current	—	—	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)	
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	—	50	—	μA	VDD = 3.3V, VPIN = VDD	

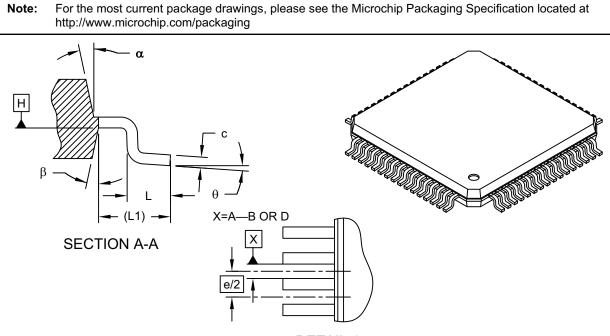
TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).</p>
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DI50	lil	Input Leakage Current ⁽³⁾ I/O Ports	_	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance
DI51		Analog Input Pins	—	—	<u>+</u> 1	μΑ	VSS \leq VPIN \leq VDD, Pin at high-impedance
DI55 DI56		MCLR ⁽²⁾ OSC1	—	_	<u>+</u> 1 <u>+</u> 1	μΑ μΑ	$\label{eq:VSS} \begin{array}{l} \forall SS \leq VPIN \leq VDD \\ \forall SS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$
DI60a	licl	Input Low Injection Current	0	_	₋₅ (7,10)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(8,9,10)	mA	This parameter applies to all pins, with the exception of all 5V toler- ant pins, SOSCI, and RB10. Maximum IICH current for these exceptions is 0 mA.
DI60c	∑IICT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽¹¹⁾	_	+20 ⁽¹¹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS


Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

FIGURE 32-24: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	N	64				
Lead Pitch	е	0.50 BSC				
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.95	1.05			
Standoff	A1	0.05	0.15			
Foot Length	L	0.45	0.45 0.60 0.1			
Footprint	L1	1.00 REF				
Foot Angle	¢	0° 3.5° 7°				
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09 - 0.2		0.20		
Lead Width	b	0.17 0.22 0.2				
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11° 12° 13°				

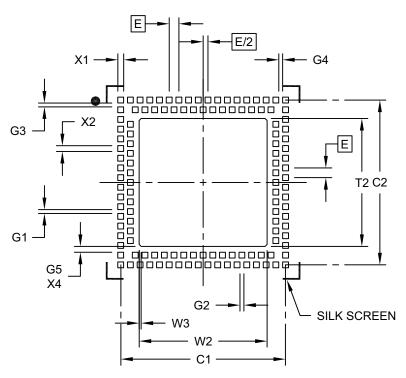
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.25mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	ntact Pitch E		0.50 BSC		
Pad Clearance	G1	0.20			
Pad Clearance	G2	0.20			
Pad Clearance	G3	0.20			
Pad Clearance	G4	0.20			
Contact to Center Pad Clearance (X4)	G5	0.30			
Optional Center Pad Width	T2			6.60	
Optional Center Pad Length	W2			6.60	
Optional Center Pad Chamfer (X4)	W3		0.10		
Contact Pad Spacing	C1		8.50		
Contact Pad Spacing	C2		8.50		
Contact Pad Width (X124)	X1			0.30	
Contact Pad Length (X124)	X2			0.30	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A