

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx575f512l-80i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES

1	21-PIN TFBGA (BOTTOM VIEW)		L11
	PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L		L1 A11
	te: The TFBGA package skips from row "H		
Pin #	Full Pin Name	Pin #	Full Pin Name
A1	PMD4/RE4	E2	T4CK/RC3
A2	PMD3/RE3	E3	ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6
A3	TRD0/RG13	E4	T3CK/RC2
A4	PMD0/RE0	E5	VDD
A5	PMD8/RG0	E6	ETXERR/PMD9/RG1
A6	ETXD0/PMD10/RF1	E7	Vss
A7	Vdd	E8	AETXEN/SDA1/INT4/RA15
A8	Vss	E9	RTCC/EMDIO/AEMDIO/IC1/RD8
A9	ETXD2/IC5/PMD12/RD12	E10	SS1/IC2/RD9
A10	OC3/RD2	E11	AETXCLK/SCL1/INT3/RA14
A11	OC2/RD1	F1	MCLR
B1	No Connect (NC)	F2	ERXDV/AERXDV/ECRSDV/AECRSDV//SCL4/SDO2/U3TX/PMA3/CN10/RG8
B2	AERXERR/RG15	F3	ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9
B3	PMD2/RE2	F4	ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7
B4	PMD1/RE1	F5	Vss
B5	TRD3/RA7	F6	No Connect (NC)
B6	ETXD1/PMD11/RF0	F7	No Connect (NC)
B7	VCAP	F8	VDD
B8	PMRD/CN14/RD5	F9	OSC1/CLKI/RC12
B9	OC4/RD3	F10	Vss
B10	Vss	F11	OSC2/CLKO/RC15
B11	SOSCO/T1CK/CN0/RC14	G1	AERXD0/INT1/RE8
C1	PMD6/RE6	G2	AERXD1/INT2/RE9
C2	VDD	G3	TMS/RA0
C3 C4	TRD1/RG12 TRD2/RG14	G4 G5	No Connect (NC) VDD
C4	TRCLK/RA6	G5 G6	Vss
	No Connect (NC)	G0 G7	Vss
C0 C7	ETXCLK/PMD15/CN16/RD7	G7 G8	No Connect (NC)
C8	OC5/PMWR/CN13/RD4	G9	TDO/RA5
C9	VDD	G10	SDA2/RA3
C10	SOSCI/CN1/RC13	G11	TDI/RA4
C11	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	H1	AN5/C1IN+/VBUSON/CN7/RB5
D1	T2CK/RC1	H2	AN4/C1IN-/CN6/RB4
D2	PMD7/RE7	H3	Vss
D3	PMD5/RE5	H4	VDD
D4	Vss	H5	No Connect (NC)
D5	Vss	H6	VDD
D6	No Connect (NC)	H7	No Connect (NC)
D7	ETXEN/PMD14/CN15/RD6	H8	VBUS
D8	ETXD3/PMD13/CN19/RD13	H9	VUSB3V3
D9	SDO1/OC1/INT0/RD0	H10	D+/RG2
D10	No Connect (NC)	H11	SCL2/RA2
D11	SCK1/IC3/PMCS2/PMA15/RD10	J1	AN3/C2IN+/CN5/RB3
E1 Note	T5CK/SDI1/RC4 1: Shaded pins are 5V tolerant.	J2	AN2/C2IN-/CN4/RB2

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Nun	nber ⁽¹⁾		Pin	Duffer			
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Туре	Buffer Type	Description		
RG0	—	90	A5	A61	I/O	ST	PORTG is a bidirectional I/O port		
RG1	—	89	E6	B50	I/O	ST			
RG6	4	10	E3	A7	I/O	ST			
RG7	5	11	F4	B6	I/O	ST			
RG8	6	12	F2	A8	I/O	ST			
RG9	8	14	F3	A9	I/O	ST			
RG12	—	96	C3	A65	I/O	ST			
RG13	—	97	A3	B55	I/O	ST	-		
RG14	—	95	C4	B54	I/O	ST			
RG15	—	1	B2	A2	I/O	ST			
RG2	37	57	H10	B31	Ι	ST	PORTG input pins		
RG3	36	56	J11	A38	I	ST			
T1CK	48	74	B11	B40		ST	Timer1 external clock input		
T2CK	—	6	D1	A5	I	ST	Timer2 external clock input		
T3CK	—	7	E4	B4		ST	Timer3 external clock input		
T4CK	—	8	E2	A6		ST	Timer4 external clock input		
T5CK	—	9	E1	B5		ST	Timer5 external clock input		
U1CTS	43	47	L9	B26		ST	UART1 clear to send		
U1RTS	49	48	K9	A31	0		UART1 ready to send		
U1RX	50	52	K11	A36	I	ST	UART1 receive		
U1TX	51	53	J10	B29	0	_	UART1 transmit		
U3CTS	8	14	F3	A9	I	ST	UART3 clear to send		
U3RTS	4	10	E3	A7	0	_	UART3 ready to send		
U3RX	5	11	F4	B6	I	ST	UART3 receive		
U3TX	6	12	F2	A8	0	_	UART3 transmit		
U2CTS	21	40	K6	A27	I	ST	UART2 clear to send		
U2RTS	29	39	L6	B22	0		UART2 ready to send		
U2RX	31	49	L10	B27	I	ST	UART2 receive		
U2TX	32	50	L11	A32	0		UART2 transmit		
U4RX	43	47	L9	B26	1	ST	UART4 receive		
U4TX	49	48	K9	A31	0	_	UART4 transmit		
U6RX	8	14	F3	A9	I	ST	UART6 receive		
U6TX	4	10	E3	A7	0	_	UART6 transmit		
U5RX	21	40	K6	A27	I	ST	UART5 receive		
U5TX	29	39	L6	B22	0		UART5 transmit		
SCK1	_	70	D11	B38	I/O	ST	Synchronous serial clock input/output for SPI1		
5	CMOS = CMO ST = Schmitt T TL = TTL inpu	rigger input				nalog = A = Outpu	Analog input P = Power		

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	Ebase	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration Register 1.
16	Config2	Configuration Register 2.
16	Config3	Configuration Register 3.
17-22	Reserved	Reserved.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.
	I	

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

REGISTER 10-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	-	-	—	—	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—				—		—	—
45.0	U-0	U-0	U-0	U-0	U-0 U-0		U-0	U-0
15:8	—	_	_	_	—	_	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHPDAT	[<7:0>			

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CHPDAT<7:0>:** Channel Data Register bits <u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

> All other modes: Unused.

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_			_			—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	_	_	—	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_			_		_	_

REGISTER 12-1: CNCON: CHANGE NOTICE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle mode does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

NOTES:

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

bit 0

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	R/W-0	U-0	U-0	U-0	U-0 R/W-0		R/W-0 R/W-0						
31:24	CH0NB	—	—	—		CH0SB	<3:0>						
00.40	R/W-0 U-0		U-0	U-0	R/W-0 R/W-0		R/W-0	R/W-0					
23:16	CH0NA	_	—	_	CH0SA<3:0>								
45.0	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0					
15:8	_	—	—	—	_		_	_					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
7:0	_	_		_			_	_					

REGISTER 23-4: AD1CHS: ADC INPUT SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	CHONB: Negative Input Select bit for Sample B
	1 = Channel 0 negative input is AN1
	0 = Channel 0 negative input is VREFL
bit 30-28	Unimplemented: Read as '0'
bit 27-24	CH0SB<3:0>: Positive Input Select bits for Sample B
	1111 = Channel 0 positive input is AN15
	•
	•
	•
	0001 = Channel 0 positive input is AN1
	0000 = Channel 0 positive input is AN0
bit 23	CH0NA: Negative Input Select bit for Sample A Multiplexer Setting
	1 = Channel 0 negative input is AN1
	0 = Channel 0 negative input is VREFL
bit 22-20	Unimplemented: Read as '0'
bit 19-16	CH0SA<3:0>: Positive Input Select bits for Sample A Multiplexer Setting
	1111 = Channel 0 positive input is AN15
	•
	•
	•
	0001 = Channel 0 positive input is AN1
	0000 = Channel 0 positive input is AN0
bit 15-0	Unimplemented: Read as '0'

	PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED)																		
ess		é								Bit	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
C100	C2FLTCON4	31:16	FLTEN19	MSEL1	9<1:0>			FSEL19<4:0	>		FLTEN18	MSEL1	8<1:0>		F	SEL18<4:0	>		0000
0100	C2FLICON4	15:0	FLTEN17	MSEL1	7<1:0>			FSEL17<4:0	>		FLTEN16	MSEL1	6<1:0>			FSEL16<4:0):		0000
C110	C2FLTCON5	31:16	FLTEN23	MSEL2	3<1:0>			FSEL23<4:0	>		FLTEN22	MSEL2	22<1:0>		F	SEL22<4:0	>		0000
CIIU	CZFLICONS	15:0	FLTEN21	MSEL2	1<1:0>			FSEL21<4:0	>		FLTEN20	MSEL2	20<1:0>		F	SEL20<4:0	>		0000
C120	C2FLTCON6	31:16	FLTEN27	MSEL2	7<1:0>			FSEL27<4:0	>		FLTEN26	MSEL2	26<1:0>		F	SEL26<4:0	>		0000
0120	OZI EI CONO	15:0	FLTEN25	MSEL2	5<1:0>	1:0> FSEL25<4:0>						MSEL24<1:0> FSEL24<4:0>				0000			
C130	C2FLTCON7	31:16	FLTEN31	MSEL3	1<1:0>	<1:0> FSEL31<4:0>						MSEL30<1:0> FSEL30<4:0>				0000			
0100			FLTEN29	MSEL2	9<1:0>	1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0>										0000			
C140	02.00.11	31:16						SID<10:0>							EXID	-	EID<	17:16>	xxxx
	(n = 0-31)	15:0								EID<1	5:0>								xxxx
C340		31:16 15:0								C2FIFOB	A<31:0>								0000
0250	C2FIFOCONn (n = 0-31)	31:16	_	—	—	—	—	-	—	—	—	_	—			FSIZE<4:0>	>		0000
0350	(n = 0-31)	15:0		FRESET	UINC	DONLY		—	_		TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPR	l<1:0>	0000
C360	C2FIFOINTn	31:16	_	—	—	—	_	TXNFULLIE	TXHALFIE	TXEMPTYIE	_	—	-	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
0300	(n = 0-31)	15:0	-	—	—	-	-	TXNFULLIF	TXHALFIF	TXEMPTYIF	-	—	-	-	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
C370	C2FIFOUAn									C2FIFOU	A<31:0>								0000
	(n = 0-31)	15:0																	0000
C380	C2FIFOCIn (n = 0-31)	31:16		_	_	_	_		_	_	_	—	_	_		-		—	0000
	(1 = 0.31)	15:0	—	C2FIFOCI<4:0>										0000					

TABLE 24-2: CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, PIC32MX775F512L, AND PIC32MX795F512L, DEVICES (CONTINUED)

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31.24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	—
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	—	_	_	MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					MODIF	CTMRIF	RBIF	TBIF

REGISTER 24-3: CIINT: CAN INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by

Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—		_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	—	_	_	—	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15:8	—	—	_			FILHIT<4:0>		
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7:0	_			l	CODE<6:0> ⁽¹)		

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	11111111 = Reserved
	•
	•
	• 1001001 = Reserved
	1001000 = Invalid message received (IVRIF)
	1001111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0111111 = Reserved
	•
	•
	0100000 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Note 1: These bits are only updated for enabled interrupts.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN7	MSEL7<1:0>		FSEL7<4:0>				
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN6	MSEL6<1:0>		FSEL6<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN5	MSEL5<1:0>		FSEL5<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN4	MSEL	4<1:0>	FSEL4<4:0>				

REGISTER 24-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL7<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL6<1:0>: Filter 6 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL6<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 - Massage matching filter is stored in EIEO buffer 30

uffer 31 11110 = Message matching filter is stored in FIFO buffer 30

•

•

00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

bit 6	PKTPEND: Packet Pending Interrupt bit
	1 = RX packet pending in memory
	0 = RX packet is not pending in memory
	This bit is set when the BUFCNT counter has a value other than '0'. It is cleared by either a Reset or by writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 5	RXACT: Receive Activity Interrupt bit
	1 = RX packet data was successfully received0 = No interrupt pending
	This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 4	Unimplemented: Read as '0'
bit 3	TXDONE: Transmit Done Interrupt bit
	1 = TX packet was successfully sent0 = No interrupt pending
	This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 2	TXABORT: Transmit Abort Condition Interrupt bit
	1 = TX abort condition occurred on the last TX packet0 = No interrupt pending
	This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons:
	Jumbo TX packet abort
	Underrun abort
	Excessive defer abort
	Late collision abort
	Excessive collisions abort
	This bit is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 1	RXBUFNA: Receive Buffer Not Available Interrupt bit
	 1 = RX Buffer Descriptor Not Available condition has occurred 0 = No interrupt pending
	This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a '1' to the CLR register.
bit 0	RXOVFLW: Receive FIFO Over Flow Error bit
	 1 = RX FIFO Overflow Error condition has occurred 0 = No interrupt pending
	RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	_	_	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	_	_	_	_	_	_	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	FRMRXOKCNT<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		FRMRXOKCNT<7:0>								

Legend:

3				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

The processor will exit, or 'wake-up', from Sleep mode on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep mode. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

28.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- · On any form of device Reset
- On a WDT time-out interrupt

28.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The Peripheral Bus (PB) can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as USB, interrupt controller, DMA, bus matrix and prefetch cache are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

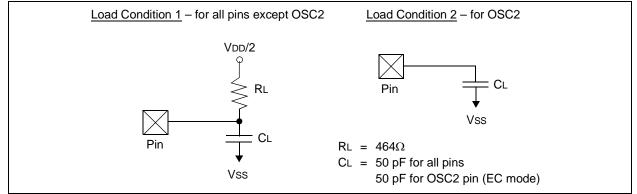
Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
Operating Voltage								
DC10	Vdd	Supply Voltage	2.3		3.6	V		
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.75			V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75		2.1	V		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005		0.115	V/µs	—	

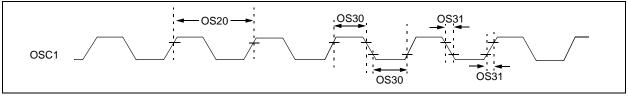

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

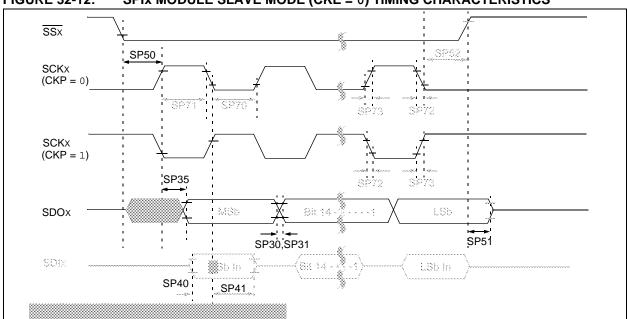
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

32.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters.

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS




TABLE 32-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

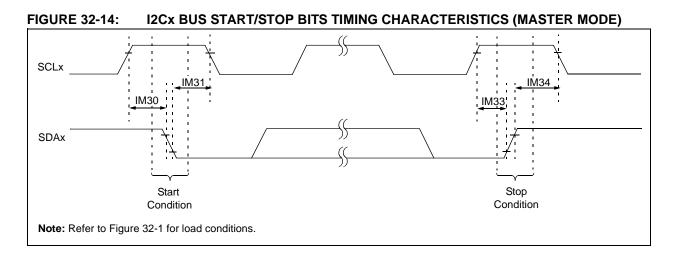
AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min.	. Typical ⁽¹⁾ Max. Units Condition		Conditions	
DO50	Cosco	OSC2 pin		_	15	pF	In XT and HS modes when an external crystal is used to drive OSC1
DO56	Сю	All I/O pins and OSC2		—	50	pF	In EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C mode

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

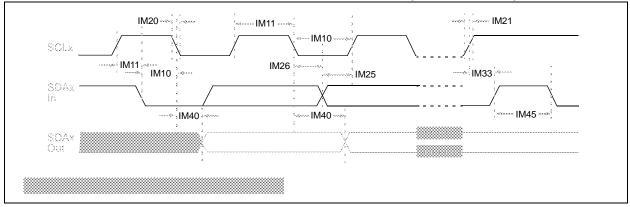
FIGURE 32-2: EXTERNAL CLOCK TIMING

FIGURE 32-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2	_		ns	—
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	_		ns	—
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	_	_	ns	See parameter DO32
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	_	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—	_	20	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	5	—	25	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

Revision J (September 2016)

This revision includes typographical and formatting updates throughout the data sheet text. In addition, all SFR Register maps were moved from the Memory chapter to their respective peripheral chapters.

All other major updates are referenced by their respective section in Table B-7.

Section Name	Update Description				
"32-bit Microcontrollers (up to 512	Updated Communication Interfaces for LIN support to 2.1.				
KB Flash and 128 KB SRAM) with Graphics Interface, USB, CAN, and Ethernet"	Updated Qualification and Class B Support to AEC-Q100 REVH.				
2.0 "Guidelines for Getting Started with 32-bit MCUs"	The Recommended Minimum Connection diagram was updated (see Figure 2-1).				
	The Example of MCLR Pin Connections diagram was updated (see Figure 2- 2).				
	2.11 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.				
4.0 "Memory Organization"	The SFR Memory Map was added (see Table 4-1).				
7.0 "Interrupt Controller"	The UART interrupt sources were updated in the Interrupt IRQ, Vector, and Bit location table (see Table 7-1).				
8.0 "Oscillator Configuration"	Updated the bit value definitions for the TUN<5:0> bits in the OCSTUN register (see Register 8-2).				
15.0 "Watchdog Timer (WDT)"	The content in this chapter was relocated from the Special Features chapter to its own chapter.				
18.0 "Serial Peripheral Interface (SPI)"	The register map tables were combined (see Table 18-1).				
19.0 "Inter-Integrated Circuit (I ² C)"	The register map tables were combined (see Table 19-1).				
	The PMADDR register was updated (see Register 21-3).				
21.0 "Parallel Master Port (PMP)"	The bit value definitions for the ADRMUX<1:0> and CSF<1:0> bits in the PMCON register were updated (see Register 21-1).				
29.0 "Special Features"	Removed the duplicate bit value definition for '010' in the DEVCFG2 register (see Register 29-3).				
	Note 1 was added to the Programming, Debugging, and Trace Ports block diagram (see Figure 29-2).				
	The DDPCON register was relocated (see Register 29-6).				
	The Device ID, Revision, and Configuration Summary was updated (see Table 29-2).				