

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx575f512l-80v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-	<u>I: PINOU</u>	T I/O DES	CRIPTION	NS (CONT	INUED)				
		Pin Nur	nber ⁽¹⁾		Pin	Buffer				
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Туре	Туре	Description			
SDI1	—	9	E1	B5	I	ST	SPI1 data in			
SDO1	—	72	D9	B39	0	_	SPI1 data out			
SS1	_	69	E10	A45	I/O	ST	SPI1 slave synchronization or frame pulse I/O			
SCK3	49	48	K9	A31	I/O	ST	Synchronous serial clock input/output for SPI3			
SDI3	50	52	K11	A36	I	ST	SPI3 data in			
SDO3	51	53	J10	B29	0		SPI3 data out			
SS3	43	47	L9	B26	I/O	ST	SPI3 slave synchronization or frame pulse I/O			
SCK2	4	10	E3	A7	I/O	ST	Synchronous serial clock input/output for SPI2			
SDI2	5	11	F4	B6	I	ST	SPI2 data in			
SDO2	6	12	F2	A8	0		SPI2 data out			
SS2	8	14	F3	A9	I/O	ST	SPI2 slave synchronization or frame pulse I/O			
SCK4	29	39	L6	B22	I/O	ST	Synchronous serial clock input/output for SPI4			
SDI4	31	49	L10	B27	I	ST	SPI4 data in			
SDO4	32	50	L11	A32	0		SPI4 data out			
SS4	21	40	K6	A27	I/O	ST	SPI4 slave synchronization or frame pulse I/O			
SCL1	44	66	E11	B36	I/O	ST	Synchronous serial clock input/output for I2C1			
SDA1	43	67	E8	A44	I/O	ST	Synchronous serial data input/output for I2C1			
SCL3	51	53	J10	B29	I/O	ST	Synchronous serial clock input/output for I2C3			
SDA3	50	52	K11	A36	I/O	ST	Synchronous serial data input/output for I2C3			
SCL2	_	58	H11	A39	I/O	ST	Synchronous serial clock input/output for I2C2			
SDA2	_	59	G10	B32	I/O	ST	Synchronous serial data input/output for I2C2			
SCL4	6	12	F2	A8	I/O	ST	Synchronous serial clock input/outpu for I2C4			
SDA4	5	11	F4	B6	I/O	ST	Synchronous serial data input/output for I2C4			
SCL5	32	50	L11	A32	I/O	ST	Synchronous serial clock input/outpu for I2C5			
SDA5	31	49	L10	B27	I/O	ST	Synchronous serial data input/output for I2C5			
-	CMOS = CMO ST = Schmitt 1 TTL = TTL inp	Frigger input				nalog = A = Outpu	Analog input P = Power t I = Input			

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

NOTES:

7.1 **Control Registers**

TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES

	1		CJZIWIA																1
ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	INITOON	31:16	—	_	_	_	_	—	-	_	_	_		_	—	_	_	SS0	0000
1000	INTCON	15:0	—	—	_	MVEC	—		TPC<2:0>		—	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	_	_	_	—	_	_	—	—	—	_			—		_	—	0000
1010	INTSTAT	15:0	—	—	—	—	—		SRIPL<2:0>		—	—			VEC<5:0)>			0000
1020	IPTMR	31:16 15:0								IPTMR<3	1:0>								0000
1030	IFS0		I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	_	_	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1							U2TXIF	U2RXIF	U2EIF	U3TXIF	U3RXIF	U3EIF						
1040	11 31	15:0	RTCCIF	FSCMIF	—	—	—	SPI4TXIF	SPI4RXIF	SPI4EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
								I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF						
1050	IFS2	31:16	_	—	—	—		—	_	—	—	—	_	_			—	—	0000
		15:0	—	—	—	—	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE	U1RXIE SPI3RXIE	U1EIE SPI3EIE	_	_	_	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
1000	ILC0					I2C3MIE	I2C3SIE	I2C3BIE											
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	—	—	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1							U2TXIE	U2RXIE	U2EIE	U3TXIE	U3RXIE	U3EIE						
1070	1201	15:0	RTCCIE	FSCMIE	—	—	—	SPI4TXIE	SPI4RXIE	SPI4EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
								I2C5MIE	I2C5SIE	I2C5BIE	I2C4MIE	I2C4SIE	I2C4BIE						
1080	IEC2	31:16	—	—	—	_	—	—	—	—	—	—	_	—	—	—	—	—	0000
		15:0	—	—	—	—	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE		PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16	—	—	—		INT0IP<2:0>		INTOIS		—	—	_		S1IP<2:0>		CS1IS		0000
		15:0	—	—	—		CS0IP<2:0> s '0'. Reset v		CS0IS		—	—	—	C	CTIP<2:0>		CTIS	<1:0>	0000

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET Note 1: and INV Registers" for more information.

These bits are not available on PIC32MX534/564/664/764 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—	_	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_		—	—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	—	_	—	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0				—	RDWR	[DMACH<2:0>	•

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

bit 3 RDWR: Read/Write Status bit

1 = Last DMA bus access was a read

0 = Last DMA bus access was a write

bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24				DMAADDR	R<31:24>						
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16	DMAADDR<23:16>										
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8				DMAADDI	R<15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	7:0 DMAADDR<7:0>										

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—		_		_	_	_	—				
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23:16		CHAIRQ<7:0> ⁽¹⁾										
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
15:8				CHSIRQ<	<7:0> ⁽¹⁾							
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	—				

REGISTER 10-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit
	 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0	Unimplemented: Read as '0'

Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 5 **CHDDIF:** Channel Destination Done Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
 - 0 = No interrupt is pending
- bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
 0 = No interrupt is pending

bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit

- 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
- 0 = No interrupt is pending

bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit

- 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
- 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending

bit 0 CHERIF: Channel Address Error Interrupt Flag bit

- 1 = A channel address error has been detected (either the source or the destination address is invalid)
- 0 = No interrupt is pending

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess											Bits								
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Kange	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
53A0	U1EP10	31:16	_	_	_	_	_	—	_	_		_	—	—	-		_	_	0000
55A0	UIEFIU	15:0	—	—	_	_	_	—	_	—	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	-	_	_			_				_	_	—			_		0000
5560	UIEFII	15:0	-	_	_			_				-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	Ι	-		-		_			_	—	—	_	-	-	_	-	0000
5300	UTEPTZ	15:0	Ι	-	_	_	_	-	_	_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5200		31:16		_	_	—	_	-	—	—	_	-	—	—	—	_	_	_	0000
53D0	U1EP13	15:0	Ι	-	_	_	_	-	_	_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
		31:16		_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_	_	_	—	_	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		-	_	_	_	-	_	—	_			—	-	0000
53F0	U1EP15	15:0	_	—	—	-		—	-	—		_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1:

All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

This register does not have associated SET and INV registers. 2:

3: This register does not have associated CLR, SET and INV registers.

Reset value for this bit is undefined. 4:

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	—	_	-	_	_	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—	_	-	_	_	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6		_						—
7:0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0
7.0	ID	—	LSTATE		SESVD	SESEND		VBUSVD

REGISTER 11-3: U10TGSTAT: USB OTG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 ID: ID Pin State Indicator bit
 - 1 = No cable is attached or a "type B" cable has been inserted into the USB receptacle
 - 0 = A "type A" OTG cable has been inserted into the USB receptacle
- bit 6 Unimplemented: Read as '0'
- bit 5 LSTATE: Line State Stable Indicator bit
 - 1 = USB line state (SE0 (U1CON<6> and JSTATE (U1CON<7>) has been stable for the previous 1 ms
 - 0 = USB line state (SE0 (U1CON<6> and JSTATE (U1CON<7>) has not been stable for the previous 1 ms

bit 4 Unimplemented: Read as '0'

- bit 3 SESVD: Session Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A or B device
 - 0 = VBUS voltage is below Session Valid on the A or B device
- bit 2 SESEND: B-Device Session End Indicator bit
 - 1 = VBUS voltage is below Session Valid on the B device
 - 0 = VBUS voltage is above Session Valid on the B device

bit 1 Unimplemented: Read as '0'

- bit 0 VBUSVD: A-Device VBUS Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A device
 - 0 = VBUS voltage is below Session Valid on the A device

TABLE 12-3: PORTC REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES

ess		n	Bits								ő								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6080	TRISC	31:16	—	_	-	—	_	-	—	_	-	-	-	_	—	_	_	-	0000
6060	IRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	_	_	_	_	_	F000
6000	PORTC	31:16	—	-		—	—		-			_		_	_	-	_		0000
6090	PURIC	15:0	RC15	RC14	RC13	RC12	_	-	—	-	-	-	-	-		-		-	xxxx
60A0	LATC	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
60A0	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	_	-	—	_	—	_	_	_	_	_	_	xxxx
60B0	ODCC	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
00B0	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	_	—	_	_	_	_	_	_	_	_	_	0000
Logon	4	- unkno		Pocot: -	unimplomon	ted read as	'0' Poset v	luce are ch	we in hove	locimol									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-4: PORTC REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess		0		Bits											ú				
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6080	TRISC	31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6060	TRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1	_	FOOF
6000	PORTC	31:16	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
6090	PURIC	15:0	RC15	RC14	RC13	RC12	_	_	—	—	_	—	—	RC4	RC3	RC2	RC1	—	xxxx
60A0	LATC	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
60A0	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	_	—	—	_	—	—	LATC4	LATC3	LATC2	LATC1	—	xxxx
60B0	ODCC	31:16	—	_	_	—	_	—	_	_	_	_	_	_	_	_	_	_	0000
00B0	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	_	_	_	_	_	_	ODCC4	ODCC3	ODCC2	ODCC1	_	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

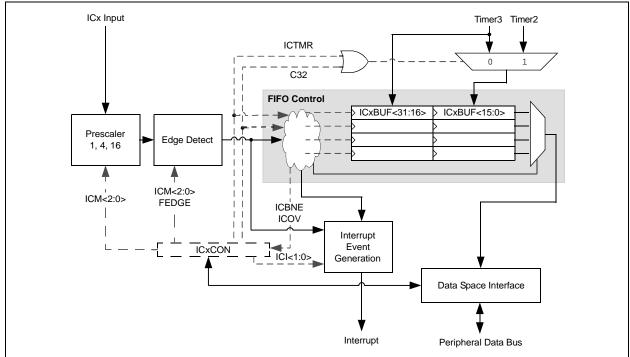
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:


- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- Capture timer value on every edge (rising and falling), specified edge first.
- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input Capture module can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—		_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	_	_	—	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15:8	—	_	_			FILHIT<4:0>		
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7:0	_			l	CODE<6:0> ⁽¹)		

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	11111111 = Reserved
	•
	•
	• 1001001 = Reserved
	1001000 = Invalid message received (IVRIF)
	1001111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0111111 = Reserved
	•
	•
	0100000 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Note 1: These bits are only updated for enabled interrupts.

REGISTER 24-10: CIFLTCONO: CAN FILTER CONTROL REGISTER 0 (CONTINUED)

bit 15	FLTEN1: Filter 1 Enable bit 1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL1<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL0<1:0>: Filter 0 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
DIL 4-0	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	• 00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 24-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6 (CONTINUED)

bit 15	FLTEN25: Filter 25 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL25<1:0>: Filter 25 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL25<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN24: Filter 24 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL24<1:0>: Filter 24 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL24<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 25-21: ETHFCSERR: ETHERNET CONTROLLER FRAME CHECK SEQUENCE ERROR STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24		—			-		-	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	_	_	_	_	_				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	FCSERRCNT<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		FCSERRCNT<7:0>									

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FCSERRCNT<15:0>:** FCS Error Count bits Increment count for frames received with FCS error and the frame length in bits is an integral multiple of 8 bits.

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 25/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24			_	—	_			—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10			_	—	_			—
	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	—	EXCESS DFR	BPNOBK OFF	NOBK OFF		—	LONGPRE	PUREPRE
	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	AUTO PAD ^(1,2)	VLAN PAD ^(1,2)	PAD ENABLE ^(1,3)	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14 **EXCESSDER:** Excess Defer bit

1 = The MAC will defer to carrier indefinitely as per the Standard

0 = The MAC will abort when the excessive deferral limit is reached

bit 13 **BPNOBKOFF:** Backpressure/No Backoff bit

- 1 = The MAC after incidentally causing a collision during backpressure will immediately retransmit without backoff reducing the chance of further collisions and ensuring transmit packets get sent
- 0 = The MAC will not remove the backoff

bit 12 NOBKOFF: No Backoff bit

- 1 = Following a collision, the MAC will immediately retransmit rather than using the Binary Exponential Backoff algorithm as specified in the Standard
- 0 = Following a collision, the MAC will use the Binary Exponential Backoff algorithm

bit 11-10 Unimplemented: Read as '0'

- bit 9 LONGPRE: Long Preamble Enforcement bit
 - 1 = The MAC only allows receive packets which contain preamble fields less than 12 bytes in length
 - 0 = The MAC allows any length preamble as per the Standard

bit 8 **PUREPRE:** Pure Preamble Enforcement bit

- 1 = The MAC will verify the content of the preamble to ensure it contains 0x55 and is error-free. A packet with errors in its preamble is discarded
- 0 = The MAC does not perform any preamble checking
- bit 7 AUTOPAD: Automatic Detect Pad Enable bit^(1,2)
 - 1 = The MAC will automatically detect the type of frame, either tagged or untagged, by comparing the two octets following the source address with 0x8100 (VLAN Protocol ID) and pad accordingly
 - 0 = The MAC does not perform automatic detection

Note 1: Table 25-6 provides a description of the pad function based on the configuration of this register.

- 2: This bit is ignored if the PADENABLE bit is cleared.
- 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

26.1 Control Registers

TABLE 26-1: COMPARATOR REGISTER MAP

ess	Virtual Address (BF80_#) Register Name ⁽¹⁾	Bit Range		Bits													6		
Virtual Addr (BF80_#)			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4.000		31:16	_	_		—		_				—	—	—		-	—	-	0000
A000	CM1CON	15:0	ON	COE	CPOL	—	_	_	_	COUT	EVPO	L<1:0>	—	CREF	_	_	CCH	<1:0>	00C3
A010	CM2CON	31:16	_	_	_	_	_	_		_	_	—	—	—			—	_	0000
AUTU		15:0	ON	COE	CPOL	-	-	-		COUT	EVPO	L<1:0>	—	CREF			CCH	<1:0>	00C3
A060	CMSTAT	31:16		-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
A060		15:0		_	SIDL	_		_				_	_	_			C2OUT	C10UT	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

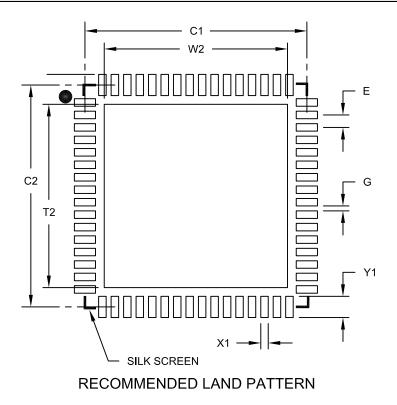
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]


TABLE 32-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions			
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz			
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz			
			1 MHz mode ⁽¹⁾	0.5		μs	—			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz			
			400 kHz mode	0.6	—	μS	PBCLK must operate at a minimum of 3.2 MHz			
			1 MHz mode ⁽¹⁾	0.5	—	μs	—			
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from			
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
			1 MHz mode ⁽¹⁾	—	100	ns				
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from			
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
			1 MHz mode ⁽¹⁾	—	300	ns				
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	_			
			400 kHz mode	100		ns				
			1 MHz mode ⁽¹⁾	100		ns				
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns	_			
			400 kHz mode	0	0.9	μs				
			1 MHz mode ⁽¹⁾	0	0.3	μs				
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4700		ns	Only relevant for Repeated			
			400 kHz mode	600		ns	Start condition			
			1 MHz mode ⁽¹⁾	250		ns				
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4000		ns	After this period, the first			
			400 kHz mode	600		ns	clock pulse is generated			
			1 MHz mode ⁽¹⁾	250		ns				
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000		ns	—			
		Setup Time	400 kHz mode	600	_	ns				
			1 MHz mode ⁽¹⁾	600	_	ns				
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000		ns	—			
			400 kHz mode	600	—	ns]			
			1 MHz mode ⁽¹⁾	250		ns	1			
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	—			
		Clock	400 kHz mode	0	1000	ns	1			
			1 MHz mode ⁽¹⁾	0	350	ns	1			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	The amount of time the bus			
			400 kHz mode	1.3	—	μS	must be free before a new			
			1 MHz mode ⁽¹⁾	0.5	—	μS	transmission can start			
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	_			
	· · · ·	n pin capacitance =	.				1			

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch	E	0.50 BSC				
Optional Center Pad Width	W2			7.35		
Optional Center Pad Length	T2			7.35		
Contact Pad Spacing	C1		8.90			
Contact Pad Spacing	C2		8.90			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			0.85		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820