

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx575f512lt-80i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 64-PIN USB AND ETHERNET DEVICES

TABLE 5: PIN NAMES FOR 64-PIN USB AND ETHERNET DEVICES									
64	-PIN QFN ⁽²⁾ AND TQFP (TOP VIEW)								
	PIC32MX664F064H PIC32MX664F128H PIC32MX675F256H PIC32MX675F512H PIC32MX695F512H 64	1							
	04	1							
	QFN	1 ⁽²⁾	⁶⁴ TQFP						
Pin #	Full Pin Name	Pin #	Full Pin Name						
1	ETXEN/PMD5/RE5	33	USBID/RF3						
2	ETXD0/PMD6/RE6	34	VBUS						
3	ETXD1/PMD7/RE7	35	VUSB3V3						
4	SCK2/U6TX/U3RTS/PMA5/CN8/RG6	36	D-/RG3						
5	SDA4/SDI2/U3RX/PMA4/CN9/RG7	37	D+/RG2						
6	SCL4/SDO2/U3TX/PMA3/CN10/RG8	38	Vdd						
7	MCLR	39	OSC1/CLKI/RC12						
8	SS2/U6RX/U3CTS/PMA2/CN11/RG9	40	OSC2/CLKO/RC15						
9	Vss	41	Vss						
10	Vdd	42	RTCC/AERXD1/ETXD3/IC1/INT1/RD8						
11	AN5/C1IN+/Vbuson/CN7/RB5	43	AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9						
12	AN4/C1IN-/CN6/RB4	44	ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10						
13	AN3/C2IN+/CN5/RB3	45	ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11						
14	AN2/C2IN-/CN4/RB2	46	OC1/INT0/RD0						
15	PGEC1/AN1/VREF-/CVREF-/CN3/RB1	47	SOSCI/CN1/RC13						
16	PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0	48	SOSCO/T1CK/CN0/RC14						
17	PGEC2/AN6/OCFA/RB6	49	EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1						
18	PGED2/AN7/RB7	50	SDA3/SDI3/U1RX/OC3/RD2						
19	AVdd	51	SCL3/SDO3/U1TX/OC4/RD3						
20	AVss	52	OC5/IC5/PMWR/CN13/RD4						
21	AN8/SS4/U5RX/U2CTS/C1OUT/RB8	53	PMRD/CN14/RD5						
22	AN9/C2OUT/PMA7/RB9	54	AETXEN/ETXERR/CN15/RD6						
23	TMS/AN10/CVREFOUT/PMA13/RB10	55	ETXCLK/AERXERR/CN16/RD7						
24	TDO/AN11/PMA12/RB11	56	VCAP						
25	Vss	57	VDD						
26	Vdd	58	AETXD1/ERXD3/RF0						
27	TCK/AN12/PMA11/RB12	59	AETXD0/ERXD2/RF1						
28	TDI/AN13/PMA10/RB13	60	ERXD1/PMD0/RE0						
29	AN14/SCK4/U5TX/U2RTSU2RTS/PMALH/PMA1/RB14	61	ERXD0/PMD1/RE1						
30	AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15	62	ERXDV/ECRSDV/PMD2/RE2						
31	SDA5/SDI4/U2RX/PMA9/CN17/RF4	63	ERXCLK/EREFCLK/PMD3/RE3						
32	SCL5/SDO4/U2TX/PMA8/CN18/RF5	64	ERXERR/PMD4/RE4						

Note 1: Shaded pins are 5V tolerant.

2: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

TABLE 3-3: PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND PIC32MX695F512H DEVICES (CONTINUED)

ess										В	its								
Virtual Address (BF88_#) Reclister	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	IPC4	31:16	—	_	—		INT4IP<2:0>		INT4IS<1:0>		—	-	—		OC4IP<2:0>	•	OC4IS	5<1:0>	0000
10D0	IPC4	15:0	_	-	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		T4IP<2:0>		T4IS	<1:0>	0000
10E0	IPC5	31:16	_	-	_	_	_	_	_	_	_	_	_		OC5IP<2:0>	•	OC5IS	5<1:0>	0000
IUEU	IPC5	15:0	—	_	-		IC5IP<2:0>		IC5IS	<1:0>	—				T5IP<2:0>		T5IS<	<1:0>	0000
		31:16	_	-	_		AD1IP<2:0>		AD1IS	S<1:0>	_	_	_		CNIP<2:0>		CNIS	<1:0>	0000
10F0	IPC6												U1IP<2:0>		U1IS-	<1:0>			
IOFU	IFCO	15:0	—	—	—		I2C1IP<2:0>		I2C1IS<1:0> —				—		SPI3IP<2:0>	>	SPI3IS	S<1:0>	0000
														I2C3IP<2:0>		I2C3IS<1:0>			
							U3IP<2:0>		U3IS-	<1:0>									
1100	IPC7	31:16	—	-	—		SPI2IP<2:0>		SPI2IS	S<1:0>	—	—	—		CMP2IP<2:0	>	CMP2I	S<1:0>	0000
1100	11 07						I2C4IP<2:0>		12C415	S<1:0>									
		15:0	_	—		(CMP1IP<2:0:	>	CMP1	S<1:0>	—				PMPIP<2:0>	>	PMPIS<1:0>		0000
		31:16	—	—	—	F	RTCCIP<2:0:	>	RTCCI	S<1:0>	—	—		I	FSCMIP<2:0	>	FSCM	S<1:0>	0000
1110	IPC8														U2IP<2:0>		U2IS-	<1:0>	
	11 00	15:0	—	-	—	—	—	—	—	—	—	—	—		SPI4IP<2:0>	>	SPI4IS	S<1:0>	0000
															I2C5IP<2:0>	>	12C515	S<1:0>	
1120	IPC9	31:16	—	—	—		DMA3IP<2:0:		DMA3		—	_			DMA2IP<2:0		DMA2		0000
1120	11 00	15:0	_	—			DMA1IP<2:0:		DMA1		—	_			DMA0IP<2:0		DMA0I		0000
1130	IPC10	31:16	—	—	—		MA7IP<2:0>			<1:0> (2)	—	—			MA6IP<2:0>		DMA6IS		0000
1130	11 010	15:0	_	—		D	MA5IP<2:0>	(2)	DMA5IS	<1:0> (2)	—	_		DMA4IP<2:0> ⁽²⁾		DMA4IS	<1:0> ⁽²⁾	0000	
1140	IPC11	31:16	—	—	—	_	—	—	—	—	—	_	_	—	_	—	—	—	0000
		15:0	—	—	—		USBIP<2:0>		USBIS		—	—	—		FCEIP<2:0>		FCEIS		0000
1150	IPC12	31:16	—	—	—		U5IP<2:0>		U5IS-	<1:0>	—	_	_		U6IP<2:0>		U6IS-	<1:0>	0000
1100	11 012	15:0	_	—	—		U4IP<2:0>		U4IS-	<1:0>	—	_	—		ETHIP<2:0>		ETHIS	i<1:0>	0000

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. These bits are not available on PIC32MX664 devices. This register does not have associated CLR, SET, and INV registers.

2:

3:

TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES (CONTINUED)

ess										Bi	its												
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets				
10D0	IPC4	31:16	_	—	-		INT4IP<2:0>		INT4IS	S<1:0>	_	—	-		OC4IP<2:0>		OC4IS	6<1:0>	0000				
1000	IPC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		T4IP<2:0>		T4IS-	<1:0>	0000				
4050	IPC5	31:16	—	_	_		SPI1IP<2:0>		SPI1IS	6<1:0>	_	_	_		OC5IP<2:0>		OC5IS	S<1:0>	0000				
10E0	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS	<1:0>	-		_		T5IP<2:0>		T5IS-	<1:0>	0000				
		31:16	_	_	_		AD1IP<2:0>		AD1IS	S<1:0>	_	_	_		CNIP<2:0>		CNIS	<1:0>	0000				
10F0	IPC6						I2C1IP<2:0> I2C1IS<1:0>						U1IP<2:0>		U1IS-	<1:0>							
IUFU	IFCO	15:0	—	—	—				I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		—	—	—		SPI3IP<2:0>	•	SPI3IS	S<1:0>	0000
														I2C3IP<2:0>			12C315	I2C3IS<1:0>					
							U3IP<2:0>		U3IS	U3IS<1:0>													
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>		SPI2IS	S<1:0>	—	—	—	(CMP2IP<2:0	>	CMP2I	S<1:0>	0000				
1100	11 07						I2C4IP<2:0>		12C415	S<1:0>													
		15:0	_			(CMP1IP<2:0	>	CMP1I	S<1:0>	_	_		PMPIP<2:0>		PMPIS	S<1:0>	0000					
		31:16	_			F	RTCCIP<2:0	>	RTCCI	S<1:0>	_	_		I	FSCMIP<2:0	>	FSCMI	S<1:0>	0000				
1110	IPC8														U2IP<2:0>		U2IS-	<1:0>					
1110	11 00	15:0	—	—	—		I2C2IP<2:0>		12C2IP<2:0>		12C215	I2C2IS<1:0>		2IS<1:0>	—	—	l — [SPI4IP<2:0>		SPI4IS	S<1:0>	0000
															I2C5IP<2:0>		12C515	S<1:0>					
1120	IPC9	31:16	_	_			DMA3IP<2:0		DMA3I	S<1:0>	_				DMA2IP<2:0		DMA2I	S<1:0>	0000				
1120	11 03	15:0	_	_			DMA1IP<2:0		DMA1I		_				DMA0IP<2:0		DMA0I	S<1:0>	0000				
1130	IPC10	31:16	—	—	—	DI	MA7IP<2:0>	(2)	DMA7IS	i<1:0> ⁽²⁾	—	_	—	D	MA6IP<2:0>	(2)	DMA6IS	<1:0> ⁽²⁾	0000				
1130	11 010	15:0	—	—	—	DI	MA5IP<2:0>	(2)	DMA5IS	i<1:0> ⁽²⁾	_	_	—	DMA4IP<2:0> ⁽²⁾		DMA4IS	<1:0> ⁽²⁾	0000					
1140	IPC11	31:16	—	-	_	_	_		_				_	_	—		—		0000				
1140	IFCII	15:0	—	—	—		USBIP<2:0>		USBIS	S<1:0>	_	_	— FCEIP<2:0>		FCEIS	<1:0>	0000						
1150	IPC12	31:16	_	_	-		U5IP<2:0>		U5IS-	<1:0>	_		-		U6IP<2:0>		U6IS-	<1:0>	0000				
1150	IFUIZ	15:0	_	-	-		U4IP<2:0>		U4IS-	<1:0>					ETHIP<2:0>		ETHIS	i<1:0>	0000				

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX664 devices.

3: This register does note have associated CLR, SET, and INV registers.

NOTES:

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator

bit 0 **OSWEN:** Oscillator Switch Enable bit

- 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	CHEWEN	—	_	—	—	-	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	—		—	—		—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—		—	—		—	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
				—		CHEID	X<3:0>	

REGISTER 9-2: CHEACC: CACHE ACCESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 CHEWEN: Cache Access Enable bits

- These bits apply to registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and CHEW3.
- 1 = The cache line selected by CHEIDX<3:0> is writeable
- 0 = The cache line selected by CHEIDX<3:0> is not writeable
- bit 30-4 **Unimplemented:** Write '0'; ignore read

bit 3-0 CHEIDX<3:0>: Cache Line Index bits

The value selects the cache line for reading or writing.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24		_	_	_	—	—	_	—
00.16	U-0	U-0						
23:16	_	_	_	_	_	—	_	—
15:8	U-0	U-0						
10.0		_	_	_	—	—	_	—
	R/W-0	R/W-0						
7:0	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ⁽¹⁾	
	DISEE	DIVIXEE	DIVIAEE	DIVEE	DENGEE	UKU16EE	EOFEE ⁽²⁾	PIDEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

5						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8	Unimplemented: Read as '0'
bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit
	1 = BTSEF interrupt is enabled0 = BTSEF interrupt is disabled
bit 6	BMXEE: Bus Matrix Error Interrupt Enable bit
	1 = BMXEF interrupt is enabled
	0 = BMXEF interrupt is disabled
bit 5	DMAEE: DMA Error Interrupt Enable bit
	1 = DMAEF interrupt is enabled0 = DMAEF interrupt is disabled
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
	1 = BTOEF interrupt is enabled

- 0 = BTOEF interrupt is disabled
- bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾ bit 1
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

REGISTER 11-11: U1CON: USB CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	-	—	—	_	-	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6			—	—			—	—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	JSTATE	SE0	PKTDIS ⁽⁴⁾	USBRST	HOSTEN ⁽²⁾	RESUME ⁽³⁾	PPBRST	USBEN ⁽⁴⁾
	JUNE	320	TOKBUSY ^(1,5)	030631	TIOSTEIN'	KESUME"	FFDKOI	SOFEN ⁽⁵⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
 - 0 = JSTATE was not detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single-ended zero was detected on the USB
 0 = Single-ended zero was not detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled

TOKBUSY: Token Busy Indicator bit^(1,5)

- 1 = Token being executed by the USB module
- 0 = No token being executed
- bit 4 USBRST: Module Reset bit⁽⁵⁾
 - 1 = USB reset is generated
 - 0 = USB reset is terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability is enabled
- 0 = USB host capability is disabled
- bit 2 **RESUME:** RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6		—						—
7.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	UTEYE	UOEMON		USBSIDL				UASUSPND

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 UTEYE: USB Eye-Pattern Test Enable bit
 - 1 = Eye-Pattern Test is enabled
 - 0 = Eye-Pattern Test is disabled
- bit 6 **UOEMON:** USB OE Monitor Enable bit
 - $1 = \overline{OE}$ signal is active; it indicates intervals during which the D+/D- lines are driving
 - $0 = \overline{OE}$ signal is inactive
- bit 5 Unimplemented: Read as '0'
- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 11-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	_	—	_	—	—	—
22:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16		WAKFIL		—	_	SEG2PH<2:0> ^(1,4)		,4)
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	Ş	SEG1PH<2:0	>	PRSEG<2:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SJW<1:0> ⁽³⁾		BRP<5:0>					

REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-23 Unimplemented: Read as '0'

- bit 22 **WAKFIL:** CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x Tq
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x Tq
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2:	3 Time bit sampling is not allowed for BRP < 2.
3:	SJW ≤ SEG2PH.
4:	The Time Quanta per bit must be greater than 7 (that is, $TQBIT > 7$).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	_	_	_	—	_	_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	—	_	—	—
45.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15:8	—	_	_	FILHIT<4:0>				
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7:0	_			ļ	CODE<6:0> ⁽¹)		

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	11111111 = Reserved
	•
	•
	• 1001001 = Reserved
	1001000 = Invalid message received (IVRIF)
	1001111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0111111 = Reserved
	•
	•
	0100000 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Note 1: These bits are only updated for enabled interrupts.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0									
31.24				CiFIFOB	A<31:24>						
23:16	R/W-0	R/W-0									
23.10		CiFIFOBA<23:16>									
15:8	R/W-0	R/W-0									
0.61	CiFIFOBA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
7:0		CiFIFOBA<7:0>									

REGISTER 24-19: CIFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits

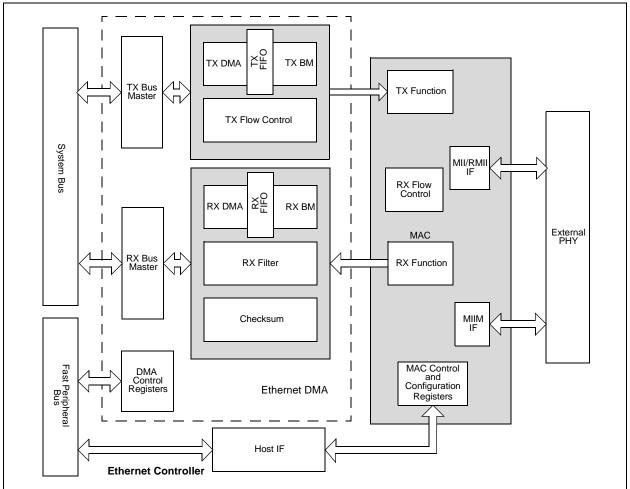
These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Bits <1:0> are read-only and read as '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

25.0 ETHERNET CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Ethernet Controller" (DS60001155) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system.

Key features of the Ethernet Controller include:

- Supports 10/100 Mbps data transfer rates
- Supports full-duplex and half-duplex operation
- Supports RMII and MII PHY interface
- Supports MIIM PHY management interface
- Supports both manual and automatic Flow Control
- RAM descriptor-based DMA operation for both receive and transmit path
- · Fully configurable interrupts
- Configurable receive packet filtering
 - CRC check
 - 64-byte pattern match
 - Broadcast, multicast and unicast packets
 - Magic Packet™
 - 64-bit hash table
 - Runt packet
- Supports packet payload checksum calculation
- · Supports various hardware statistics counters

Figure 25-1 illustrates a block diagram of the Ethernet controller.

FIGURE 25-1: ETHERNET CONTROLLER BLOCK DIAGRAM

REGISTER 25-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	-	—	_	—	-	—	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	—	_	_	_	—	_	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	SCOLFRMCNT<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	SCOLFRMCNT<7:0>									

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **SCOLFRMCNT<15:0>:** Single Collision Frame Count bits Increment count for frames that were successfully transmitted on the second try.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

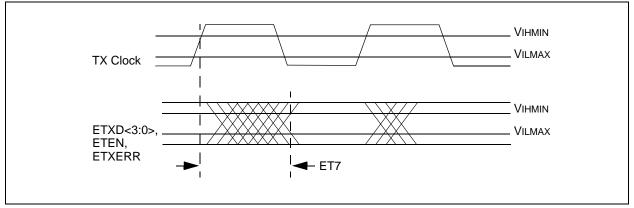
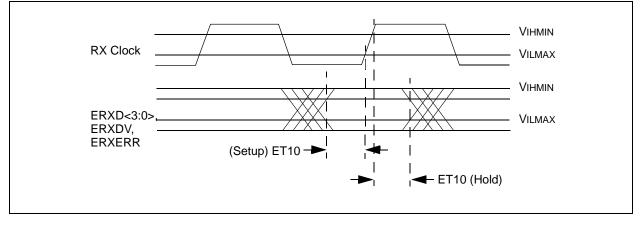
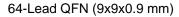

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

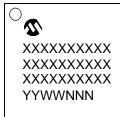
TABLE 32-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)


AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	0.6	—	μS	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μs	—	
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns		
			400 kHz mode	100		ns		
			1 MHz mode ⁽¹⁾	100		ns		
IS26	Thd:dat	Data Input Hold Time	100 kHz mode	0		ns	_	
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	Tsu:sta	Start Condition Setup Time	100 kHz mode	4700		ns	Only relevant for Repeated	
			400 kHz mode	600		ns	Start condition	
			1 MHz mode ⁽¹⁾	250		ns		
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4000		ns	After this period, the first	
			400 kHz mode	600		ns	clock pulse is generated	
			1 MHz mode ⁽¹⁾	250		ns		
IS33	Τѕυ:ѕто	Stop Condition Setup Time	100 kHz mode	4000		ns	—	
			400 kHz mode	600	_	ns		
			1 MHz mode ⁽¹⁾	600	_	ns		
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000		ns	—	
			400 kHz mode	600	—	ns]	
			1 MHz mode ⁽¹⁾	250		ns	1	
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns	1	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	The amount of time the bus	
			400 kHz mode	1.3	—	μS	must be free before a new	
			1 MHz mode ⁽¹⁾	0.5	—	μS	transmission can start	
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	_	
	· · · ·	n pin capacitance =	.				1	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

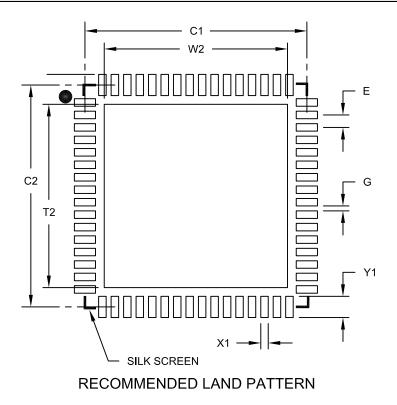

FIGURE 32-21: TRANSMIT SIGNAL TIMING RELATIONSHIPS AT THE MII


34.1 Package Marking Information (Continued)



121-Lead TFBGA (10x10x1.1 mm)

124-Lead VTLA (9x9x0.9 mm)


Example

Lanand	VV V	Customer eneritie information		
Legena	d: XXX Customer-specific information			
	Y Year code (last digit of calendar year)			
	YY Year code (last 2 digits of calendar year)			
	WW Week code (week of January 1 is week '01')			
	NNN Alphanumeric traceability code			
	Pb-free JEDEC designator for Matte Tin (Sn)			
	* This package is Pb-free. The Pb-free JEDEC designator (e3)			
		can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will			
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

Revision G (May 2011)

The revision includes the following global updates:

- All references to VDDCORE/VCAP have been changed to: VCORE/VCAP
- Added references to the new V-Temp temperature range: -40°C to +105°C

TABLE B-5: MAJOR SECTION UPDATES

This revision also includes minor typographical and formatting changes throughout the data sheet text. Major updates are referenced by their respective section in Table B-5.

Section Name	Update Description
High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers	Removed the shading for all D- and D+ pins in all pin diagrams.
1.0 "Device Overview"	Updated the VBUS description in Table 1-1.
1.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Added "Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.".
4.0 "Memory Organization"	Added Note 3 to the Interrupt Register Map tables (see Table 4-2 through Table 4-7.
22.0 "10-bit Analog-to-Digital Converter (ADC)"	Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2).
1.0 "Comparator Voltage Reference (CVREF)"	Updated the Comparator Voltage Reference Block Diagram (see Figure 1-1).
1.0 "Special Features"	Removed the second paragraph from 1.3.1 " On-Chip Regulator and POR ".
1.0 "Electrical Characteristics"	Added the new V-Temp temperature range (-40°C to +105°C) to the heading of all specification tables.
	Updated the Ambient temperature under bias, updated the Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V, and added Voltage on VBUS with respect to Vss in Absolute Maximum Ratings.
	Added the characteristic, DC5a to Operating MIPS vs. Voltage (see Table 1-1).
	Updated or added the following parameters to the Operating Current (IDD) DC Characteristics: DC20, DC20b, DC23, and DC23b (see Table 1-5).
	Added the following parameters to the Idle Current (IIDLE) DC Characteristics: DC30b, DC33b, DC34c, DC35c, and DC36c (see Table 1-6).
	Added the following parameters to the Power-down Current (IPD) DC Characteristics: DC40g, DC40h, DC40i, and DC41g, (see Table 1-7).
	Added parameter IM51 and Note 3 to the I2Cx Bus Data Timing Requirements (Master Mode) (see Table 1-32).
	Updated the 10-bit ADC Conversion Rate Parameters (see Table 1-37).
	Updated parameter AD57 (TSAMP) in the Analog-to-Digital Conversion Timing Requirements (see Table 1-38).
1.0 "Packaging Information"	Updated the 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] packing diagram.
Product Identification System	Added the new V-Temp (V) temperature information.