

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f064h-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Nun	nber ⁽¹⁾			D	
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
AC2TX	—	7	E4	B4	0	—	Alternate CAN2 bus transmit pin
ERXD0	61	41	J7	B23	I	ST	Ethernet Receive Data 0 ⁽²⁾
ERXD1	60	42	L7	A28	I	ST	Ethernet Receive Data 1 ⁽²⁾
ERXD2	59	43	K7	B24	I	ST	Ethernet Receive Data 2 ⁽²⁾
ERXD3	58	44	L8	A29	I	ST	Ethernet Receive Data 3 ⁽²⁾
ERXERR	64	35	J5	B20	I	ST	Ethernet receive error input ⁽²⁾
ERXDV	62	12	F2	A8	I	ST	Ethernet receive data valid ⁽²⁾
ECRSDV	62	12	F2	A8	I	ST	Ethernet carrier sense data valid ⁽²⁾
ERXCLK	63	14	F3	A9	I	ST	Ethernet receive clock ⁽²⁾
EREFCLK	63	14	F3	A9	I	ST	Ethernet reference clock ⁽²⁾
ETXD0	2	88	A6	A60	0	_	Ethernet Transmit Data 0 ⁽²⁾
ETXD1	3	87	B6	B49	0	_	Ethernet Transmit Data 1 ⁽²⁾
ETXD2	43	79	A9	B43	0	_	Ethernet Transmit Data 2 ⁽²⁾
ETXD3	42	80	D8	A54	0	_	Ethernet Transmit Data 3 ⁽²⁾
ETXERR	54	89	E6	B50	0	_	Ethernet transmit error ⁽²⁾
ETXEN	1	83	D7	B45	0	_	Ethernet transmit enable ⁽²⁾
ETXCLK	55	84	C7	A56	I	ST	Ethernet transmit clock ⁽²⁾
ECOL	44	10	E3	A7	I	ST	Ethernet collision detect ⁽²⁾
ECRS	45	11	F4	B6	I	ST	Ethernet carrier sense ⁽²⁾
EMDC	30	71	C11	A46	0	_	Ethernet management data clock ⁽²⁾
EMDIO	49	68	E9	B37	I/O	_	Ethernet management data ⁽²⁾
AERXD0	43	18	G1	A11	I	ST	Alternate Ethernet Receive Data 0 ⁽²⁾
AERXD1	42	19	G2	B10	I	ST	Alternate Ethernet Receive Data 1 ⁽²⁾
AERXD2	—	28	L2	A21	I	ST	Alternate Ethernet Receive Data 2(2)
AERXD3	—	29	K3	B17	I	ST	Alternate Ethernet Receive Data 3 ⁽²⁾
AERXERR	55	1	B2	A2	I	ST	Alternate Ethernet receive error input ⁽²⁾
AERXDV	—	12	F2	A8	I	ST	Alternate Ethernet receive data valid ⁽²⁾
AECRSDV	44	12	F2	A8	I	ST	Alternate Ethernet carrier sense data valid ⁽²⁾
AERXCLK	—	14	F3	A9	I	ST	Alternate Ethernet receive clock ⁽²⁾
AEREFCLK	45	14	F3	A9	I	ST	Alternate Ethernet reference clock ⁽²⁾
AETXD0	59	47	L9	B26	0		Alternate Ethernet Transmit Data 0 ⁽²⁾
AETXD1	58	48	K9	A31	0		Alternate Ethernet Transmit Data 1 ⁽²⁾
AETXD2		44	L8	A29	0		Alternate Ethernet Transmit Data 2 ⁽²⁾
AETXD3		43	K7	B24	0		Alternate Ethernet Transmit Data 3 ⁽²⁾
AETXERR		35	J5	B20	0		Alternate Ethernet transmit error ⁽²⁾
AETXEN	54	67	E8	A44	0		Alternate Ethernet transmit enable ⁽²⁾
AETXCLK	_	66	E11	B36	1	ST	Alternate Ethernet transmit clock ⁽²⁾
AECOL		42	L7	A28	1	ST	Alternate Ethernet collision detect ⁽²⁾
Leaend: C	MOS = CMO	S compatib	le input or c	butput	A	nalog = A	Analog input P = Power

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input P = PowerO = Output I = Input

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				NVMDA	TA<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16				NVMDA	TA<23:16>						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				NVMDA	TA<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	NVMDATA<7:0>										

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	NVMSRCADDR<31:24>													
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16		NVMSRCADDR<23:16>												
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8				NVMSRC/	ADDR<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0	NVMSRCADDR<7:0>													

Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

		P	PIC32M	X695F5 [°]	12H DE	VICES													
ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16			—	—	_		_		_	—		_			_	SS0	0000
1000	INTCON	15:0	—	_	_	MVEC	_		TPC<2:0>		_	_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1010		15:0		—	—	—	_		SRIPL<2:0>		—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	—	_	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	_	_	_	U2TXIF SPI4TXIF I2C5MIF	U2RXIF SPI4RXIF I2C5SIF	U2EIF SPI4EIF I2C5BIF	U3TXIF SPI2TXIF I2C4MIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF I2C4BIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16					_	_	_	_	_	_	_	_		_	_	_	0000
1050	IFS2	15:0	_	_	_	_	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	_		_	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	_	_	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	_	_	-	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
		31:16		_	_	_	_	_		_	_	_	_	_		_	_	_	0000
1080	IEC2	15:0	_	_	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
		31:16	_	_	_		INT0IP<2:0>		INTOIS		_	_	_		CS1IP<2:0>		CS1IS		0000
1090	IPC0	15:0	_	_	_		CS0IP<2:0>		CSOIS	S<1:0>	_	_	_		CTIP<2:0>		CTIS		0000
1040	IPC1	31:16	_	_	_		INT1IP<2:0>		INT1IS	S<1:0>	_	_	_	(OC1IP<2:0>		OC1IS	S<1:0>	0000
10A0	IPUT	15:0	_	_	_		IC1IP<2:0>		IC1IS	<1:0>	_	_			T1IP<2:0>		T1IS-	<1:0>	0000
10B0	IPC2	31:16		—	_		INT2IP<2:0>		INT2IS	S<1:0>	—	—	_	(OC2IP<2:0>	•	OC2IS	S<1:0>	0000
IUD0	1602	15:0	_	—	—		IC2IP<2:0>		IC2IS	<1:0>	—	—	_		T2IP<2:0>		T2IS-	<1:0>	0000
10C0	IPC3	31:16	—	—	-		INT3IP<2:0>		INT3IS	S<1:0>	—	—		(OC3IP<2:0>		OC3IS	S<1:0>	0000
1000	1 00	15:0		—	—		IC3IP<2:0>		IC3IS	<1:0>	—	—	—		T3IP<2:0>		T3IS-	<1:0>	0000
Legend	d: x =	unknow	n value on	Reset; — = I	unimplement	ted, read as	'0'. Reset va	lues are sho	wn in hexad	ecimal.									

TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND DIC22MV605E512U DEVICES

DS60001156J-page 79

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information.

These bits are not available on PIC32MX664 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

© 2009-2016 Microchip Technology Inc.

Control Registers 10.1

TABLE 10-1: DMA GLOBAL REGISTER MAP

ess		â								Bi	its								ő
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	DMACON ⁽¹⁾	31:16	_	_	-	_	_		_	_	_	_	_	_	_	_	_	_	0000
3000	DMACON	15:0	ON	_	_	SUSPEND	DMABUSY	_	_	_	_	_	_	_	_	_	_	_	0000
2010	DMASTAT	31:16	_	_	_	_	—	_	_	_	_	-	_	_	—	_	_	_	0000
3010	DIVIASTAT	15:0	_	—		—	—	_				—	_	_	RDWR	D	MACH<2:0>	(2)	0000
2020		31.16																	
3020	0 DMAADDR 0100 DMAADDR<31:0>																		
Legen																			

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

DMACH<3> bit is not available on PIC32MX534/564/664/764 devices. 2:

TABLE 10-2: DMA CRC REGISTER MAP⁽¹⁾

ess		0								В	ts								ú
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2020	DCRCCON	31:16	_	_	BYTO	BYTO<1:0> WBO BITO 000									0000				
3030	DURCUUN	15:0	—	—	—			PLEN<4:0>			CRCEN	CRCAPP	CRCTYP	_	—	(CRCCH<2:0	>	0000
3040	DCRCDATA	31:16									TA-31:05								0000
3040	DONODAIA	15:0		DCRCDATA<31:0> 0000															
3050	DCRCXOR	31:16		DCRCXOR<31:0>															
3030	DUNUAUK	15:0		DCRCX0R<31:0>															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0									
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0									
31:24				DCRCDAT/	4<31:24>												
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0									
23:16				DCRCDAT	A<23:16>												
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0									
15:8				DCRCDAT	A<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0									
7:0				DCRCDA	ΓA<7:0>		DCRCDATA<7:0>										

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31.24		DCRCXOR<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16				DCRCXOF	23:16>								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8				DCRCXO	R<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				DCRCXO	R<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

1 = Enable the XOR input to the Shift register

0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24				-	_		_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_		_	—	_	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)		_	—	—	—	—	—
7.0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
7:0	_		SWDTPS<4:0> WDT\					

REGISTER 15-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	y = Values set from Configuration bits on POR			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 0

- bit 15 **ON:** Watchdog Timer Enable bit^(1,2)
 - 1 = Enables the WDT if it is not enabled by the device configuration 0 = Disable the WDT if it was enabled in software
- bit 14-7 **Unimplemented:** Read as '0'
- bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> Configuration bits.
- bit 1 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
 - WDTCLR: Watchdog Timer Reset bit
 - 1 = Writing a '1' will clear the WDT
 - 0 = Software cannot force this bit to a '0'
- Note 1: A read of this bit results in a '1' if the Watchdog Timer is enabled by the device configuration or software.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

21.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

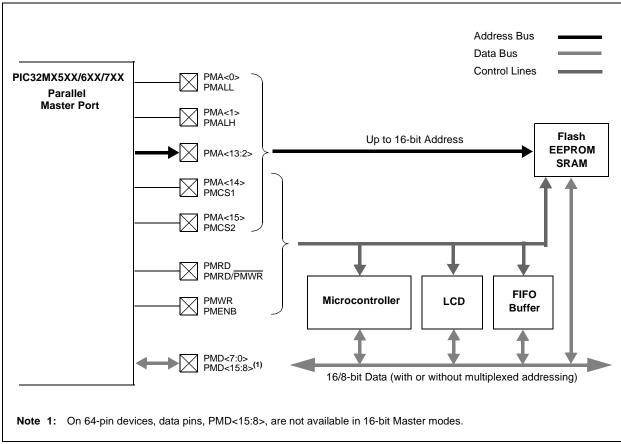

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Figure 21-1 shows the PMP module pinout and its connections to external devices.

FIGURE 21-1:

The following are key features of the PMP module:

- 8-bit and 16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- · Address auto-increment/auto-decrement
- · Programmable address/data multiplexing
- Programmable polarity on control signals
- · Parallel Slave Port support
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable wait states
- · Operates during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Note: On 64-pin devices, the PMD<15:8> data pins are not available.

PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

										Bi	ts								
Virtual Address (BF80_#) Register	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000 PM0	/CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	—	_	—	_	0000
7000 1 100		15:0	ON	—	SIDL	ADRMU	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010 PMM	MODE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
7010 Pivily	NODE	15:0	BUSY IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITB<1:0> WAITM<3:0> WAITE<1:0> WAITE<1:0>				0000												
7020 PMA		31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7020 PINA	IADDR	15:0	CS2EN/A15 CS1EN/A14 ADDR<13:0> 00							0000									
7000 040		31:16		DATAOUT<31:0>						0000									
7030 PMD		15:0								DATAOU	1<31:0>								0000
7040 DM	MDIN	31:16									.01.0								0000
7040 PM		15:0		DATAIN<31:0>						0000									
7050 014	MAEN	31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7050 PM/	VIAEN	15:0								PTEN<	:15:0>								0000
7000 0140	10TAT	31:16	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
7060 PMS	ISTAL	15:0	IBF	IBOV	_	-	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	-	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

REGISTER 23-2: AD1CON2: ADC CONTROL REGISTER 2
--

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16			—	_	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
15:8	VCFG<2:0>			OFFCAL	—	CSCNA	—	—
7.0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	BUFS	_		SMPI<3:0>				ALTS

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

Bit Value	VREFH	VREFL
lxx	AVdd	AVss
011	External VREF+ pin	External VREF- pin
010	AVdd	External VREF- pin
001	External VREF+ pin	AVss
000	AVDD	AVss

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the S&H circuit are connected to VREFL.

- 0 = Disable Offset Calibration mode
 - The inputs to the S&H circuit are controlled by AD1CHS or AD1CSSL.

bit 11 Unimplemented: Read as '0'

- bit 10 CSCNA: Input Scan Select bit
 - 1 = Scan inputs
 - 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
- $\pm\pm\pm\pm$ = interrupts at the completion of conversion for each 15"' sample/convert sequence
- •
- 0001 = Interrupts at the completion of conversion for each 2^{nd} sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, and then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—		_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_	_	—	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15:8	—	—	_		FILHIT<4:0>			
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7:0	_			l	CODE<6:0> ⁽¹)		

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	11111111 = Reserved
	•
	•
	• 1001001 = Reserved
	1001000 = Invalid message received (IVRIF)
	1001111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0111111 = Reserved
	•
	•
	0100000 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Note 1: These bits are only updated for enabled interrupts.

REGISTER 25-23:	EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—		_	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	_	_			—
	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SOFT RESET	SIM RESET	—		RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN
7:0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
			_	LOOPBACK	TX PAUSE	RX PAUSE	PASSALL	RX ENABLE

Legend:	

Logona.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15	SOFTRESET: Soft Reset bit
	Setting this bit will put the MACMII in reset. Its default value is '1'.
bit 14	SIMRESET: Simulation Reset bit
	Setting this bit will cause a reset to the random number generator within the Transmit Function.
bit 13-12	Unimplemented: Read as '0'
bit 11	RESETRMCS: Reset MCS/RX bit
	Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.
bit 10	RESETRFUN: Reset RX Function bit
	Setting this bit will put the MAC Receive function logic in reset.
bit 9	RESETTMCS: Reset MCS/TX bit
	Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.
bit 8	RESETTFUN: Reset TX Function bit
	Setting this bit will put the MAC Transmit function logic in reset.
bit 7-5	Unimplemented: Read as '0'
bit 4	LOOPBACK: MAC Loopback mode bit
	1 = MAC Transmit interface is loop backed to the MAC Receive interface
bit 3	0 = MAC normal operation TXPAUSE: MAC TX Flow Control bit
DILS	1 = PAUSE Flow Control frames are allowed to be transmitted
	1 = PAUSE Flow Control frames are allowed to be transmitted $0 = PAUSE Flow Control frames are blocked$
bit 2	RXPAUSE: MAC RX Flow Control bit
	1 = The MAC acts upon received PAUSE Flow Control frames
	0 = Received PAUSE Flow Control frames are ignored
bit 1	PASSALL: MAC Pass all Receive Frames bit
	1 = The MAC will accept all frames regardless of type (Normal vs. Control)
	0 = The received Control frames are ignored
bit 0	RXENABLE: MAC Receive Enable bit
	1 = Enable the MAC receiving of frames

0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER (CONTINUED)

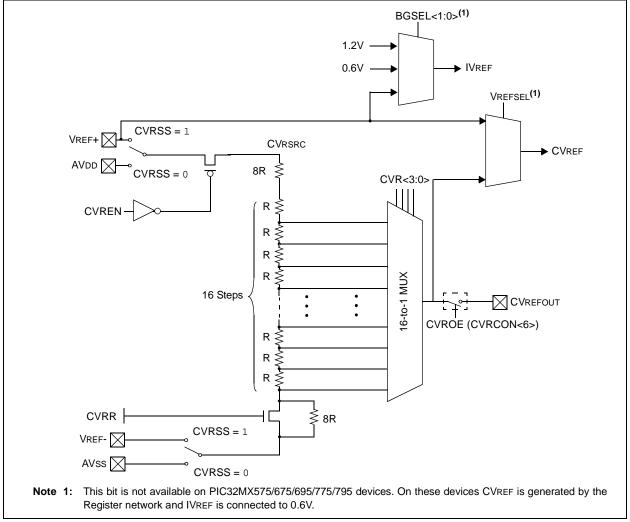
- VLANPAD: VLAN Pad Enable bit^(1,2) bit 6 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames PADENABLE: Pad/CRC Enable bit^(1,3) bit 5 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit LENGTHCK: Frame Length checking bit bit 1 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit 1 = The MAC operates in Full-Duplex mode 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 25-6 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - **3:** This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 25-6:PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action	
Any	x	x	0	No pad, check CRC	
Any	0	0	1	Pad to 60 Bytes, append CRC	
Any	x	1	1	Pad to 64 Bytes, append CRC	
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC	

27.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

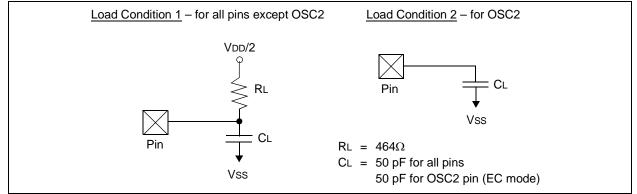

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 27-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

Key features of the CVREF module include:

- High and low range selection
- Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

NOTES:


REGISTER 29-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 13-12 **FPBDIV<1:0>:** Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output is disabled
 - 0 = CLKO output signal is active on the OSCO pin; the Primary Oscillator must be disabled or configured for External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 Reserved: Write '1'
- bit 5 FSOSCEN: Secondary Oscillator Enable bit
 - 1 = Enable the Secondary Oscillator
 - 0 = Disable the Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

32.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters.

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

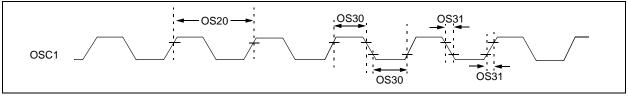
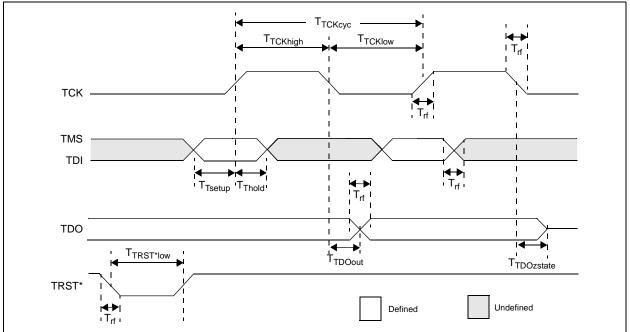


TABLE 32-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

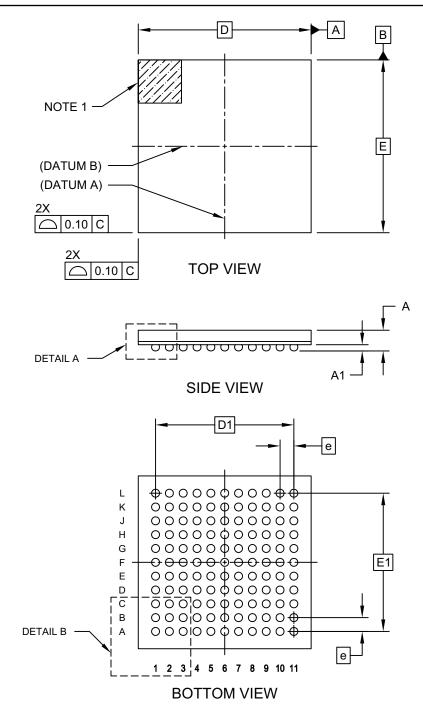

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO50	Cosco	OSC2 pin		_	15	pF	In XT and HS modes when an external crystal is used to drive OSC1
DO56	Сю	All I/O pins and OSC2		—	50	pF	In EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C mode

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-2: EXTERNAL CLOCK TIMING

FIGURE 32-28: EJTAG TIMING CHARACTERISTICS

TABLE 32-43: EJTAG TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}\mbox{C} \leq \mbox{TA} \leq +85^{\circ}\mbox{C for Industrial} \\ & -40^{\circ}\mbox{C} \leq \mbox{TA} \leq +105^{\circ}\mbox{C for V-Temp} \end{array}$			
Param. No.	Symbol	Description ⁽¹⁾	Min.	Min. Max. Units Cor		Conditions
EJ1	Ттсксүс	TCK Cycle Time	25	_	ns	
EJ2	Ттскнідн	TCK High Time	10		ns	—
EJ3	TTCKLOW	TCK Low Time	10		ns	—
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	_
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	-	5	ns	—
EJ8	TTRSTLOW	TRST Low Time	25	_	ns	—
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

NOTES:

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

APPENDIX A: MIGRATING FROM PIC32MX3XX/4XX TO PIC32MX5XX/6XX/7XX DEVICES

This appendix provides an overview of considerations for migrating from PIC32MX3XX/4XX devices to the PIC32MX5XX/6XX/7XX family of devices. The code developed for the PIC32MX3XX/4XX devices can be ported to the PIC32MX5XX/6XX/7XX devices after making the appropriate changes outlined below.

A.1 DMA

PIC32MX5XX/6XX/7XX devices do not support stopping DMA transfers in Idle mode.

A.2 Interrupts

PIC32MX5XX/6XX/7XX devices have persistent interrupts for some of the peripheral modules. This means that the interrupt condition for these peripherals must be cleared before the interrupt flag can be cleared.

For example, to clear a UART receive interrupt, the user application must first read the UART Receive register to clear the interrupt condition and then clear the associated UxIF flag to clear the pending UART interrupt. In other words, the UxIF flag cannot be cleared by software until the UART Receive register is read.

Table A-1 outlines the peripherals and associated interrupts that are implemented differently on PIC32MX5XX/6XX/7XX versus PIC32MX3XX/4XX devices.

In addition, on the SPI module, the IRQ numbers for the receive done interrupts were changed from 25 to 24 and the transfer done interrupts were changed from 24 to 25.

TABLE A-1: PIC32MX3XX/4XX VERSUS PIC32MX5XX/6XX/7XX INTERRUPT IMPLEMENTATION DIFFERENCES

Module	Interrupt Implementation
Input Capture	To clear an interrupt source, read the Buffer Result (ICxBUF) register to obtain the number of capture results in the buffer that are below the interrupt threshold (specified by ICI<1:0> bits).
SPI	Receive and transmit interrupts are controlled by the SRXISEL<1:0> and STXISEL<1:0> bits, respectively. To clear an interrupt source, data must be written to, or read from, the SPIxBUF register to obtain the number of data to receive/transmit below the level specified by the SRXISEL<1:0> and STXISEL<1:0> bits.
UART	TX interrupt will be generated as soon as the UART module is enabled. Receive and transmit interrupts are controlled by the URXISEL<1:0> and UTXISEL<1:0> bits, respectively. To clear an interrupt source, data must be read from, or written to, the UxRXREG or UxTXREG registers to obtain the number of data to receive/transmit below the level specified by the URXISEL<1:0> and UTXISEL<1:0> bits.
ADC	All samples must be read from the result registers (ADC1BUFx) to clear the interrupt source.
PMP	To clear an interrupt source, read the Parallel Master Port Data Input/Output (PMDIN/PMDOUT) register.