

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f064l-v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

L11

TABLE 10: PIN NAMES (CONTINUED)FOR USB AND CAN DEVICES

121-PIN TFBGA (BOTTOM VIEW)

PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F256L PIC32MX575F512L

L1

A11

Note: The TFBGA package skips from row "H" to row "J" and has no "I" row. A1

Pin #	Full Pin Name
J3	PGED2/AN7/RB7
J4	AVdd
J5	AN11/PMA12/RB11
J6	TCK/RA1
J7	AN12/PMA11/RB12
J8	No Connect (NC)
J9	No Connect (NC)
J10	SCL3/SDO3/U1TX/RF8
J11	D-/RG3
K1	PGEC1/AN1/CN3/RB1
K2	PGED1/AN0/CN2/RB0
K3	VREF+/CVREF+/PMA6/RA10
K4	AN8/C1OUT/RB8
K5	No Connect (NC)
K6	AC1RX/SS4/U5RX/U2CTS/RF12
K7	AN14/PMALH/PMA1/RB14

1	
Pin #	Full Pin Name
K8	VDD
K9	SCK3/U4TX/U1RTS/CN21/RD15
K10	USBID/RF3
K11	SDA3/SDI3/U1RX/RF2
L1	PGEC2/AN6/OCFA/RB6
L2	VREF-/CVREF-/PMA7/RA9
L3	AVss
L4	AN9/C2OUT/RB9
L5	AN10/CVREFOUT/PMA13/RB10
L6	AC1TX/SCK4/U5TX/U2RTS/RF13
L7	AN13/PMA10/RB13
L8	AN15/OCFB/PMALL/PMA0/CN12/RB15
L9	SS3/U4RX/U1CTS/CN20/RD14
L10	SDA5/SDI4/U2RX/PMA9/CN17/RF4
L11	SCL5/SDO4/U2TX/PMA8/CN18/RF5

Note 1: Shaded pins are 5V tolerant.

TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES (CONTINUED)

1	21-PIN TFBGA (BOTTOM VIEW	/)	L1	11
	PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L		L1	A11
No	te: The TFBGA package skips from row	/ "H" to ro	w "J" and has no "I" row. A1	
Pin #	Full Pin Name	Pin #	Full Pin Name	
J3	PGED2/AN7/RB7	K8	VDD	
J4	AVdd	K9	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15	
J5	AN11/ERXERR/AETXERR/PMA12/RB11	K10	USBID/RF3	
J6	TCK/RA1	K11	SDA3/SDI3/U1RX/RF2	
J7	AN12/ERXD0/AECRS/PMA11/RB12	L1	PGEC2/AN6/OCFA/RB6	
J8	No Connect (NC)	L2	VREF-/CVREF-/AERXD2/PMA7/RA9	
J9	No Connect (NC)	L3	AVss	
J10	SCL3/SDO3/U1TX/RF8	L4	AN9/C2OUT/RB9	
J11	D-/RG3	L5	AN10/CVREFOUT/PMA13/RB10	
K1	PGEC1/AN1/CN3/RB1	L6	SCK4/U5TX/U2RTS/RF13	
K2	PGED1/AN0/CN2/RB0	L7	AN13/ERXD1/AECOL/PMA10/RB13	
K3	VREF+/CVREF+/AERXD3/PMA6/RA10	L8	AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15	
K4	AN8/C1OUT/RB8	L9	AETXD0/SS3/U4RX/U1CTS/CN20/RD14	
K5	No Connect (NC)	L10	SDA5/SDI4/U2RX/PMA9/CN17/RF4	
K6	SS4/U5RX/U2CTS/RF12	L11	SCL5/SDO4/U2TX/PMA8/CN18/RF5	
K7	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14			

Note 1: Shaded pins are 5V tolerant.

		Pin Nun	nber ⁽¹⁾			, 	
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
PMD0	60	93	A4	B52	I/O	TTL/ST	Parallel Master Port data
PMD1	61	94	B4	A64	I/O	TTL/ST	(Demultiplexed Master mode) or
PMD2	62	98	B3	A66	I/O	TTL/ST	address/data (Multiplexed Master
PMD3	63	99	A2	B56	I/O	TTL/ST	modes)
PMD4	64	100	A1	A67	I/O	TTL/ST	
PMD5	1	3	D3	B2	I/O	TTL/ST	
PMD6	2	4	C1	A4	I/O	TTL/ST	
PMD7	3	5	D2	B3	I/O	TTL/ST	
PMD8	_	90	A5	A61	I/O	TTL/ST	
PMD9	_	89	E6	B50	I/O	TTL/ST	
PMD10		88	A6	A60	I/O	TTL/ST	
PMD11		87	B6	B49	I/O	TTL/ST	
PMD12	_	79	A9	B43	I/O	TTL/ST	
PMD13	_	80	D8	A54	I/O	TTL/ST	
PMD14	—	83	D7	B45	I/O	TTL/ST	
PMD15	—	84	C7	A56	I/O	TTL/ST	
PMALL	30	44	L8	A29	0	_	Parallel Master Port address latch enable low byte (Multiplexed Master modes)
PMALH	29	43	K7	B24	0		Parallel Master Port address latch enable high byte (Multiplexed Master modes)
PMRD	53	82	B8	A55	0		Parallel Master Port read strobe
PMWR	52	81	C8	B44	0		Parallel Master Port write strobe
VBUS	34	54	H8	A37	I	Analog	USB bus power monitor
VUSB3V3	35	55	H9	B30	Р	_	USB internal transceiver supply. If the USB module is <i>not</i> used, this pin must be connected to VDD.
VBUSON	11	20	H1	A12	0		USB Host and OTG bus power control output
D+	37	57	H10	B31	I/O	Analog	USB D+
D-	36	56	J11	A38	I/O	Analog	USB D-
USBID	33	51	K10	A35	I	ST	USB OTG ID detect
C1RX	58	87	B6	B49	I	ST	CAN1 bus receive pin
C1TX	59	88	A6	A60	0		CAN1 bus transmit pin
AC1RX	32	40	K6	A27	I	ST	Alternate CAN1 bus receive pin
AC1TX	31	39	L6	B22	0		Alternate CAN1 bus transmit pin
C2RX	29	90	A5	A61	Ι	ST	CAN2 bus receive pin
C2TX	21	89	E6	B50	0		CAN2 bus transmit pin
AC2RX	_	8	E2	A6	1	ST	Alternate CAN2 bus receive pin
Legend: C	CMOS = CMC ST = Schmitt T	S compatib	le input or c t with CMOS	output S levels	A O	nalog = A = Outpu	nalog input P = Power t I = Input

PINOLIT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Bit

Bit

Bit

Range	31/23/15/7	30/22/14/6	/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0												
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
31.24	_	_				_		/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 D> ardware							
23.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
20.10	—	—	—	—	—	—	Image: Control of the control of th								
15:8	R/W-0, HC	R/W-0	R-0, HS	R-0, HS	R-0, HSC	U-0	U-0	U-0							
	WR	WREN	WRERR	LVDERR	LVDSTAT			—							
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
	_	—	_			NVMOR	2<3:0>								
l egend:		II – Unimple	mented hit r	ad as '0'		HSC - Set an	d Cleared by	hardware							
R - Read	eadable bit $W = Writable bit$ $HS = Set by hardware$ $HC = Cleared by hardware$														
-n = Value	$\frac{1}{2} = \text{Bit is set} \qquad 10^{\circ} = \text{Bit is cleared} \qquad x = \text{Bit is unknown}$														
bit 31-16	it 31-16 Unimplemented: Read as '0'														
bit 15	WR: Write Control bit														
DIC 10	WK: Write Control bit This bit is writable when WREN = 1 and the unlock sequence is followed.														
	I his bit is writable when WREN = 1 and the unlock sequence is followed. 1 = Initiate a Flash operation. Hardware clears this bit when the operation completes														
	 I = Initiate a Flash operation. Hardware clears this bit when the operation completes 0 = Flash operation complete or inactive 														
hit 14	 ∪ = Flash operation complete or inactive WREN: Write Enable bit 														
	1 = Enable writes to WR bit and enables LVD circuit														
	 1 = Enable writes to WR bit and enables LVD circuit 0 = Disable writes to WR bit and disables LVD circuit 														
	• U = USADIE WITTES TO VYK DIT AND DISADIES LVD CITCUIT Note: This is the only bit in this register that is reset by a device Reset														
hit 13	WRERR: Write Error bit ⁽¹⁾														
DIL 15	WRERR: Write Error bit\'/ This bit is read-only and is automatically set by hardware														
	1 – Program	or erase sec	wence did no	t complete si	iccessfully										
	0 = Program	or erase sec	uence compl	eted normally	/										
bit 12		w-Voltage D	etect Error bit	(IVD circuit)	must be enabl	ed)(1)									
	This bit is rea	ad-only and is	s automaticall	y set by hard	ware.										
	1 = Low-volt	age detected	(possible dat	a corruption.	if WRERR is	set)									
	0 = Voltage I	evel is accep	table for prog	ramming	-	7									
bit 11	LVDSTAT: L	ow-Voltage D	etect Status b	oit (LVD circu	it must be ena	bled) ⁽¹⁾									
	This bit is rea	ad-only and is	s automaticall	y set, and cle	eared, by hard	ware.									
	1 = Low-volt	age event is a	active												
	0 = Low-volt	age event is i	not active												
bit 10-4	Unimpleme	nted: Read a	is '0'												
bit 3-0	NVMOP<3:0	>: NVM Ope	ration bits												
	These bits a	re writable wł	nen WREN =	0.											
	1111 = Rese	erved													
	•														
	•														
	0111 = Rese	erved													
	0110 = No c	peration													
	0101 = Prog	ıram Flash (P	PFM) erase op	eration: eras	es PFM if all p	ages are not v	vrite-protected	t							
	0100 = Page	e erase opera	ation: erases p	bage selected	by NVMADD	R if it is not wr	ite-protected								
	0011 = Row program operation: programs row selected by NVMADDR if it is not write-protected														
	0010 = NOC	peration	oration: progr	ame word as	lacted by NV/		ot write prote	atod							
	0001 = 0000	peration	eration, progr	anis woru se		אואטטיא וו ונ וא f	ior while-prote	CIEU							

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Bit

Bit

Bit

Bit

Bit

Bit

Note 1: This bit is cleared by setting NVMOP == 0000b, and initiating a Flash operation (i.e., WR).

		Vector		Interru	ot Bit Location	
Interrupt Source ⁽¹⁾	Number	Number	Flog	Enable	Priority	Sub Briarity
		07	Flay			
AD1 – ADC1 Convert Done	33	27	IFS1<1>	IEC1<1>	IPC6<28:26>	IPC6<25:24>
PMP – Parallel Master Port	34	28	IFS1<2>	IEC1<2>	IPC7<4:2>	IPC7<1:0>
CMP1 – Comparator Interrupt	35	29	IFS1<3>	IEC1<3>	IPC7<12:10>	IPC7<9:8>
CMP2 – Comparator Interrupt	36	30	IFS1<4>	IEC1<4>	IPC7<20:18>	IPC7<17:16>
U2E – UAR I2 Error SPI2E – SPI2 Fault I2C4B – I2C4 Bus Collision Event	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>
U2RX – UART2 Receiver SPI2RX – SPI2 Receive Done I2C4S – I2C4 Slave Event	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>
U2TX – UART2 Transmitter SPI2TX – SPI2 Transfer Done IC4M – I2C4 Master Event	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>
U3E – UART3 Error SPI4E – SPI4 Fault I2C5B – I2C5 Bus Collision Event	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>
U3RX – UART3 Receiver SPI4RX – SPI4 Receive Done I2C5S – I2C5 Slave Event	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>
U3TX – UART3 Transmitter SPI4TX – SPI4 Transfer Done IC5M – I2C5 Master Event	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>
I2C2B – I2C2 Bus Collision Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>
I2C2S – I2C2 Slave Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>
I2C2M – I2C2 Master Event	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>
FSCM – Fail-Safe Clock Monitor	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>
RTCC – Real-Time Clock and Calendar	47	35	IFS1<15>	IEC1<15>	IPC8<28:26>	IPC8<25:24>
DMA0 – DMA Channel 0	48	36	IFS1<16>	IEC1<16>	IPC9<4:2>	IPC9<1:0>
DMA1 – DMA Channel 1	49	37	IFS1<17>	IEC1<17>	IPC9<12:10>	IPC9<9:8>
DMA2 – DMA Channel 2	50	38	IFS1<18>	IEC1<18>	IPC9<20:18>	IPC9<17:16>
DMA3 – DMA Channel 3	51	39	IFS1<19>	IEC1<19>	IPC9<28:26>	IPC9<25:24>
DMA4 – DMA Channel 4	52	40	IFS1<20>	IEC1<20>	IPC10<4:2>	IPC10<1:0>
DMA5 – DMA Channel 5	53	41	IFS1<21>	IEC1<21>	IPC10<12:10>	IPC10<9:8>
DMA6 – DMA Channel 6	54	42	IFS1<22>	IEC1<22>	IPC10<20:18>	IPC10<17:16>
DMA7 – DMA Channel 7	55	43	IFS1<23>	IEC1<23>	IPC10<28:26>	IPC10<25:24>
FCE – Flash Control Event	56	44	IFS1<24>	IEC1<24>	IPC11<4:2>	IPC11<1:0>
USB – USB Interrupt	57	45	IFS1<25>	IEC1<25>	IPC11<12:10>	IPC11<9:8>
CAN1 – Control Area Network 1	58	46	IFS1<26>	IEC1<26>	IPC11<20:18>	IPC11<17:16>
CAN2 – Control Area Network 2	59	47	IFS1<27>	IEC1<27>	IPC11<28:26>	IPC11<25:24>
ETH – Ethernet Interrupt	60	48	IFS1<28>	IEC1<28>	IPC12<4:2>	IPC12<1:0>
IC1E – Input Capture 1 Error	61	5	IFS1<29>	IEC1<29>	IPC1<12:10>	IPC1<9:8>
IC2E – Input Capture 2 Error	62	9	IFS1<30>	IEC1<30>	IPC2<12:10>	IPC2<9:8>

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess							-	-		Bi	ts											
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets			
2190		31:16	_		—	-	_	_	_	—	_	-	_	_	—	—	—	—	0000			
3100	DCHTD3IZ	15:0								CHDSIZ	2<15:0>								0000			
3190	DCH1SPTR	31:16	—	—	—	—	_	_	—	—	—	—	_	_	—	—	—	_	0000			
5150	Donnor IIX	15:0				•				CHSPT	R<15:0>								0000			
31A0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000			
0.7.0		15:0								CHDPT	R<15:0>								0000			
31B0	DCH1CSIZ	31:16		—	—	—	—	—	—	—	—	—	—	—				_	0000			
		15:0				-				CHCSIZ	2<15:0>								0000			
31C0	DCH1CPTR	31:16	_	—	-	—	—	—	_	_	—	—	—	—	—	—	—	_	0000			
		15:0				1				CHCPT	≺<15:0>								0000			
31D0	DCH1DAT	31:16	_							_	—	_	_	-					0000			
-		15:0	_	_		_	_	_	_	_				CHPDA	AT<7:0>				0000			
31E0	DCH2CON	31:16		_		_	_	_	_						_		-	-	0000			
		15:0	CHBUST							CHCHINS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR					
31F0	DCH2ECON	15.0	_	_			0 <7:0	_	_	_	CEORCE	CAROPT							TEROO			
		31.16					Q<1.0>	_	_			CHSHIE				CHCCIE	CHTAIE	CHERIE	0000			
3200	DCH2INT	15.0									CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000			
-		31.16									ONODI	orioriii	ONDEN	ONDIN	OLIDOI	onoon	OT IT AI	OTIET	0000			
3210	DCH2SSA	15.0								CHSSA	<31:0>								0000			
		31:16																	0000			
3220	DCH2DSA	15:0								CHDSA	<31:0>								0000			
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000			
3230	DCH2SSIZ	15:0								CHSSIZ	2<15:0>								0000			
0040	DOLIODOI7	31:16	_	_		_	_	_	_	—	_	_	_	_	_	_	_		0000			
3240	DCH2DSIZ	15:0								CHDSIZ	2<15:0>								0000			
2050		31:16	—	—	_	—	_	_	—	—	—	—	_	_	_			_	0000			
3250	DCH25PTR	15:0								CHSPT	R<15:0>								0000			
3260		31:16	—	_	_	—	_	_	_	—	—	_	_	_	—	_	_	_	0000			
3200		15:0								CHDPT	R<15:0>								0000			
3270	DCH2CSI7	31:16	_	_	-	-	_	_	_	_	_	—	_	_	—	_	—	_	0000			
5210	201120012	15:0								CHCSIZ	2<15:0>								0000			
2000	DOLIDODTO	31:16	—	_	_	-	_	—	—	—	—	—	_	—	—	—	—	—	0000			
3280		15:0								CHCPT	R<15:0>								0000			

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 5 **CHDDIF:** Channel Destination Done Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
 - 0 = No interrupt is pending
- bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
 0 = No interrupt is pending

bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit

- 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
- 0 = No interrupt is pending

bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit

- 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
- 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending

bit 0 CHERIF: Channel Address Error Interrupt Flag bit

- 1 = A channel address error has been detected (either the source or the destination address is invalid)
- 0 = No interrupt is pending

PIC32MX5XX/6XX/7XX

REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24				—		—	—	—
22.16	U-0	U-0						
23.10	—	—	_	—	_	—	Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 U-0 U-0 U-0 — — — RWC-0, HS U-0 R/WC-0, HS SESENDIF — VBUSVDIF	
15.0	U-0	U-0						
15.0	—	—	-	—	-	—	—	—
7:0	R/WC-0, HS	U-0	R/WC-0, HS					
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state detected
 - 0 = No change in ID state detected

bit 6 T1MSECIF: 1 Millisecond Timer bit

- 1 = 1 millisecond timer has expired
- 0 = 1 millisecond timer has not expired
- bit 5 LSTATEIF: Line State Stable Indicator bit
 - 1 = USB line state has been stable for 1 ms, but different from last time
 - 0 = USB line state has not been stable for 1 ms

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level

bit 2 SESENDIF: B-Device VBUS Change Indicator bit

- 1 = A change on the session end input was detected
- 0 = No change on the session end input was detected

bit 1 Unimplemented: Read as '0'

- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input detected
 - 0 = No change on the session valid input detected

TABLE 12-5: PORTD REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES

ess		6								Bi	ts								9
Virtual Add (BF88_#	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	TRISD	31:16	_	_	_	_	-	—	_	_	_	_	_	_	_	_	_	_	0000
6000		15:0		_		_	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
6000		31:16	_	—	_	—		—	-		_	_	_	_	_	_	_	_	0000
0000	FORTD	15:0	—	—	—	—	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0		31:16		—	_	—		_			_	_	_	_	_	-		_	0000
00E0	LAID	15:0	-	_	_	—	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60E0	0000	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
60F0	ODCD	15:0	_	_	_	—	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-6: PORTD REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F512L, AND PIC32MX795F512L DEVICES

ess		ge								В	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6000	TRICD	31:16	-	_	_	-	—	—	—	—	-	—	_	_	—	—	_	_	0000
6000	TRISD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
6000		31:16	_	_	_	_	_	—	_	_		_	_	_	—	—	_	_	0000
00D0	FORTD	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6050		31:16	—	—	—	—			—	_	_	—	—	—	—	—	—	—	0000
OUEU	LAID	15:0	LAT15	LAT14	LAT13	LAT12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6050	0000	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
00F0	UDUD	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Ļ

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

13.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the low-power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

13.1 Additional Supported Features

- Selectable clock prescaler
- Timer operation during Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

A simplified block diagram of the Timer1 module is illustrated in Figure 13-1.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard. Figure 19-1 illustrates the I^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	-	—		—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	-	—		—
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSE	RXBUSE	—	-	—	EWMARK	FWMARK
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT		TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	emented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-15	Unimplemented: Read as '0'
bit 14	TXBUSE: Transmit BVCI Bus Error Interrupt bit
	1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 13	RXBUSE: Receive BVCI Bus Error Interrupt bit
	 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 12-10	Unimplemented: Read as '0'
bit 9	EWMARK: Empty Watermark Interrupt bit
	1 = Empty Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.
bit 8	FWMARK: Full Watermark Interrupt bit
	1 = Full Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 7	RXDONE: Receive Done Interrupt bit
	 1 = RX packet was successfully received 0 = No interrupt pending
	This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
Note:	It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
	_			B2	BIPKTGP<6:()>		

Legend:

Logona			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		—	—					—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10		—	—					—	
15.0	U-0	U-0	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	
10.0	—	—		CWINDOW<5:0>					
7:0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	
7.0	_	_	_	_		RETX<	<3:0>		

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 **CWINDOW<5:0>:** Collision Window bits

This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RETX<3:0>: Retransmission Maximum bits

This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is '0xF'.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

29.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MX5XX/6XX/7XX family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. Key features include:

- Flexible device configuration
- Watchdog Timer (WDT)
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

29.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- DEVID: Device and Revision ID Register

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	—	—	—
	R/P	r-1	r-1	R/P	R/P	R/P	R/P	R/P
23:16	FWDTEN	—	—	WDTPS<4:0>				
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P
15:8	FCKSM<1:0>		FPBDI	V<1:0>	—	OSCIOFNC	POSCM	OD<1:0>
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P
7:0	IESO	_	FSOSCEN	_	_	F	NOSC<2:0>	

REGISTER 29-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend: r = Reserved bit P = Programmable bit			
R = Readable bit	W = Writable bit	able bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Reserved: Write '1'

bit 23 FWDTEN: Watchdog Timer Enable bit

1 = The WDT is enabled and cannot be disabled by software 0 = The WDT is not enabled; it can be enabled in software

- bit 22-21 Reserved: Write '1'
- bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100 = 1:1048576 10011 = 1:524288 10010 = 1:262144 10001 = 1:131072 10000 = 1:65536 01111 = 1:32768 01110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:204801010 = 1:1024 01001 = 1:51201000 = 1:256 00111 = 1:128 00110 = 1:6400101 = 1:32 00100 = 1:1600011 = 1:800010 = 1:4 00001 = 1:2 00000 = 1:1

All other combinations not shown result in operation = 10100

bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits

1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled

01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled

00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

REGISTER 29-3: DEVCFG2: DEVICE CONFIGURATION WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	-	—	—
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P
23:16	—	—	—	—	—	FPLLODIV<2:0>		
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P
15:8	UPLLEN	—	—	—	—	UPLLIDIV<2:0>		
7.0	r-1	R/P-1	R/P	R/P-1	r-1	R/P	R/P	R/P
7:0		FPLLMUL<2:0>			_	F	PLLIDIV<2:0	>

Legend:	r = Reserved bit	P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	Unimplemented bit, read as '0'		
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared	x = Bit is unknown		

bit 31-19 Reserved: Write '1'

bit 18-16 **FPLLODIV<2:0>:** PLL Output Divider bits 111 = PLL output divided by 256

- 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2
- 000 = PLL output divided by 1
- bit 15 UPLLEN: USB PLL Enable bit 1 = Disable and bypass USB PLL 0 = Enable USB PLL
- bit 14-11 Reserved: Write '1'
- bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider 000 = 1x divider
- bit 7 **Reserved:** Write '1'
- bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits
 - 111 = 24x multiplier
 - 110 = 21x multiplier
 - 101 = 20x multiplier
 - 100 = 19x multiplier
 - 011 = 18x multiplier
 - 010 = 17x multiplier 001 = 16x multiplier
 - 001 = 10x multiplier
- bit 3 **Reserved:** Write '1'

31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Min. Typical ⁽¹⁾ I			Conditions	
OS10	Fosc	External CLKI Frequency (External clocks only allowed in EC and ECPLL modes)	DC 4		50 50	MHz MHz	EC (Note 4) ECPLL (Note 3)	
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 4)	
OS12			4		10	MHz	XTPLL (Notes 3,4)	
OS13			10	—	25	MHz	HS (Note 4)	
OS14			10	—	25	MHz	HSPLL (Notes 3,4)	
OS15			32	32.768	100	kHz	Sosc (Note 4)	
OS20	Tosc	Tosc = 1/Fosc = Tcy ⁽²⁾	—	_	—	—	See parameter OS10 for Fosc value	
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	—	ns	EC (Note 4)	
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	0.05 x Tosc	ns	EC (Note 4)	
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)	
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)	
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	—	12	_	mA/V	VDD = 3.3V, TA = +25°C (Note 4)	

TABLE 32-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

3: PLL input requirements: 4 MHz ≤ FPLLIN ≤ 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but is only tested at 10 MHz at manufacturing.

4: This parameter is characterized, but not tested in manufacturing.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PIC32 MX 5XX F 512 H T - 80 I / PT - XXX Example: Microchip Brand	
Flash Memory Family	
Architecture	MX = 32-bit RISC MCU core
Product Groups	5XX = General purpose microcontroller family 6XX = General purpose microcontroller family 7XX = General purpose microcontroller family
Flash Memory Family	F = Flash program memory
Program Memory Size	64 = 64K 128 = 128K 256 = 256K 512 = 512K
Pin Count	H = 64-pin L = 100-pin, 121-pin, 124-pin
Speed (see Note 1)	Blank or 80 = 80 MHz
Temperature Range	I = -40°C to +85°C (Industrial) V = -40°C to +105°C (V-Temp)
Package	PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) BG = 121-Lead (10x10x1.1 mm) TFBGA (Plastic Thin Profile Ball Grid Array) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array)
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample
Note 1: This option is not available for PIC32MX534/564/664/764 devices.	