

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f064lt-v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX5XX/6XX/7XX

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Nun	nber ⁽¹⁾				
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
AC2TX	_	7	E4	B4	0		Alternate CAN2 bus transmit pin
ERXD0	61	41	J7	B23	I	ST	Ethernet Receive Data 0 ⁽²⁾
ERXD1	60	42	L7	A28	I	ST	Ethernet Receive Data 1 ⁽²⁾
ERXD2	59	43	K7	B24	I	ST	Ethernet Receive Data 2 ⁽²⁾
ERXD3	58	44	L8	A29	I	ST	Ethernet Receive Data 3 ⁽²⁾
ERXERR	64	35	J5	B20	I	ST	Ethernet receive error input ⁽²⁾
ERXDV	62	12	F2	A8	I	ST	Ethernet receive data valid ⁽²⁾
ECRSDV	62	12	F2	A8	I	ST	Ethernet carrier sense data valid ⁽²⁾
ERXCLK	63	14	F3	A9	I	ST	Ethernet receive clock ⁽²⁾
EREFCLK	63	14	F3	A9	I	ST	Ethernet reference clock ⁽²⁾
ETXD0	2	88	A6	A60	0	—	Ethernet Transmit Data 0 ⁽²⁾
ETXD1	3	87	B6	B49	0	—	Ethernet Transmit Data 1 ⁽²⁾
ETXD2	43	79	A9	B43	0	—	Ethernet Transmit Data 2 ⁽²⁾
ETXD3	42	80	D8	A54	0	—	Ethernet Transmit Data 3 ⁽²⁾
ETXERR	54	89	E6	B50	0	—	Ethernet transmit error ⁽²⁾
ETXEN	1	83	D7	B45	0	_	Ethernet transmit enable ⁽²⁾
ETXCLK	55	84	C7	A56	I	ST	Ethernet transmit clock ⁽²⁾
ECOL	44	10	E3	A7	I	ST	Ethernet collision detect ⁽²⁾
ECRS	45	11	F4	B6	I	ST	Ethernet carrier sense ⁽²⁾
EMDC	30	71	C11	A46	0	_	Ethernet management data clock ⁽²⁾
EMDIO	49	68	E9	B37	I/O	_	Ethernet management data ⁽²⁾
AERXD0	43	18	G1	A11	I	ST	Alternate Ethernet Receive Data 0 ⁽²⁾
AERXD1	42	19	G2	B10	I	ST	Alternate Ethernet Receive Data 1 ⁽²⁾
AERXD2	—	28	L2	A21	I	ST	Alternate Ethernet Receive Data 2 ⁽²⁾
AERXD3	—	29	K3	B17	I	ST	Alternate Ethernet Receive Data 3 ⁽²⁾
AERXERR	55	1	B2	A2	I	ST	Alternate Ethernet receive error input ⁽²⁾
AERXDV	—	12	F2	A8	I	ST	Alternate Ethernet receive data valid ⁽²⁾
AECRSDV	44	12	F2	A8	Т	ST	Alternate Ethernet carrier sense data valid ⁽²⁾
AERXCLK	_	14	F3	A9	I	ST	Alternate Ethernet receive clock ⁽²⁾
AEREFCLK	45	14	F3	A9	I	ST	Alternate Ethernet reference clock ⁽²⁾
AETXD0	59	47	L9	B26	0		Alternate Ethernet Transmit Data 0 ⁽²⁾
AETXD1	58	48	K9	A31	0		Alternate Ethernet Transmit Data 1 ⁽²⁾
AETXD2	_	44	L8	A29	0		Alternate Ethernet Transmit Data 2 ⁽²⁾
AETXD3	—	43	K7	B24	0	_	Alternate Ethernet Transmit Data 3 ⁽²⁾
AETXERR	_	35	J5	B20	0		Alternate Ethernet transmit error ⁽²⁾
AETXEN	54	67	E8	A44	0	—	Alternate Ethernet transmit enable ⁽²⁾
AETXCLK	_	66	E11	B36	I	ST	Alternate Ethernet transmit clock ⁽²⁾
AECOL	—	42	L7	A28	I	ST	Alternate Ethernet collision detect ⁽²⁾
Lawand. C		• • • • • • • • • • • • • • • • • • •			٨		D Davies

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input P = PowerO = Output I = Input

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

		Vector		Interru	ot Bit Location	
Interrupt Source ⁽¹⁾	Number	Number	Flog	Enable	Priority	Sub Briarity
		07	Flay			
AD1 – ADC1 Convert Done	33	27	IFS1<1>	IEC1<1>	IPC6<28:26>	IPC6<25:24>
PMP – Parallel Master Port	34	28	IFS1<2>	IEC1<2>	IPC7<4:2>	IPC7<1:0>
CMP1 – Comparator Interrupt	35	29	IFS1<3>	IEC1<3>	IPC7<12:10>	IPC7<9:8>
CMP2 – Comparator Interrupt	36	30	IFS1<4>	IEC1<4>	IPC7<20:18>	IPC7<17:16>
U2E – UAR I2 Error SPI2E – SPI2 Fault I2C4B – I2C4 Bus Collision Event	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>
U2RX – UART2 Receiver SPI2RX – SPI2 Receive Done I2C4S – I2C4 Slave Event	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>
U2TX – UART2 Transmitter SPI2TX – SPI2 Transfer Done IC4M – I2C4 Master Event	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>
U3E – UART3 Error SPI4E – SPI4 Fault I2C5B – I2C5 Bus Collision Event	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>
U3RX – UART3 Receiver SPI4RX – SPI4 Receive Done I2C5S – I2C5 Slave Event	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>
U3TX – UART3 Transmitter SPI4TX – SPI4 Transfer Done IC5M – I2C5 Master Event	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>
I2C2B – I2C2 Bus Collision Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>
I2C2S – I2C2 Slave Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>
I2C2M – I2C2 Master Event	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>
FSCM – Fail-Safe Clock Monitor	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>
RTCC – Real-Time Clock and Calendar	47	35	IFS1<15>	IEC1<15>	IPC8<28:26>	IPC8<25:24>
DMA0 – DMA Channel 0	48	36	IFS1<16>	IEC1<16>	IPC9<4:2>	IPC9<1:0>
DMA1 – DMA Channel 1	49	37	IFS1<17>	IEC1<17>	IPC9<12:10>	IPC9<9:8>
DMA2 – DMA Channel 2	50	38	IFS1<18>	IEC1<18>	IPC9<20:18>	IPC9<17:16>
DMA3 – DMA Channel 3	51	39	IFS1<19>	IEC1<19>	IPC9<28:26>	IPC9<25:24>
DMA4 – DMA Channel 4	52	40	IFS1<20>	IEC1<20>	IPC10<4:2>	IPC10<1:0>
DMA5 – DMA Channel 5	53	41	IFS1<21>	IEC1<21>	IPC10<12:10>	IPC10<9:8>
DMA6 – DMA Channel 6	54	42	IFS1<22>	IEC1<22>	IPC10<20:18>	IPC10<17:16>
DMA7 – DMA Channel 7	55	43	IFS1<23>	IEC1<23>	IPC10<28:26>	IPC10<25:24>
FCE – Flash Control Event	56	44	IFS1<24>	IEC1<24>	IPC11<4:2>	IPC11<1:0>
USB – USB Interrupt	57	45	IFS1<25>	IEC1<25>	IPC11<12:10>	IPC11<9:8>
CAN1 – Control Area Network 1	58	46	IFS1<26>	IEC1<26>	IPC11<20:18>	IPC11<17:16>
CAN2 – Control Area Network 2	59	47	IFS1<27>	IEC1<27>	IPC11<28:26>	IPC11<25:24>
ETH – Ethernet Interrupt	60	48	IFS1<28>	IEC1<28>	IPC12<4:2>	IPC12<1:0>
IC1E – Input Capture 1 Error	61	5	IFS1<29>	IEC1<29>	IPC1<12:10>	IPC1<9:8>
IC2E – Input Capture 2 Error	62	9	IFS1<30>	IEC1<30>	IPC2<12:10>	IPC2<9:8>

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

Nome Nome <t< th=""><th></th><th></th><th>F</th><th>1032101</th><th>K/95F51</th><th>2H DE</th><th>/ICES</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			F	1032101	K/95F51	2H DE	/ICES													
95 95<	ess										В	lits								
1000 INTCON 31:16 SSC 1010 INTSTAT9 31:16 <	Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1000	INTCON	31:16	—	_	—	-	_	—	—	_		—	_	_	—	—	—	SS0	0000
1010 INTSTAT00 31:16 -			15:0	_		_	MVEC	_		TPC<2:0>		_	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1020 IPTMR 31:16 - - - - - - - VEC43(JS) 1030 IFS0 31:16 IZC1NIF IZC1NIF IZC1NIF VIEXIF VIEXIF SPI3EIF - - - OCSIF ICSIF TSIF INTAIF OC4IF IC4IF T4IF 1030 IFS0 31:16 ICSIF IC20IF SPI3EIF - - - OCSIF ICSIF TSIF INTAIF OC4IF IC4IF T4IF 1040 IFS1 15.0 INTAIF OC2IF IC2IF T2IF INTTIF OC2IF IC2IF T1IF INTOIF CS1IF CS0IF CTIF 1040 IFS1 15.0 INTGE IC2IF CANIF U2XIF	1010	INTSTAT ⁽³⁾	31:16		_	_		_				_	—	-	_	— 	-			0000
1020 IPTMR 01.0 1030 IFS0 31.16 I2C1NIF I2C1SIF I2C1SIF I2C1SIF VITXIF U1RXIF U2RXIF U2RXIF U2RXIF U2RXIF U3RXIF			15:0	_	—	—	—	—		SRIPL<2:0>		-	-			VEC	<5:0>			0000
$ 1030 \ 1FS0 \ 31:16 \ 12C1MF \ 12C1SIF \ 12C1SIF \ 12C1SIF \ 12C1SIF \ 12C1SIF \ 12C3SIF \ 12$	1020	IPTMR	15:0			-	IPTMR<31:0>						0000							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF		_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INTOIF	CS1IF	CS0IF	CTIF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF ⁽²⁾	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1040	IFS1	15:0	RTCCIF	FSCMIF	—	_	-	U2TXIF SPI4TXIF	U2RXIF SPI4RXIF	U2EIF SPI4EIF	U3TXIF SPI2TXIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			31:16	_	_	_	_	_	_		-		_	_	_	_	_	_	_	0000
$ \frac{1}{1060} \frac{1}{160} \frac{1}{100} $	1050	IFS2	15:0	_	_	_	_	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE		_	_	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE ⁽²⁾	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1070	IEC1	15:0	RTCCIE	FSCMIE	_	-	_	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			31:16		_	_	_	_	_	-	_			_	_	_	_	_	_	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1080	IEC2	15:0	_	_	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000	1000	31:16	_	_	_		INT0IP<2:0>	>	INTOIS	S<1:0>	_	—	_		CS1IP<2:0>	•	CS1IS	S<1:0>	0000
10A0 IPC1 31:16 - - - - - - OC1IP<2:0>	1090	IPC0	15:0		_	—		CS0IP<2:0>		CSOIS	S<1:0>	_	_	—		CTIP<2:0>		CTIS	<1:0>	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1040	IPC1	31:16	_	—	—	INT1IP<2:0> INT1IS<1:0> OC1IP<2:0>		>	OC1IS	S<1:0>	0000								
	TUAU		15:0	—	—	—		IC1IP<2:0>		IC1IS	<1:0>	—	—	—	T1IP<2:0>		T1IS	<1:0>	0000	
	10B0	IPC2	31:16	—	—	—	· INT2IP<2:0> INT2IS<1:0> OC2IP<2:0>			OC2IS	S<1:0>	0000								
15:0 <u> </u>	1000	11 02	15:0	—	_	-		IC2IP<2:0>		IC2IS	<1:0>	_		_		T2IP<2:0>		T2IS	<1:0>	0000
10C0 IPC3 31:16 INT3IP<2:0> INT3IS<1:0> OC3IP<2:0> OC3IS<1:0>	10C0	IPC3	31:16	—	-	-		INT3IP<2:0>	>	INT3IS	S<1:0>	-	-	-	ļ	OC3IP<2:0>	>	OC3IS	6<1:0>	0000
15:0 - - T3IP<2:0> T3IS<1:0>			15:0					IC3IP<2:0>		IC3IS	<1:0>	—	—	—		T3IP<2:0>		T3IS	<1:0>	0000

TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. nknown value on Reset:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers.

PIC32MX5XX/6XX/7XX

2:

3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—		—	—	
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
23.10	—	—	—	—	—	—	—	SS0	
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	—	—	—	MVEC	—	TPC<2:0>			
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Read as '0'

- bit 16 **SS0:** Single Vector Shadow Register Set bit
 - 1 = Single vector is presented with a shadow register set
 - 0 = Single vector is not presented with a shadow register set
- bit 15-13 Unimplemented: Read as '0'
- bit 12 MVEC: Multiple Vector Configuration bit
 - 1 = Interrupt controller configured for Multi-vector mode
 - 0 = Interrupt controller configured for Single-vector mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 **INT1EP:** External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	—	_	—	—		—	_		
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	—	—	—	—	—		RIPL<2:0> ⁽¹⁾			
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0					VEC	<5:0> ⁽¹⁾				

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 **RIPL<2:0>:** Requested Priority Level bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- **Note 1:** This value should only be used when the interrupt controller is configured for Single-vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	TPTMR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	TPTMR<23:16>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	TPTMR<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				TPTN	1R<7:0>					

REGISTER 7-3: TPTMR: TEMPORAL PROXIMITY TIMER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 TPTMR<31:0>: Temporal Proximity Timer Reload bits

Used by the Temporal Proximity Timer as a reload value when the Temporal Proximity timer is triggered by an interrupt event.

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)

REGISTE	r 7-0. IPCX. INTERROFT PRIORITY CONTROL REGISTER (CONTINUED)
bit 12-10	IP01<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 9-8	IS01<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP00<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• $010 = \text{Interrupt priority is } 2$
	010 = Interrupt priority is 2
	000 = Interrupt is disabled
hit 1-0	ISON-1:0-> Interrunt Sub-priority bits
DICTO	11 - Interrunt sub-nriority is 3
	11 - Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit
	definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—	—	—	—	—	—	—
15.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
10.0	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	—	—	—
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE		TCKP	S<1:0>		TSYNC	TCS	

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit⁽¹⁾
 - 1 = Timer is enabled 0 = Timer is disabled

bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

- 1 = Discontinue operation when device enters Idle mode
- 0 = Continue operation when device is in Idle mode

bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

- 1 = Writes to TMR1 are ignored until pending write operation completes
- 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

bit 11 TWIP: Asynchronous Timer Write in Progress bit

In Asynchronous Timer mode:

1 = Asynchronous write to TMR1 register in progress

0 = Asynchronous write to TMR1 register complete

In Synchronous Timer mode:

This bit is read as '0'.

- bit 10-8 **Unimplemented:** Read as '0'
- bit 7 TGATE: Timer Gated Time Accumulation Enable bit

<u>When TCS = 1:</u> This bit is ignored.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 =Gated time accumulation is disabled
- bit 6 Unimplemented: Read as '0'
- bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits
 - 11 = 1:256 prescale value
 - 10 = 1:64 prescale value
 - 01 = 1:8 prescale value
 - 00 = 1:1 prescale value
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

15.1 Control Registers

TABLE 15-1: WATCHDOG TIMER REGISTER MAP

ess		ē		Bits													(2)		
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽
0000		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0000	WDICON	15:0	ON	_	_	_	_	_	_	_	_		S	WDTPS<4:0	>		_	WDTCLR	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16. "Output Compare"** (DS60001111) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	FRMCNT<2:0>				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
23.10	—	—	—	—	—	—	SPIFE	ENHBUF ⁽²⁾			
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	ON ⁽¹⁾	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾			
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXIS	EL<1:0>			

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER

Legend:

0						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31	FRMEN: Framed SPI Support	bit
		Dir

- 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
- 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on SSx pin bit (only Framed SPI mode) 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 **FRMPOL:** Frame Sync Polarity bit (only Framed SPI mode)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed Sync mode.
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23-18 Unimplemented: Read as '0'
- bit 17 SPIFE: Frame Sync Pulse Edge Select bit (only Framed SPI mode)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 ENHBUF: Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

0 = Start condition is not in progress

I2CxCON: I²C CONTROL REGISTER (CONTINUED) REGISTER 19-1: **GCEN:** General Call Enable bit (when operating as I²C slave) bit 7 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address is disabled STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) bit 6 Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching bit 5 ACKDT: Acknowledge Data bit (when operating as I²C master, applicable during master receive) Value that is transmitted when the software initiates an acknowledge sequence. 1 = Send NACK during an acknowledge 0 = Send ACK during an acknowledge bit 4 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress bit 3 **RCEN:** Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for l^2C . Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress **PEN:** Stop Condition Enable bit (when operating as I²C master) bit 2 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition is not in progress **RSEN:** Repeated Start Condition Enable bit (when operating as I²C master) bit 1 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition is not in progress **SEN:** Start Condition Enable bit (when operating as I²C master) bit 0 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.

Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	-	—	—	—	_	
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		MONT	H10<3:0>		MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		DAY	10<1:0>		DAY01<3:0>				
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
7:0	_	_	_	WDAY01<3:0>					

REGISTER 22-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

REGISTER 25-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	FRMRXOKCNT<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				FRMRXO	(CNT<7:0>						

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

26.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The Comparator module contains two comparators that can be configured in a variety of ways.

Key features of the Comparator module include:

- Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be inverted
- Selectable interrupt generation

A block diagram of the Comparator module is illustrated in Figure 26-1.

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHA	RACTERIST	ICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$									
Param. No.	Typical ⁽³⁾	Max.	Units	Units Conditions								
Operatir	Operating Current (IDD) ^(1,2) for PIC32MX534/564/664/764 Family Devices											
DC20c	6	9	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	4 MHz					
DC20d	7	10			+105⁰C							
DC20e	2	—		Code executing from SRAM	_							
DC21b	19	32	m۸	Code executing from Flash			25 MHz					
DC21c	14	_	IIIA	Code executing from SRAM		_	(Note 4)					
DC22b	31	50	m۸	Code executing from Flash			60 MHz					
DC22c	29	—	IIIA	Code executing from SRAM	_	_	(Note 4)					
DC23c	39	65	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	80 MHz					
DC23d	49	70			+105⁰C							
DC23e	39	_		Code executing from SRAM	_							
DC25b	100	150	μΑ	—	+25°C	3.3V	LPRC (31 kHz) (Note 4)					

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- **2:** The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

PIC32MX5XX/6XX/7XX

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHA	RACTERIS	TICS	Standar (unless Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Typical ⁽²⁾	Max.	Units			Conditions				
Power-D	Oown Curre	nt (IPD) ⁽¹⁾ f	or PIC32	MX575/675/	/695/775	795 Family Devices				
DC40	10	40		-40°C						
DC40a	36	100		+25°C	2 21/	Rose Rower Down Current (Note 6)				
DC40b	400	720		+85°C	2.3V	Base Power-Down Current (Note 6)				
DC40h	900	1800		+105°C						
DC40c	41	120		+25°C	3.3V	Base Power-Down Current				
DC40d	22	80	μΑ	-40°C						
DC40e	42	120		+25°C						
DC40g	315	400 (5)		+70°C	3.6V	Base Power-Down Current (Note 6)				
DC40f	410	800		+85°C						
DC40i	1000	2000		+105°C						
Module	Differential	Current fo	or PIC32M	IX575/675/6	695/775/	795 Family Devices				
DC41	—	10			2.3V	Watchdog Timer Current: AIWDT (Notes 3,6)				
DC41a	5		μA	—	3.3V	Watchdog Timer Current: AIWDT (Note 3)				
DC41b		20			3.6V	Watchdog Timer Current: AIWDT (Note 3,6)				
DC42	_	40			2.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6)				
DC42a	23	_	μΑ	—	3.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)				
DC42b		50			3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3,6)				
DC43	—	1300			2.5V	ADC: ΔIADC (Notes 3,4,6)				
DC43a	1100	—	μA	—	3.3V ADC: ∆IADC (Notes 3,4)					
DC43b	—	1300			3.6V	ADC: △IADC (Notes 3,4,6)				

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}} = \text{VDD}$
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

FIGURE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.3V \mbox{ to } 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2	—		ns	—		
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	—	_	ns	—		
SP72	TscF	SCKx Input Fall Time		5	10	ns	—		
SP73	TscR	SCKx Input Rise Time	_	5	10	ns	_		
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾		_		ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾		_		ns	See parameter DO31		
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	20	ns	VDD > 2.7V		
	TscL2doV	SCKx Edge			30	ns	Vdd < 2.7V		
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10	_		ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	_		ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 32-38: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
Clock P	Clock Parameters								
AD50	TAD	Analog-to-Digital Clock Period ⁽²⁾	65	—	_	ns	See Table 32-37		
Conversion Rate									
AD55	TCONV	Conversion Time	_	12 Tad	_		—		
AD56	FCNV	Throughput Rate	_	—	1000	ksps	AVDD = 3.0V to 3.6V		
		(Sampling Speed)	—	—	400	ksps	AVDD = 2.5V to 3.6V		
AD57	TSAMP	Sample Time	1 Tad	—	_		TSAMP must be \geq 132 ns		
Timing Parameters									
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	_		Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 TAD		_		
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	_	0.5 TAD	_		—		
AD63	TDPU	Time to Stabilize Analog Stage from Analog-to-Digital Off to Analog-to-Digital On ⁽³⁾		_	2	μS	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

Example

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

Legend	: XXX	XX Customer-specific information		
_	Y Year code (last digit of calendar year)			
	ΥY	(Y Year code (last 2 digits of calendar year)		
	WW Week code (week of January 1 is week '01')			
	NNN Alphanumeric traceability code			
	Pb-free JEDEC designator for Matte Tin (Sn)			
	* This package is Pb-free. The Pb-free JEDEC designator (e3)			
		can be found on the outer packaging for this package. \Box		
Note:	In the event the full Microchip part number cannot be marked on one line, it will			
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

TABLE B-4:	SECTION UPDATES	(CONTINUED)
	OLONION OF DATED	

Section Name	Update Description
4.0 "Memory Organization"	• Table 4-13:
(Continued)	 Changed register U4RG to U1BRG
	- Changed register U5RG to U3BRG
	- Changed register U6RG to U2BRG
	• Table 4-14:
	 Updated the All Resets values for the following registers: SPI3STAT, SPI2STAT and SPI4STAT
	Table 4-15: Updated the All Resets values for the SPI1STAT register
	Table 4-17: Added note 2
	Table 4-19: Added note 2
	 Table 4-20: Updated the All Resets values for the CM1CON and CM2CON registers
	• Table 4-21:
	 Updated the All Resets values as 0000 for the CVRCON register
	- Updated note 2
	 Table 4-38: Updated the All Resets values for the PMSTAT register
	 Table 4-40: Updated the All Resets values for the CHECON and CHETAG registers
	 Table 4-42: Updated the bit value of bit 29/13 as '—' for the DEVCFG3 register
	• Table 4-44:
	 Updated the note references in the entire table
	- Changed existing note 1 to note 4
	- Added notes 1, 2 and 3
	 Changed bits 23/7 in U1PWRC to UACTPND
	- Changed register U1DDR to U1ADDR
	 Changed register U4DTP1 to U1BDTP1
	 Changed register U4DTP2 to U1BDTP2
	 Changed register U4DTP3 to U1BDTP3
	• Table 4-45:
	- Updated the All Resets values for the C1CON and C1VEC registers
	 Changed bits 30/14 in C1CON to FRZ
	 Changed bits 27/11 in C1CON to CANBUSY
	 Changed bits 22/6-16/0 in C1VEC to ICODE<6:0>
	 Changed bits 22/6-16/0 in C1TREC to RERRCNT<7:0>
	 Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0>
	• Table 4-46:
	- Updated the All Resets values for the C2CON and C2VEC registers
	 Changed bits 30/14 in C1CON to FRZ
	 Changed bits 27/11 in C1CON to CANBUSY
	 Changed bits 22/6-16/0 in C1VEC register to ICODE<6:0>
	 Changed bits 22/6-16/0 in C1TREC register to RERRCNT<7:0>
	 Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0>