

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f128h-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

		Pin Nur	nber ⁽¹⁾		D '	D ((
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
AN0	16	25	K2	B14	I	Analog	Analog input channels
AN1	15	24	K1	A15	I	Analog	
AN2	14	23	J2	B13	I	Analog	
AN3	13	22	J1	A13	I	Analog	
AN4	12	21	H2	B11	I	Analog	
AN5	11	20	H1	A12	I	Analog	
AN6	17	26	L1	A20	I	Analog	
AN7	18	27	J3	B16	I	Analog	
AN8	21	32	K4	A23	I	Analog	
AN9	22	33	L4	B19	I	Analog	
AN10	23	34	L5	A24	I	Analog	
AN11	24	35	J5	B20	I	Analog	
AN12	27	41	J7	B23	I	Analog	
AN13	28	42	L7	A28	I	Analog	
AN14	29	43	K7	B24	I	Analog	
AN15	30	44	L8	A29	I	Analog	
CLKI	39	63	F9	B34	I	ST/ CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	40	64	F11	A42	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	39	63	F9	B34	I	ST/ CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	40	64	F11	A42	I/O		Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	73	C10	A47	I	ST/ CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise
SOSCO	48	74	B11	B40	0	_	32.768 kHz low-power oscillator crystal output

TABLE 1-1: PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels O = Output I = Input I = Input I = Input I = TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

2.9 Configuration of Analog and Digital Pins During ICSP Operations

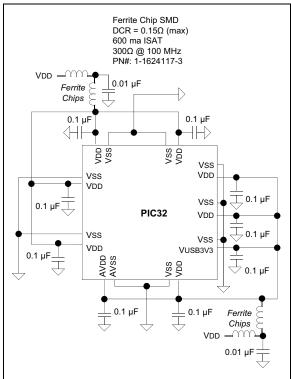
If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins by setting all bits in the AD1PCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.11 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-4. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-4: EMI/EMC/EFT SUPPRESSION CIRCUIT

3.3 Power Management

The MIPS32 M4K Processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 28.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-5XX/6XX/7XX family core is in the clock tree and clocking registers. The PIC32 family uses extensive use of local gated clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS32 M4K Processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the MIPS M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the MIPS32 M4K processor core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES (CONTINUED)

ess										Bi	its																										
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets																		
10D0	IPC4	31:16	_	—	-		INT4IP<2:0>		INT4IS	S<1:0>	_	—	-		OC4IP<2:0>		OC4IS	6<1:0>	0000																		
1000	IPC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		T4IP<2:0>		T4IS-	<1:0>	0000																		
4050	IPC5	31:16	—	_	_		SPI1IP<2:0>		SPI1IS	6<1:0>	_	_	_		OC5IP<2:0>		OC5IS	S<1:0>	0000																		
10E0	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS	<1:0>	-		_		T5IP<2:0>		T5IS-	<1:0>	0000																		
		31:16	_	_	_		AD1IP<2:0>		AD1IS	S<1:0>	_	_	_	CNIP<2:0>			CNIS	<1:0>	0000																		
10F0	IPC6																U1IP<2:0>		U1IS-	<1:0>																	
IUFU	IFCO	15:0	—	—	—		I2C1IP<2:0>		I2C1IS<1:0>		I2C1IS<1:0>		I2C1IS<1:0>		—	—	—		SPI3IP<2:0>	•	SPI3IS	S<1:0>	0000														
														I2C3IP<2:0>		12C315	S<1:0>																				
							U3IP<2:0>		U3IS	<1:0>																											
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>		SPI2IS	S<1:0>	—	—	—	(CMP2IP<2:0	>	CMP2IS<1:0>		0000																		
1100	11 07						I2C4IP<2:0>		12C415	S<1:0>																											
		15:0	_			(CMP1IP<2:0	>	CMP1I	S<1:0>	_	_			PMPIP<2:0>		PMPI		0000																		
		31:16	_			F	RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCI	RTCCIS<1:0>		_		I	FSCMIP<2:0	>	FSCMI	S<1:0>	0000												
1110	IPC8														U2IP<2:0>		U2IS-	<1:0>																			
1110	11 00	15:0	—	—	—		I2C2IP<2:0>		12C215	I2C2IS<1:0>		—	—		SPI4IP<2:0>		SPI4IS	S<1:0>	0000																		
																																	I2C5IP<2:0>		12C515	S<1:0>	
1120	IPC9	31:16	_	_			DMA3IP<2:0		DMA3I	S<1:0>	_				DMA2IP<2:0		DMA2I	S<1:0>	0000																		
1120	11 03	15:0	_	_			DMA1IP<2:0		DMA1I		_				DMA0IP<2:0		DMA0I	S<1:0>	0000																		
1130	IPC10	31:16	—	—	—	DI	MA7IP<2:0>	(2)	DMA7IS	i<1:0> ⁽²⁾	—	_	—	D	MA6IP<2:0>	(2)	DMA6IS	<1:0> ⁽²⁾	0000																		
1130	11 010	15:0	—	—	—	DI	MA5IP<2:0>	(2)	DMA5IS	i<1:0> ⁽²⁾	_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	<1:0> ⁽²⁾	0000																		
1140	IPC11	31:16	—	-	_	_	_		_				_	_	—		—		0000																		
1140	IFCII	15:0	—	—	—		USBIP<2:0>		USBIS	S<1:0>	_	_	—		FCEIP<2:0>		FCEIS	<1:0>	0000																		
1150	IPC12	31:16	_	_	-	U5IP<2:0>		U5IP<2:0>		<1:0>	_		-	U6IP<2:0>			U6IP<2:0>		U6IS-	<1:0>	0000																
1150	IFUIZ	15:0	_	-					U4IP<2:0>						U4IS-	<1:0>					ETHIP<2:0>		ETHIS	i<1:0>	0000												

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX664 devices.

3: This register does note have associated CLR, SET, and INV registers.

	PIC32MX795F512L DEVICES Bits																		
SS										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	—	_	_	-	—	_	_	—	—	_		—	—	SS0	0000
1000	INTCON	15:0	_	_	_	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16		—	_	—	—	_	—	—	_	_	—		—	—	—		0000
		15:0	_	—	—	—	—		SRIPL<2:0>		—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	SPI1TXIF	SPI1RXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF ⁽²⁾	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF SPI4TXIF I2C5MIF	U2RXIF SPI4RXIF I2C5SIF	U2EIF SPI4EIF I2C5BIF	U3TXIF SPI2TXIF I2C4MIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF I2C4BIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1050	IFS2	15:0		_	_	_	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	SPI1TXIE	SPI1RXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE ⁽²⁾	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
	1500	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1080	IEC2	15:0	_	—	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16		_	—		INT0IP<2:0>		INTOIS	S<1:0>	_	—	—		CS1IP<2:0>	>	CS1IS	S<1:0>	0000
1090	IFCU	15:0	—	—	—		CS0IP<2:0>		CSOIS	5<1:0>	—	—	—		CTIP<2:0>		CTIS	<1:0>	0000
10A0	IPC1	31:16		—			INT1IP<2:0>		INT1IS		—		—		OC1IP<2:0>	>	OC1IS		0000
		15:0		—	—		IC1IP<2:0>		IC1IS		_	—	—		T1IP<2:0>		T1IS		0000
10B0	IPC2	31:16		—			INT2IP<2:0>		INT2IS		_		—		OC2IP<2:0>	>	OC2IS		0000
		15:0	_	_	_		IC2IP<2:0>		IC2IS		_	_	_		T2IP<2:0>		T2IS		0000
10C0	IPC3	31:16 15:0			_		INT3IP<2:0> IC3IP<2:0>		INT3IS IC3IS						OC3IP<2:0> T3IP<2:0>	>	OC3IS T3IS		0000
í		15.0					10315 <2.0>		10313	<1.U2			_		1015 <2.0>		1313	<1.02	0000

TABLE 7-7:INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND
PIC32MX795F512L DEVICES

d: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

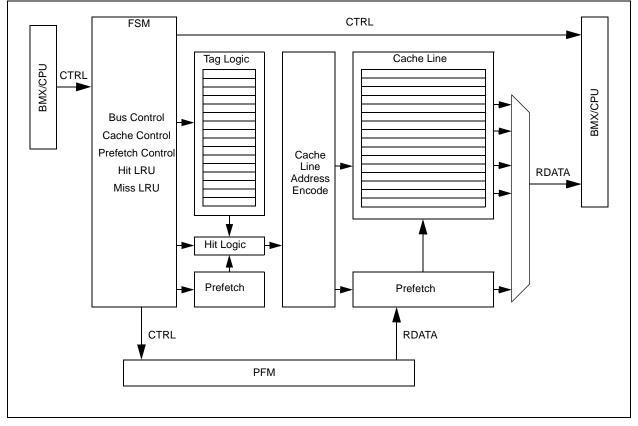
Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This bit is unimplemented on PIC32MX764F128L device.

3: This register does not have associated CLR, SET, and INV registers.

9.0 PREFETCH CACHE


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Prefetch Cache" (DS60001119) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching.

9.1 Features

- 16 fully-associative lockable cache lines
- 16-byte cache lines
- Up to four cache lines allocated to data
- Two cache lines with address mask to hold repeated instructions
- Pseudo-LRU replacement policy
- All cache lines are software writable
- 16-byte parallel memory fetch
- Predictive instruction prefetch

A simplified block diagram of the Prefetch Cache module is illustrated in Figure 9-1.

FIGURE 9-1: PREFETCH CACHE MODULE BLOCK DIAGRAM

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess					· · ·						Bits								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	U1FRML ⁽³⁾	31:16		—	—	—	—	—	—	—	_	—	_	—	—	—	_	_	0000
5200	OTTRIME	15:0	—	_	—	—	—	—	—	—				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0200	01110	15:0	—	—	—	—	—	—	—	—	_	—	_	-	—		FRMH<2:0>	•	0000
52A0	U1TOK	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
02/10	orron	15:0	—	—	—	—	—	—	—	—		PID	<3:0>			EP	<3:0>		0000
52B0	U1SOF	31:16	—	—	—	—	—	—	—	—	_	—	_	—	—	—	_	—	0000
5260	0130F	15:0	—	_	_	—	_	_	_					CNT<7	7:0>				0000
52C0	U1BDTP2	31:16	—	-	—	—	_	_	-		—	—		—	—	_		_	0000
5200	OIBDIF2	15:0	—	—	—	—	—	—	—	—				BDTPTRH	H<7:0>				0000
52D0	U1BDTP3	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
5200	UIBDIF3	15:0	—	_	_	_	_	_	-					BDTPTRU	J<7:0>				0000
52E0	U1CNFG1	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
52E0	UTCINFGT	15:0	—	_	_	—	_	_	_		UTEYE	UOEMON		USBSIDL	—	_		UASUSPND	0001
5300	U1EP0	31:16	—	_	_	_	_	_	-		—	_		—	_	_		_	0000
5300	UIEPU	15:0	—	_	_	—	_	_	_		LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5310	U1EP1	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
5310	UIEPI	15:0	—	_	_	_	_	_	_	_	—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5320	U1EP2	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
5520	UIEFZ	15:0	_	_	_	_	_	_	_		—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5330	U1EP3	31:16	—	_	_	_	_	_	_	_	—	_	-	—	_			_	0000
5330	UIEP3	15:0	—	_	_	—	_	_	_		—	_		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340	U1EP4	31:16	_	_	-	-	-	-	-	_	_	_	_	—	-	_	_	_	0000
5540	UTEP4	15:0	—	_	_	_	_	_	_	_	—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5350	U1EP5	31:16	_	_	-	-	-	-	-	_	_	_	_	—	-	_	_	_	0000
5350	UIEP5	15:0	_	_	-	-	-	-	-	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5260	U1EP6	31:16			_	—	_		_	_	—			—	_	—			0000
5360	UIEP6	15:0	_	_	-	-	-	-	-	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5270	U1EP7	31:16	_	_	_	_	_	_	_	—	_	—	_	—	_	_	-	_	0000
5370	UTEPT	15:0			_	_	_			_	—			EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5200		31:16	_	_	_	_	_	_	_	—	-	—	_	—	_	—	_	_	0000
5380	U1EP8	15:0	—	_	—	—	_	_	—	_	_	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5000		31:16	_	—	_	_	_	_	_	—	_	—	_	—	—	—	—	—	0000
5390	U1EP9	15:0	_	—	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

 5390
 U1EP9

 Legend:
 x =

 Note
 1:
 All n

end: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24		_						—						
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16								—						
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15:8	—	—	_	_	—	_	—	—						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				CNT	<7:0>									

REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 31-8 Unimplemented: Read as '0'

- bit 7-0 CNT<7:0>: SOF Threshold Value bits
 - Typical values of the threshold are: 01001010 = 64-byte packet 00101010 = 32-byte packet 00011010 = 16-byte packet

00010010 = 8-byte packet

REGISTER 11-17: U1BDTP1: USB BUFFER DESCRIPTOR TABLE PAGE 1 REGISTER

Bit Range Bit 31/23/15/7 30 31:24 U-0 1		Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—							—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—							—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	-	—	-	-	-	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
7:0			В	DTPTRL<15:9)>			—

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-1 BDTPTRL<15:9>: BDT Base Address bits

This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

bit 0 Unimplemented: Read as '0'

12.1 Parallel I/O (PIO) Ports

All port pins have three registers (TRIS, LAT and PORT) that are directly associated with their operation.

TRIS is a Data Direction or Tri-State Control register that determines whether a digital pin is an input or an output. Setting a TRISx register bit = 1, configures the corresponding I/O pin as an input; setting a TRISx register bit = 0, configures the corresponding I/O pin as an output. All port I/O pins are defined as inputs after a device Reset. Certain I/O pins are shared with analog peripherals and default to analog inputs after a device Reset.

PORT is a register used to read the current state of the signal applied to the port I/O pins. Writing to a PORTx register performs a write to the port's latch, LATx register, latching the data to the port's I/O pins.

LAT is a register used to write data to the port I/O pins. The LATx Latch register holds the data written to either the LATx or PORTx registers. Reading the LATx Latch register reads the last value written to the corresponding PORT or Latch register.

Not all port I/O pins are implemented on some devices, therefore, the corresponding PORTx, LATx and TRISx register bits will read as zeros.

12.1.1 CLR, SET AND INV REGISTERS

Every I/O module register has a corresponding Clear (CLR), Set (SET) and Invert (INV) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

Note:	Using a PORTxINV register to toggle a bit
	is recommended because the operation is
	performed in hardware atomically, using
	fewer instructions, as compared to the
	traditional read-modify-write method, as
	follows:
	PORTC $^{ = 0x0001:}$

12.1.2 DIGITAL INPUTS

Pins are configured as digital inputs by setting the corresponding TRIS register bits = 1. When configured as inputs, they are either TTL buffers or Schmitt Triggers. Several digital pins share functionality with analog inputs and default to the analog inputs at POR. Setting the corresponding bit in the AD1PCFG register = 1 enables the pin as a digital pin.

The maximum input voltage allowed on the input pins is the same as the maximum VIH specification. Refer to **Section 32.0 "Electrical Characteristics"** for VIH specification details.

Note:	Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume
	current that exceeds the device specifications.

12.1.3 ANALOG INPUTS

Certain pins can be configured as analog inputs used by the ADC and comparator modules. Setting the corresponding bits in the AD1PCFG register = 0 enables the pin as an analog input pin and must have the corresponding TRIS bit set = 1 (input). If the TRIS bit is cleared = 0 (output), the digital output level (VOH or VOL) will be converted. Any time a port I/O pin is configured as analog, its digital input is disabled and the corresponding PORTx register bit will read '0'. The AD1PCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

12.1.4 DIGITAL OUTPUTS

Pins are configured as digital outputs by setting the corresponding TRIS register bits = 0. When configured as digital outputs, these pins are CMOS drivers or can be configured as open-drain outputs by setting the corresponding bits in the Open-Drain Configuration (ODCx) register.

The open-drain feature allows generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

12.1.5 ANALOG OUTPUTS

Certain pins can be configured as analog outputs, such as the CVREF output voltage used by the comparator module. Configuring the comparator reference module to provide this output will present the analog output voltage on the pin, independent of the TRIS register setting for the corresponding pin.

12.1.6 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports (CNx) allows devices to generate interrupt requests in response to change-of-state on selected pin.

Each CNx pin also has a weak pull-up, which acts as a current source connected to the pin. The pull-ups are enabled by setting the corresponding bit in the CNPUE register.

TABLE 12-9: PORTF REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX795F512H, DEVICES

ess		e								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TRISF	31:16	_	—	_	—	-	—	—	—	_	—	_	—	—	_	-	—	0000
6140	IRIOF	15:0		_	_	_	_	_	_	_	_	_	TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
6150	PORTF	31:16	_	_		_		_					-	_	_	_		-	0000
6150	PURIF	15:0		_	-	—	—	—	-	-	-	-	RF5	RF4	RF3		RF1	RF0	xxxx
6160	LATF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
6160	LAIF	15:0	-	_	—	_	_	_	_	_	_	_	LATF5	LATF4	LATF3	—	LATF1	LATF0	xxxx
6170	ODCF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
0170	ODCF	15:0	_	_	_		-						ODCF5	ODCF4	ODCF3		ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-10: PORTF REGISTER MAP PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX775F512L, PIC32MX7

ess		â								Bi	ts								- y
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
	TDIOF	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6140	TRISF	15:0	_	_	TRISF13	TRISF12	_	_	_	TRISF8	_	_	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6150	PORTF	31:16	-	_	_	_	_	-	_	_	-		-		_		_	_	0000
0150	FUNIF	15:0	-	—	RF13	RF12	_		_	RF8			RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160	LATF	31:16	—	—	_		—	_	_		-	_	_	_	_	_	—	—	0000
0100	LAIF	15:0		—	LATF13	LATF12		-		LATF8		-	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCF	31:16	—	_	_	—	_		_				_		—		-	-	0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	_	-	—	ODCF8	_	-	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

REGISTER 24-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED)

bit 15	FLTEN5: Filter 17 Enable bit
	0 = Filter is disabled
bit 14-13	MSEL5<1:0>: Filter 5 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL5<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN4: Filter 4 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 6-5	MSEL4<1:0>: Filter 4 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL4<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

TABLE 25-5: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED)

ess		0								В	its								ŝ
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
90E0	ETHSTAT	31:16 15:0	_		_	_	_			_	BUSY	TXBUSY	RXBUSY	BUFC	NT<7:0>	_	_	_	0000
	ETH	31:16	_		_	_			_		_		_		_	_	_		0000
9100	RXOVFLOW	15:0								RXOVFLW	CNT<15:0>								0000
	ETH	31:16	_	_	_	_		_	_		_	_		_				_	0000
9110	FRMTXOK	15:0								FRMTXOK	CNT<15:0>								0000
9120	ETH	31:16	_	-		_	_	-	—	-	_	_	_	-		_	_	—	0000
9120	SCOLFRM	15:0								SCOLFRM	CNT<15:0>								0000
9130	ETH	31:16	—	_	_	—	_	_	—	—	—	—	_	_	—	—	—	—	0000
	MCOLFRM	15:0								MCOLFRM	CNT<15:0>								0000
9140	ETH FRMRXOK	31:16	—	—	—	—	_	_	—	-	-	—	_	—	—		—	—	0000
		15:0								FRMRXOK									0000
9150	ETH FCSERR	31:16 15:0	_	—		—	_	—	_	FCSERRO		_		—	—	_	—	—	0000
	ETH	31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
9160	ALGNERR	15:0								ALGNERR	CNT<15:0>								0000
	51404	31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	0000
9200	EMAC1 CFG1	15:0	SOFT RESET	SIM RESET	_	_	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	_	_	_	LOOPBACK	TXPAUSE	RXPAUSE	PASSALL	RXENABLE	800D
	EMAC1	31:16	_			—		_	—		_	_		_	_	—	_	—	0000
9210	CFG2	15:0	_	EXCESS DFR	BP NOBKOFF	NOBKOFF	—		LONGPRE	PUREPRE	AUTOPAD	VLANPAD	PAD ENABLE	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX	4082
9220	EMAC1	31:16	_		—	_	_	_	—	_	_	_	_	_	—		_	_	0000
3220	IPGT	15:0	—	_	—	—	—	_	—	_	_			B	2BIPKTGP<6	:0>		-	0012
9230	EMAC1	31:16	_	—	—	—	_	_	—	_	_	_	—	_	—	—	_	-	0000
	IPGR	15:0	_			NB2	BIPKTGP1<	6:0>							2BIPKTGP2<				0C12
9240	EMAC1 CLRT	31:16	_		—	-	-	-	—	_	_				—		<u> </u>	-	0000
								370F											
9250	EMAC1 MAXF	31:16	—	_	—	—	-	—	_		-	—	_	_		—	_	_	0000
		15:0	ualua an Da							MACMA	KF<15:0>								05EE

PIC32MX5XX/6XX/7XX

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Reset values default to the factory programmed value. 2:

DS60001156J-page 282

REGISTER 25-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	_	—	_	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		_	_	_	_	—	_	_
7.0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	_			B2	BIPKTGP<6:()>		

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-34: EMAC1MWTD: ETHERNET CONTROLLER MAC MII MANAGEMENT WRITE DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24		—	_	—	—		—	_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	—	_	_	—		—	_			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	MWTD<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				MWTD<7	:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MWTD<15:0>: MII Management Write Data bits

When written, a MII Management write cycle is performed using the 16-bit data and the pre-configured PHY and Register addresses from the EMAC1MADR register.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-35: EMAC1MRDD: ETHERNET CONTROLLER MAC MII MANAGEMENT READ DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—	—		-	_
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	—	_	_	_
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				MRDD.	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				MRDD	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MRDD<15:0>: MII Management Read Data bits

Following a MII Management Read Cycle, the 16-bit data can be read from this location.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

31.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

31.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
Operati	ng Voltag	e							
DC10	Vdd	Supply Voltage	2.3		3.6	V			
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.75			V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75		2.1	V			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005		0.115	V/µs	—		

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

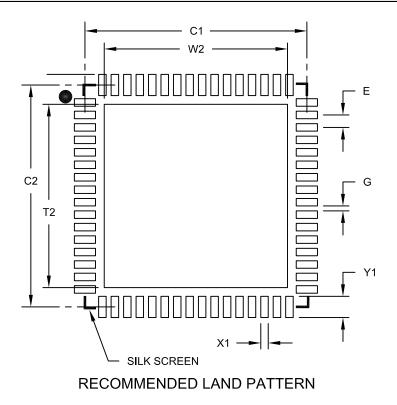
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

TABLE 32-36: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHA		STICS	(unless oth	erwise stat	t ed) -40°C ≤ TA	≤ +85°0	e 5): 2.5V to 3.6V C for Industrial C for V-Temp
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-			
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)
AD21d	INL	Integral Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)
AD22d	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)
AD23d	Gerr	Gain Error	> -4	—	< 4	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)
AD24d	EOFF	Offset Error	> -2	-	< 2	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)
AD25d	—	Monotonicity	—	—	_	—	Guaranteed
Dynami	c Performa	ince				•	
AD31b	SINAD	Signal to Noise and Distortion	55	58.5		dB	(Notes 3,4)
AD34b	ENOB	Effective Number of Bits	9.0	9.5		bits	(Notes 3,4)

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.


3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensior	Dimension Limits					
Contact Pitch	Contact Pitch E					
Optional Center Pad Width	W2			7.35		
Optional Center Pad Length	T2			7.35		
Contact Pad Spacing	C1		8.90			
Contact Pad Spacing	C2		8.90			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			0.85		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

Revision J (September 2016)

This revision includes typographical and formatting updates throughout the data sheet text. In addition, all SFR Register maps were moved from the Memory chapter to their respective peripheral chapters.

All other major updates are referenced by their respective section in Table B-7.

Section Name	Update Description
"32-bit Microcontrollers (up to 512	Updated Communication Interfaces for LIN support to 2.1.
KB Flash and 128 KB SRAM) with Graphics Interface, USB, CAN, and Ethernet"	Updated Qualification and Class B Support to AEC-Q100 REVH.
2.0 "Guidelines for Getting Started with 32-bit MCUs"	The Recommended Minimum Connection diagram was updated (see Figure 2-1).
	The Example of MCLR Pin Connections diagram was updated (see Figure 2- 2).
	2.11 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.
4.0 "Memory Organization"	The SFR Memory Map was added (see Table 4-1).
7.0 "Interrupt Controller"	The UART interrupt sources were updated in the Interrupt IRQ, Vector, and Bit location table (see Table 7-1).
8.0 "Oscillator Configuration"	Updated the bit value definitions for the TUN<5:0> bits in the OCSTUN register (see Register 8-2).
15.0 "Watchdog Timer (WDT)"	The content in this chapter was relocated from the Special Features chapter to its own chapter.
18.0 "Serial Peripheral Interface (SPI)"	The register map tables were combined (see Table 18-1).
19.0 "Inter-Integrated Circuit (I ² C)"	The register map tables were combined (see Table 19-1).
	The PMADDR register was updated (see Register 21-3).
21.0 "Parallel Master Port (PMP)"	The bit value definitions for the ADRMUX<1:0> and CSF<1:0> bits in the PMCON register were updated (see Register 21-1).
29.0 "Special Features"	Removed the duplicate bit value definition for '010' in the DEVCFG2 register (see Register 29-3).
	Note 1 was added to the Programming, Debugging, and Trace Ports block diagram (see Figure 29-2).
	The DDPCON register was relocated (see Register 29-6).
	The Device ID, Revision, and Configuration Summary was updated (see Table 29-2).