

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f128l-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN NAMES FOR 100-PIN USB, ETHERNET, AND CAN DEVICES TABLE 9:

100-PIN TQFP (TOP VIEW)

PIC32MX764F128L PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L

100

Pin #	Full Pin Name
1	AERXERR/RG15
2	VDD
3	PMD5/RE5
4	PMD6/RE6
5	PMD7/RE7
6	T2CK/RC1
7	T3CK/AC2TX ⁽¹⁾ /RC2
8	T4CK/AC2RX ⁽¹⁾ /RC3
9	T5CK/SDI1/RC4
10	ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6
11	ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7
12	ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8
13	MCLR
14	ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9
15	Vss
16	VDD
17	TMS/RA0
18	AERXD0/INT1/RE8
19	AERXD1/INT2/RE9
20	AN5/C1IN+/VBUSON/CN7/RB5
21	AN4/C1IN-/CN6/RB4
22	AN3/C2IN+/CN5/RB3
23	AN2/C2IN-/CN4/RB2
24	PGEC1/AN1/CN3/RB1
25	PGED1/AN0/CN2/RB0
26	PGEC2/AN6/OCFA/RB6
27	PGED2/AN7/RB7
28	Vref-/CVref-/AERXD2/PMA7/RA9
29	VREF+/CVREF+/AERXD3/PMA6/RA10
30	AVdd
31	AVss
32	AN8/C1OUT/RB8
33	AN9/C2OUT/RB9
34	AN10/CVREFOUT/PMA13/RB10
35	AN11/ERXERR/AETXERR/PMA12/RB11
Note	1. This pin is not available on PIC32MX764E128L devices

Pin #	Full Pin Name
36	Vss
37	Vdd
38	TCK/RA1
39	AC1TX/SCK4/U5TX/U2RTS/RF13
40	AC1RX/SS4/U5RX/U2CTS/RF12
41	AN12/ERXD0/AECRS/PMA11/RB12
42	AN13/ERXD1/AECOL/PMA10/RB13
43	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14
44	AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15
45	Vss
46	Vdd
47	AETXD0/SS3/U4RX/U1CTS/CN20/RD14
48	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15
49	SDA5/SDI4/U2RX/PMA9/CN17/RF4
50	SCL5/SDO4/U2TX/PMA8/CN18/RF5
51	USBID/RF3
52	SDA3/SDI3/U1RX/RF2
53	SCL3/SDO3/U1TX/RF8
54	VBUS
55	VUSB3V3
56	D-/RG3
57	D+/RG2
58	SCL2/RA2
59	SDA2/RA3
60	TDI/RA4
61	TDO/RA5
62	Vdd
63	OSC1/CLKI/RC12
64	OSC2/CLKO/RC15
65	Vss
66	AETXCLK/SCL1/INT3/RA14
67	AETXEN/SDA1/INT4/RA15
68	RTCC/EMDIO/AEMDIO/IC1/RD8
69	SS1/IC2/RD9
70	SCK1/IC3/PMCS2/PMA15/RD10

1

This pin is not available on PIC32MX764F128L devices. 1:

2: Shaded pins are 5V tolerant.

TABLE 12: PIN NAMES FOR USB, ETHERNET, AND CAN DEVICES (CONTINUED)

1	21-PIN TFBGA (BOTTOM VIEW)		L11	
Not	PIC32MX764F128L PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L e: The TFBGA package skips from row "H	ł" to row '	L1 "J" and has no "I" row. A1	A11
Pin #	Full Pin Name	Pin #	Full Pin Name	
J3	PGED2/AN7/RB7	K8	VDD	
J4	AVdd	K9	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15	
J5	AN11/ERXERR/AETXERR/PMA12/RB11	K10	USBID/RF3	
J6	TCK/RA1	K11	SDA3/SDI3/U1RX/RF2	
J7	AN12/ERXD0/AECRS/PMA11/RB12	L1	PGEC2/AN6/OCFA/RB6	
J8	No Connect (NC)	L2	VREF-/CVREF-/AERXD2/PMA7/RA9	
J9	No Connect (NC)	L3	AVss	
J10	SCL3/SDO3/U1TX/RF8	L4	AN9/C2OUT/RB9	
J11	D-/RG3	L5	AN10/CVREFOUT/PMA13/RB10	
K1	PGEC1/AN1/CN3/RB1	L6	AC1TX/SCK4/U5TX/U2RTS/RF13	
K2	PGED1/AN0/CN2/RB0	L7	AN13/ERXD1/AECOL/PMA10/RB13	
K3	VREF+/CVREF+/AERXD3/PMA6/RA10	L8	AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15	
K4	AN8/C1OUT/RB8	L9	AETXD0/SS3/U4RX/U1CTS/CN20/RD14	
K5	No Connect (NC)	L10	SDA5/SDI4/U2RX/PMA9/CN17/RF4	
K6	AC1RX/SS4/U5RX/U2CTS/RF12	L11	SCL5/SDO4/U2TX/PMA8/CN18/RF5	
K7	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14			

Note 1: This pin is not available on PIC32MX764F128L devices.

2: Shaded pins are 5V tolerant.

2.9 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins by setting all bits in the AD1PCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.11 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-4. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-4: EMI/EMC/EFT SUPPRESSION CIRCUIT

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—		—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
23.10	—	—	—	—	—	—	—	SS0		
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	—	—	—	MVEC	—		TPC<2:0>			
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP		

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Read as '0'

- bit 16 **SS0:** Single Vector Shadow Register Set bit
 - 1 = Single vector is presented with a shadow register set
 - 0 = Single vector is not presented with a shadow register set
- bit 15-13 Unimplemented: Read as '0'
- bit 12 MVEC: Multiple Vector Configuration bit
 - 1 = Interrupt controller configured for Multi-vector mode
 - 0 = Interrupt controller configured for Single-vector mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 **INT1EP:** External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

PIC32MX5XX/6XX/7XX

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	_	—	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	STALLIE				TRNIF	SOFIE	LIERRIE(1)	URSTIE ⁽²⁾
	OTALLIL		I CEOUMEIE	IDELIE		COLL	OLIVIL	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt is enabled
	0 = STALL interrupt is disabled
bit 6	ATTACHIE: ATTACH Interrupt Enable bit
	1 = ATTACH interrupt is enabled
	0 = ATTACH interrupt is disabled
bit 5	RESUMEIE: RESUME Interrupt Enable bit
	1 = RESUME interrupt is enabled
	0 = RESUME interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit
	1 = Idle interrupt is enabled
	0 = Idle interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt Enable bit
	1 = TRNIF interrupt is enabled
	0 = IRNIF interrupt is disabled
bit 2	SOFIE: SOF Token Interrupt Enable bit
	1 = SOFIF interrupt is enabled
	0 = SOFIF interrupt is disabled
bit 1	UERRIE: USB Error Interrupt Enable bit
	1 = USB Error interrupt is enabled
	0 = 0.5B Error interrupt is disabled
bit 0	URSTIE: USB Reset Interrupt Enable bit ⁽²⁾
	1 = URSTIF interrupt is enabled
	0 = 0RSTIF Interrupt is disabled DETACHIE: USB Datash Interrupt Enable hit(3)
	$\perp = DATICHIF Interrupt is enabled$

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

TABLE 12-13: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512 AND PIC32MX795F512L DEVICES PIC32MX795F512L DEVICES

Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range		Bits												\$			
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
		31:16	_		_	_	—	_	_	_		_	_	_		_	_	_	0000
6100	CINCOIN	15:0	ON	—	SIDL	_	_	_	_	_	—	_	_	_	_	_	_	_	0000
6100		31:16	—	_		-				_	_		CNEN21	CNEN20	CNEN19	CNEN18	CNEN17	CNEN16	0000
6100	CNEN	15:0	CNEN15	CNEN14	CNEN13	CNEN12	CNEN11	CNEN10	CNEN9	CNEN8	CNEN7	CNEN6	CNEN5	CNEN4	CNEN3	CNEN2	CNEN1	CNEN0	0000
61E0	CNPUE	31:16	—										CNPUE21	CNPUE20	CNPUE19	CNPUE18	CNPUE17	CNPUE16	0000
		15:0	CNPUE15	CNPUE14	CNPUE13	CNPUE12	CNPUE11	CNPUE10	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-14: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F512H, PIC32MX675F512H, PIC32MX675F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX795F512H, DEVICES

ess				Bits													6		
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6100	CNICON	31:16	-	_	_	-	—	-	—	-	-	_	-	—	_	—	-	—	0000
6100	CINCOIN	15:0	ON	_	SIDL	-		—	-	—	-	_	-	—	_	—	-		0000
6100		31:16		_	-	_	_	_	_		_	_	_		_	CNEN18	CNEN17	CNEN16	0000
0100	CINEIN	15:0	CNEN15	CNEN14	CNEN13	CNEN12	CNEN11	CNEN10	CNEN9	CNEN8	CNEN7	CNEN6	CNEN5	CNEN4	CNEN3	CNEN2	CNEN1	CNEN0	0000
6150		31:16		-	-	_	_	-	—	-	—	_	_	-	_	CNPUE18	CNPUE17	CNPUE16	0000
OTEU	CINPUE	15:0	CNPUE15	CNPUE14	CNPUE13	CNPUE12	CNPUE11	CNPUE10	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-bit Timer
- Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous Internal 32-bit Timer
- · Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through Timer5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or Timer4; 'y' represents Timer3 or Timer5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (only Timer2 and Timer3)
- ADC event trigger (only Timer3)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (16-BIT)

PIC32MX5XX/6XX/7XX

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set
 - 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC S&H circuit is sampling
 - 0 = The ADC S&H circuit is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC < 2:0 > = 000, writing '0' to this bit will end sampling and start conversion.

bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾

- Clearing this bit will not affect any operation in progress.
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write a '0' to end sampling and start conversion. If SSRC<2:0> ≠ '000', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN			
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	TERRCNT<7:0>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
				RERRC	NT<7:0>						

REGISTER 24-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT \geq 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning $(128 > \text{RERRCNT} \ge 96)$
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 24-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
22:46	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

REGISTER 24-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' (n = 0 THROUGH 31)

- bit 9 TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is \leq half full 0 = FIFO is > half full TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 8 **TXEMPTYIF:** Transmit FIFO Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is empty 0 = FIFO is not empty, at least 1 message queued to be transmitted TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 7-4 Unimplemented: Read as '0' bit 3 **RXOVFLIF:** Receive FIFO Overflow Interrupt Flag bit TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = Overflow event has occurred 0 = No overflow event occuredbit 2 **RXFULLIF:** Receive FIFO Full Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is full 0 = FIFO is not full RXHALFIF: Receive FIFO Half Full Interrupt Flag bit⁽¹⁾ bit 1 TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is \geq half full 0 = FIFO is < half full bit 0 **RXNEMPTYIF:** Receive Buffer Not Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty
- Note 1: This bit is read-only and reflects the status of the FIFO.

Table 25-1, Table 25-2, Table 25-3 and Table 25-4 show four interfaces and the associated pins that can be used with the Ethernet Controller.

TABLE 25-1:MII MODE DEFAULT
INTERFACE SIGNALS
(FMIIEN = 1, FETHIO = 1)

Pin Name	Description
EMDC	Management Clock
EMDIO	Management I/O
ETXCLK	Transmit Clock
ETXEN	Transmit Enable
ETXD0	Transmit Data
ETXD1	Transmit Data
ETXD2	Transmit Data
ETXD3	Transmit Data
ETXERR	Transmit Error
ERXCLK	Receive Clock
ERXDV	Receive Data Valid
ERXD0	Receive Data
ERXD1	Receive Data
ERXD2	Receive Data
ERXD3	Receive Data
ERXERR	Receive Error
ECRS	Carrier Sense
ECOL	Collision Indication

TABLE 25-2:RMII MODE DEFAULT
INTERFACE SIGNALS
(FMIIEN = 0, FETHIO = 1)

Pin Name	Description
EMDC	Management Clock
EMDIO	Management I/O
ETXEN	Transmit Enable
ETXD0	Transmit Data
ETXD1	Transmit Data
EREFCLK	Reference Clock
ECRSDV	Carrier Sense – Receive Data Valid
ERXD0	Receive Data
ERXD1	Receive Data
ERXERR	Receive Error

Note: Ethernet controller pins that are not used by selected interface can be used by other peripherals.

TABLE 25-3:MII MODE ALTERNATE
INTERFACE SIGNALS
(FMIIEN = 1, FETHIO = 0)

Pin Name	Description
AEMDC	Management Clock
AEMDIO	Management I/O
AETXCLK	Transmit Clock
AETXEN	Transmit Enable
AETXD0	Transmit Data
AETXD1	Transmit Data
AETXD2	Transmit Data
AETXD3	Transmit Data
AETXERR	Transmit Error
AERXCLK	Receive Clock
AERXDV	Receive Data Valid
AERXD0	Receive Data
AERXD1	Receive Data
AERXD2	Receive Data
AERXD3	Receive Data
AERXERR	Receive Error
AECRS	Carrier Sense
AECOL	Collision Indication

Note: The MII mode Alternate Interface is not available on 64-pin devices.

TABLE 25-4:RMII MODE ALTERNATE
INTERFACE SIGNALS
(FMIIEN = 0, FETHIO = 0)

Pin Name	Description
AEMDC	Management Clock
AEMDIO	Management I/O
AETXEN	Transmit Enable
AETXD0	Transmit Data
AETXD1	Transmit Data
AEREFCLK	Reference Clock
AECRSDV	Carrier Sense – Receive Data Valid
AERXD0	Receive Data
AERXD1	Receive Data
AERXERR	Receive Error

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
51.24		PMM<31:24>							
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	PMM<23:16>								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	PMM<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				PMM	<7:0>				

REGISTER 25-7: ETHPMM0: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	PMM<31:24>: Pattern Match Mask 3 bits
hit 23-16	PMM-23-16- Pattern Match Mask 2 hits

- bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits
- bit 15-8 **PMM<15:8>:** Pattern Match Mask 1 bits
- bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits
- Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	PMM<63:56>							
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	PMM<55:48>							
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	PMM<47:40>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				PMM<	39:32>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PMM<63:56>: Pattern Match Mask 7 bits
PMM<55:48>: Pattern Match Mask 6 bits
PMM<47:40>: Pattern Match Mask 5 bits
PMM<39:32>: Pattern Match Mask 4 bits

Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	_	_			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	BUFCNT<7:0>										
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	—	—	—	—	—	-				
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	ETHBUSY ⁽¹⁾	TXBUSY ⁽²⁾	RXBUSY ⁽²⁾	—	—	—	_	_			
	•	•	•	•	•						

REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

Legend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x000. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit⁽¹⁾

1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- bit 6 **TXBUSY:** Transmit Busy bit⁽²⁾
 - 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

- **Note 1:** This bit will be *set* when the ON bit (ETHCON1<15>) = 1.
 - **2:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

26.1 Control Registers

TABLE 26-1: COMPARATOR REGISTER MAP

ess				Bits												ú			
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
4 0 0 0		31:16		—	—	_	—	_	—	—	-	—	—	—	—	—	—	—	0000
A000	CIVITCON	15:0	ON	COE	CPOL	_	—	_	_	COUT	EVPO	L<1:0>	—	CREF	_	_	CCH	<1:0>	00C3
4010	CM2CON	31:16	-	_	_	_	—	_	_	_		—	_	_	_	—	—	_	0000
AUTU	CIVIZCON	15:0	ON	COE	CPOL	—	-	—	—	COUT	EVPO	L<1:0>	—	CREF	—	-	CCH	<1:0>	00C3
A060	CMSTAT	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
A000	CIVISTAT	15:0	_	_	SIDL	_	_	_	_	_	_	_	_	_	_	_	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

31.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

31.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

			Standard Operating Conditions: 2.3V to 3.6V								
DC CHA	RACTER	ISTICS	(unless otherwise stated)								
			Operating temper	rature -40 -40	ר ≤ 10 ≤ 10 ≤ י ר < ד∆ < י	+85°C I +105°C	for Industrial				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions				
	VIL	Input Low Voltage									
DI10		I/O Pins:									
		with TTL Buffer	Vss		0.15 Vdd	V					
		with Schmitt Trigger Buffer	Vss		0.2 Vdd	V					
DI15		MCLR ⁽²⁾	Vss	_	0.2 Vdd	V					
DI16		OSC1 (XT mode)	Vss	_	0.2 Vdd	V	(Note 4)				
DI17		OSC1 (HS mode)	Vss		0.2 Vdd	V	(Note 4)				
DI18		SDAx, SCLx	Vss		0.3 Vdd	V	SMBus disabled				
							(Note 4)				
DI19		SDAx, SCLx	Vss		0.8	V	SMBus enabled				
							(Note 4)				
	VIH	Input High Voltage									
DI20		I/O Pins not 5V-tolerant(3)	0.65 VDD		VDD	V	(Note 4,6)				
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	—	5.5	V	(Note 4,6)				
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 Vdd	_	5.5	V					
DI28		SDAx, SCLx	0.65 VDD		5.5	V	SMBus disabled				
							(Note 4,6)				
DI29		SDAx, SCLx	2.1		5.5	V	SMBus enabled,				
							$2.3V \le VPIN \le 5.5$				
-	-						(Note 4,6)				
0130	ICNPU	Change Notification	_	—	-50	μA	VDD = 3.3V, VPIN = VSS				
DIGA		Pull-up Current		50							
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	—	50	_	μA	טטע = 3.3V, VPIN = VDD				

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (Vss 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support