

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f128l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 10: PIN NAMES FOR USB AND CAN DEVICES

121	PIN TFBGA (BOTTOM VIEW)		L11	
	PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F256L PIC32MX575F512L	L1		A11
	The TFBGA package skips from row "H" to			
Pin #	Full Pin Name	Pin #	Full Pin Name	
A1	PMD4/RE4	E2	T4CK/RC3	
A2	PMD3/RE3	E3	SCK2/U6TXU6TX/U3RTS/PMA5/CN8/RG6	
A3	TRD0/RG13	E4	T3CK/RC2	
A4	PMD0/RE0	E5	Vdd	
A5	PMD8/RG0	E6	PMD9/RG1	
A6	C1TX/PMD10/RF1	E7	Vss	
A7	Vdd	E8	SDA1/INT4/RA15	
A8	Vss	E9	RTCC/IC1/RD8	
A9	IC5/PMD12/RD12	E10	SS1/IC2/RD9	
A10	OC3/RD2	E11	SCL1/INT3/RA14	
A11	OC2/RD1	F1	MCLR	
B1	No Connect (NC)	F2	SCL4/SDO2/U3TX/PMA3/CN10/RG8	
B2	RG15	F3	SS2/U6RX/U3CTS/PMA2/CN11/RG9	
B3	PMD2/RE2	F4	SDA4/SDI2/U3RX/PMA4/CN9/RG7	
B3 B4	PMD1/RE1	F5	Vss	
B5	TRD3/RA7	F6	No Connect (NC)	
B6	C1RX/PMD11/RF0	F7	No Connect (NC)	
B7	VCAP	F8	VDD	
B8	PMRD/CN14/RD5	F9	OSC1/CLKI/RC12	
B9	OC4/RD3		Vss	
B10	Vss	F11	OSC2/CLKO/RC15	
B10 B11	SOSCO/T1CK/CN0/RC14	G1	INT1/RE8	
C1	PMD6/RE6	G2	INT2/RE9	
C2	VDD	G3	TMS/RA0	
C3	TRD1/RG12	G4	No Connect (NC)	
C4	TRD2/RG14	G5	VDD	
C5	TRCLK/RA6	G6	Vss	
C6	No Connect (NC)	G7	Vss	
C7	PMD15/CN16/RD7	G8	No Connect (NC)	
C8	OC5/PMWR/CN13/RD4	G9	TDO/RA5	
C9	VDD	G10	SDA2/RA3	
C10	SOSCI/CN1/RC13	G11	TDI/RA4	
C11	IC4/PMCS1/PMA14/RD11	H1	AN5/C1IN+/VBUSON/CN7/RB5	
D1	T2CK/RC1	H2	AN4/C1IN-/CN6/RB4	
D2	PMD7/RE7	H3	Vss	
D3	PMD5/RE5	H4	VDD	
D4	Vss	H5	No Connect (NC)	
D5	Vss	H6	VDD	
D6	No Connect (NC)	H7	No Connect (NC)	
D7	PMD14/CN15/RD6	H8	VBUS	
D8	PMD13/CN19/RD13	H9	VUSB3V3	
D9	SDO1/OC1/INT0/RD0	H10	D+/RG2	
D10	No Connect (NC)	H11	SCL2/RA2	
D11	SCK1/IC3/PMCS2/PMA15/RD10	J1	AN3/C2IN+/CN5/RB3	
		51		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Nun	nber ⁽¹⁾		D:	Duffer						
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description					
RG0	—	90	A5	A61	I/O	ST	PORTG is a bidirectional I/O port					
RG1	—	89	E6	B50	I/O	ST						
RG6	4	10	E3	A7	I/O	ST						
RG7	5	11	F4	B6	I/O	ST						
RG8	6	12	F2	A8	I/O	ST						
RG9	8	14	F3	A9	I/O	ST						
RG12	—	96	C3	A65	I/O	ST						
RG13	—	97	A3	B55	I/O	ST	-					
RG14	—	95	C4	B54	I/O	ST						
RG15	—	1	B2	A2	I/O	ST						
RG2	37	57	H10	B31	Ι	ST	PORTG input pins					
RG3	36	56	J11	A38	I	ST						
T1CK	48	74	B11	B40		ST	Timer1 external clock input					
T2CK	—	6	D1	A5	I	ST	Timer2 external clock input					
T3CK	—	7	E4	B4		ST	Timer3 external clock input					
T4CK	—	8	E2	A6		ST	Timer4 external clock input					
T5CK	—	9	E1	B5		ST	Timer5 external clock input					
U1CTS	43	47	L9	B26		ST	UART1 clear to send					
U1RTS	49	48	K9	A31	0		UART1 ready to send					
U1RX	50	52	K11	A36	I	ST	UART1 receive					
U1TX	51	53	J10	B29	0	_	UART1 transmit					
U3CTS	8	14	F3	A9	I	ST	UART3 clear to send					
U3RTS	4	10	E3	A7	0	_	UART3 ready to send					
U3RX	5	11	F4	B6	I	ST	UART3 receive					
U3TX	6	12	F2	A8	0	_	UART3 transmit					
U2CTS	21	40	K6	A27	I	ST	UART2 clear to send					
U2RTS	29	39	L6	B22	0		UART2 ready to send					
U2RX	31	49	L10	B27	I	ST	UART2 receive					
U2TX	32	50	L11	A32	0		UART2 transmit					
U4RX	43	47	L9	B26	1	ST	UART4 receive					
U4TX	49	48	K9	A31	0	_	UART4 transmit					
U6RX	8	14	F3	A9	I	ST	UART6 receive					
U6TX	4	10	E3	A7	0	_	UART6 transmit					
U5RX	21	40	K6	A27	1	ST	UART5 receive					
U5TX	29	39	L6	B22	0		UART5 transmit					
SCK1	_	70	D11	B38	I/O	ST	Synchronous serial clock input/output for SPI1					
5	CMOS = CMO ST = Schmitt T TL = TTL inpu	rigger input				nalog = A = Outpu	Analog input P = Power					

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)											
		Pin Nur	nber ⁽¹⁾		Pin	Buffer	Description				
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Туре	Туре					
SDI1	—	9	E1	B5	I	ST	SPI1 data in				
SDO1	—	72	D9	B39	0	_	SPI1 data out				
SS1	_	69	E10	A45	I/O	ST	SPI1 slave synchronization or frame pulse I/O				
SCK3	49	48	K9	A31	I/O	ST	Synchronous serial clock input/output for SPI3				
SDI3	50	52	K11	A36	I	ST	SPI3 data in				
SDO3	51	53	J10	B29	0		SPI3 data out				
SS3	43	47	L9	B26	I/O	ST	SPI3 slave synchronization or frame pulse I/O				
SCK2	4	10	E3	A7	I/O	ST	Synchronous serial clock input/output for SPI2				
SDI2	5	11	F4	B6	I	ST	SPI2 data in				
SDO2	6	12	F2	A8	0		SPI2 data out				
SS2	8	14	F3	A9	I/O	ST	SPI2 slave synchronization or frame pulse I/O				
SCK4	29	39	L6	B22	I/O	ST	Synchronous serial clock input/output for SPI4				
SDI4	31	49	L10	B27	I	ST	SPI4 data in				
SDO4	32	50	L11	A32	0		SPI4 data out				
SS4	21	40	K6	A27	I/O	ST	SPI4 slave synchronization or frame pulse I/O				
SCL1	44	66	E11	B36	I/O	ST	Synchronous serial clock input/output for I2C1				
SDA1	43	67	E8	A44	I/O	ST	Synchronous serial data input/output for I2C1				
SCL3	51	53	J10	B29	I/O	ST	Synchronous serial clock input/output for I2C3				
SDA3	50	52	K11	A36	I/O	ST	Synchronous serial data input/output for I2C3				
SCL2	_	58	H11	A39	I/O	ST	Synchronous serial clock input/output for I2C2				
SDA2	_	59	G10	B32	I/O	ST	Synchronous serial data input/output for I2C2				
SCL4	6	12	F2	A8	I/O	ST	Synchronous serial clock input/outpu for I2C4				
SDA4	5	11	F4	B6	I/O	ST	Synchronous serial data input/output for I2C4				
SCL5	32	50	L11	A32	I/O	ST	Synchronous serial clock input/outpu for I2C5				
SDA5	31	49	L10	B27	I/O	ST	Synchronous serial data input/output for I2C5				
-	CMOS = CMO ST = Schmitt 1 TTL = TTL inp	Frigger input				nalog = A = Outpu	Analog input P = Power t I = Input				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	DCRCDATA<31:24>												
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	DCRCDATA<23:16>												
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	DCRCDATA<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				DCRCDA	ΓA<7:0>								

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31.24	DCRCXOR<31:24>												
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	DCRCXOR<23:16>												
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	DCRCXOR<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				DCRCXO	R<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

1 = Enable the XOR input to the Shift register

0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP (CONTINUED)

ess							•			Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5230	I2C5MSK	31:16	-	—	—	_		_	—	-	_	_		_	—	—	_		0000
5230	IZCONISK	15:0	-	—	—	-		_					MSK	<9:0>				-	0000
5240	I2C5BRG	31:16	_	_	_	—	_	—	—	—	_	—	_	—	—		-	_	0000
5240		15:0	—	—	—	—					Ba	ud Rate Ger	erator Regi	ster			•		0000
5250	I2C5TRN	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—		—	—	0000
0200		15:0	—	_	_	—	_	—	_	_		-		Transmit	Register		•		0000
5260	I2C5RCV	31:16	-			_	_	_		_	_	—	—	—		_	—	_	0000
		15:0	-		—	—		—		_				Receive	Register				0000
5300	I2C1CON	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5310	I2C1STAT	31:16	—	_	_	_	_	_	—	—	_	—	—	_	_		—	_	0000
			ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5320	I2C1ADD	31:16	_	_	—	—	_		—		_	—		_	—		—	—	0000
		15:0	_	_	_	_	_	-					ADD	<9:0>					0000
5330	I2C1MSK	31:16	_	_	_	_	_	-	_	-	_	_	—	-	_	-	—	—	0000
15:0 — — — — — — MSK<9:0>									0000										
5340	I2C1BRG	31:16	_			—	_	—		_	-	-		_	—		-	_	0000
-		15:0	_			—					Ва	ud Rate Ger	Ū.	ster			1		0000
5350	I2C1TRN	31:16	_	—	—	_	_	_	_	_	_	_	—		—	—	—	—	0000
		15:0	_	_	_	_	_	_		_				Transmit	Register				0000
5360	I2C1RCV	31:16 15:0	_	_				—			—	—	—	- Deseive		—	—	—	0000
								_						Receive					
5400	12C2CON(2)	31:16 15:0	ON		-	-		-	— DI001144	-	-	— STREN	— ACKDT			-		-	0000
				_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN					PEN	RSEN	SEN	1000
5410	12C2STAT ⁽²⁾	31:16			_	_	_	— DCI	— 	-	-	-	— D/A	— P	-	— •	-	— TDF	0000
		15:0 31:16	ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5420	12C2ADD(2)	15:0				_	_		_	-	—	—		 <9:0>	—		_	—	0000
		31:16	_			_		_	_		_		ADD	<9.0>			_	_	0000
5430	12C2MSK ⁽²⁾	15:0							_	_	_	_		<0.0>	_		_	_	0000
							— <u> </u>							0000					
5440	I2C2BRG ⁽²⁾	15:0	_			_	_	_	_		Ra	ud Rate Ger	erator Regi	ster	_				0000
		31:16	_	_	_	_	_	_	_	_	Da				_		_	_	0000
5450	I2C2TRN ⁽²⁾	15:0	_	_	_		_		_					Transmit	Register				0000
		31:16	_	_	_	_		_	_	_	_	_	_				_	_	0000
5460	12C2RCV ⁽²⁾	15:0	_	_	_	_	_	_	_	_				Receive	Register				0000
Legen								Les are show	l 	aire al				110001100					0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MONTH	10<3:0>		MONTH01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		DAY10	<3:0>		DAY01<3:0>					
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x		
7:0	—	—	_	_	WDAY01<3:0>					
		•			•					
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'					

0' = Bit is cleared

REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

'1' = Bit is set

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

-n = Value at POR

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

x = Bit is unknown

REGISTER 24-10: CIFLTCONO: CAN FILTER CONTROL REGISTER 0 (CONTINUED)

bit 15	FLTEN1: Filter 1 Enable bit 1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL1<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL0<1:0>: Filter 0 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
DIL 4-0	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	• 00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	—	—		—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	—	—	_	—	_	—
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	_	—	—	—	_	R	XBUFSZ<6:	4>
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7.0		RXBUF	SZ<3:0>			_		_

REGISTER 25-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-11 Unimplemented: Read as '0'

bit 10-4 RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits
1111111 = RX data Buffer size for descriptors is 2032 bytes
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.</li

Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—		_	_	_	_	_	_
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	BUFCNT<7:0>							
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—		_	_	_	_	_	_
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7:0	ETHBUSY ⁽¹⁾	TXBUSY ⁽²⁾	RXBUSY ⁽²⁾	—		_		_

REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x000. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit⁽¹⁾

1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- bit 6 **TXBUSY:** Transmit Busy bit⁽²⁾
 - 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

- **Note 1:** This bit will be *set* when the ON bit (ETHCON1<15>) = 1.
 - **2:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

REGISTER 25-23:	EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—		_	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	_	_			—
	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SOFT RESET	SIM RESET	—		RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN
	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
7:0			_	LOOPBACK	TX PAUSE	RX PAUSE	PASSALL	RX ENABLE

Legend:	

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15	SOFTRESET: Soft Reset bit
	Setting this bit will put the MACMII in reset. Its default value is '1'.
bit 14	SIMRESET: Simulation Reset bit
	Setting this bit will cause a reset to the random number generator within the Transmit Function.
bit 13-12	Unimplemented: Read as '0'
bit 11	RESETRMCS: Reset MCS/RX bit
	Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.
bit 10	RESETRFUN: Reset RX Function bit
	Setting this bit will put the MAC Receive function logic in reset.
bit 9	RESETTMCS: Reset MCS/TX bit
	Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.
bit 8	RESETTFUN: Reset TX Function bit
	Setting this bit will put the MAC Transmit function logic in reset.
bit 7-5	Unimplemented: Read as '0'
bit 4	LOOPBACK: MAC Loopback mode bit
	1 = MAC Transmit interface is loop backed to the MAC Receive interface
bit 3	0 = MAC normal operation TXPAUSE: MAC TX Flow Control bit
DILS	1 = PAUSE Flow Control frames are allowed to be transmitted
	0 = PAUSE Flow Control frames are blocked
bit 2	RXPAUSE: MAC RX Flow Control bit
	1 = The MAC acts upon received PAUSE Flow Control frames
	0 = Received PAUSE Flow Control frames are ignored
bit 1	PASSALL: MAC Pass all Receive Frames bit
	1 = The MAC will accept all frames regardless of type (Normal vs. Control)
	0 = The received Control frames are ignored
bit 0	RXENABLE: MAC Receive Enable bit
	1 = Enable the MAC receiving of frames

0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		—			—		—	—	
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	_	—	_	_	—	
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
15:8	STNADDR4<7:0>								
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
7:0	STNADDR3<7:0>								

REGISTER 25-38: EMAC1SA1: ETHERNET CONTROLLER MAC STATION ADDRESS 1 REGISTER

Legend:		P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR4<7:0>:** Station Address Octet 4 bits These bits hold the fourth transmitted octet of the station address.
- bit 7-0 **STNADDR3<7:0>:** Station Address Octet 3 bits These bits hold the third transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.
 2: This register is loaded at reset from the factory preprogrammed station address.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10			_		—	_		
15.0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1
15:8	ON ⁽¹⁾	—	—	—	—	VREFSEL ⁽²⁾	BGSEL	<1:0> (2)
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	CVROE	CVRR	CVRSS	CVR<3:0>			

REGISTER 27-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

ON: Comparator Voltage Reference On bit⁽¹⁾ bit 15 Setting or clearing this bit does not affect the other bits in this register. 1 = Module is enabled0 = Module is disabled and does not consume current bit 14-11 Unimplemented: Read as '0' VREFSEL: Voltage Reference Select bit⁽²⁾ bit 10 1 = CVREF = VREF+0 = CVREF is generated by the resistor network BGSEL<1:0>: Band Gap Reference Source bits⁽²⁾ bit 9-8 11 = IVRFF = VRFF+10 = Reserved 01 = IVREF = 0.6V (nominal, default)

- 00 = IVREF = 1.2V (nominal)
- bit 7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit
 - 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin

bit 5 **CVRR:** CVREF Range Selection bit

- 1 = 0 to 0.625 CVRSRC, with CVRSRC/24 step size
- 0 = 0.25 CVRSRC to 0.719 CVRSRC, with CVRSRC/32 step size

bit 4 **CVRSS:** CVREF Source Selection bit

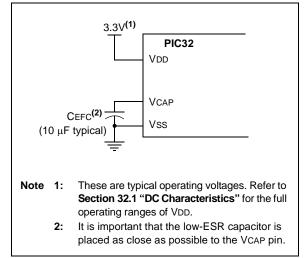
- 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)0 = Comparator voltage reference source, CVRSRC = AVDD - AVSS **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits
- bit 3-0 When CVRR = 1: $CVREF = (CVR < 3:0 > /24) \bullet (CVRSRC)$ When CVRR = 0: $CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)$
 - Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: These bits are not available on PIC32MX575/675/775/795 devices. On these devices, the reset value for CVRON is '0000'.

29.2 On-Chip Voltage Regulator

All PIC32MX5XX/6XX/7XX devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX-5XX/6XX/7XX family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 32.1 "DC Characteristics"**.

Note: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin.


29.2.1 ON-CHIP REGULATOR AND POR

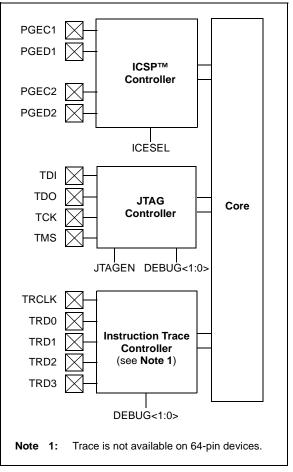
It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

29.2.2 ON-CHIP REGULATOR AND BOR

PIC32MX5XX/6XX/7XX devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset (BOR). This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in **Section 32.1 "DC Characteristics"**.

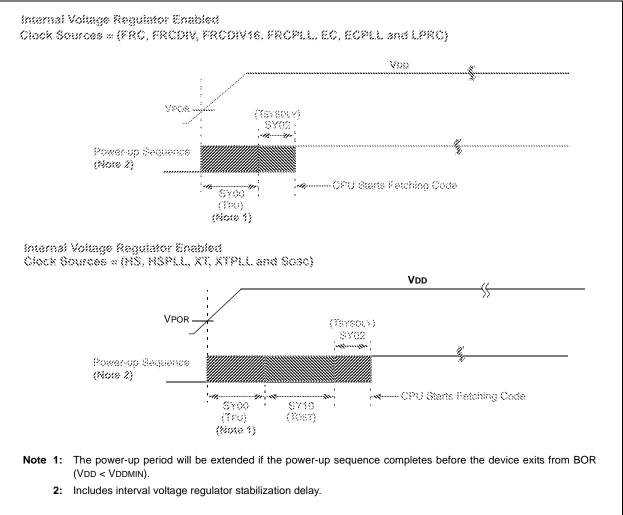
FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

29.3 **Programming and Diagnostics**


PIC32MX5XX/6XX/7XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.


FIGURE 29-2:

PROGRAMMING, DEBUGGING, AND TRACE PORTS BLOCK DIAGRAM

NOTES:

FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS

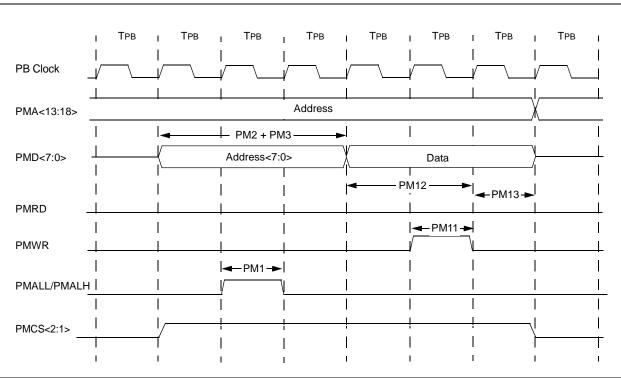


TABLE 32-22: RESETS TIMING

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS	-40°C to +85°C
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	-40°C to +85°C
SY20	TMCLR	MCLR Pulse Width (low)	—	2	_	μS	-40°C to +85°C
SY30	TBOR	BOR Pulse Width (low)	—	1		μS	-40°C to +85°C

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	—	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв		—	—

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE B-4:	SECTION UPDATES	(CONTINUED)
	OLOHION OF BATTLO	

Section Name	Update Description
4.0 "Memory Organization"	• Table 4-13:
(Continued)	- Changed register U4RG to U1BRG
	- Changed register U5RG to U3BRG
	- Changed register U6RG to U2BRG
	• Table 4-14:
	 Updated the All Resets values for the following registers: SPI3STAT, SPI2STAT and SPI4STAT
	• Table 4-15: Updated the All Resets values for the SPI1STAT register
	Table 4-17: Added note 2
	Table 4-19: Added note 2
	 Table 4-20: Updated the All Resets values for the CM1CON and CM2CON registers
	• Table 4-21:
	 Updated the All Resets values as 0000 for the CVRCON register Updated note 2
	• Table 4-38: Updated the All Resets values for the PMSTAT register
	 Table 4-40: Updated the All Resets values for the CHECON and CHETAG registers
	 Table 4-42: Updated the bit value of bit 29/13 as '—' for the DEVCFG3 register
	• Table 4-44:
	- Updated the note references in the entire table
	- Changed existing note 1 to note 4
	- Added notes 1, 2 and 3
	 Changed bits 23/7 in U1PWRC to UACTPND
	 Changed register U1DDR to U1ADDR
	 Changed register U4DTP1 to U1BDTP1
	 Changed register U4DTP2 to U1BDTP2
	 Changed register U4DTP3 to U1BDTP3
	• Table 4-45:
	 Updated the All Resets values for the C1CON and C1VEC registers
	 Changed bits 30/14 in C1CON to FRZ
	 Changed bits 27/11 in C1CON to CANBUSY
	 Changed bits 22/6-16/0 in C1VEC to ICODE<6:0>
	 Changed bits 22/6-16/0 in C1TREC to RERRCNT<7:0>
	- Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0>
	• Table 4-46:
	- Updated the All Resets values for the C2CON and C2VEC registers
	- Changed bits 30/14 in C1CON to FRZ
	- Changed bits 27/11 in C1CON to CANBUSY
	- Changed bits 22/6-16/0 in C1VEC register to ICODE<6:0>
	- Changed bits 22/6-16/0 in C1TREC register to RERRCNT<7:0>
	 Changed bits 31/15-24/8 in C1TREC to TERRCNT<7:0>

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0958-8

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820