

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f128lt-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	—	—	—	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	—	—	—	—	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0					
15:8				BMXDU	DBA<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0	BMXDUDBA<7:0>												

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

I

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	—	—	—		—	—					
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—	—	_	—	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0					
15:8				BMXDU	PBA<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0	BMXDUPBA<7:0>												

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 **BMXDUPBA<9:0>:** DRM User Program Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND PIC32MX695F512H DEVICES (CONTINUED)

ess		Bits																																					
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset																				
1000		31:16		—	—		INT4IP<2:0>	>	INT4IS	S<1:0>	—		—		OC4IP<2:0>	•	OC4IS	S<1:0>	0000																				
TODO	IF C4	15:0	—	—	—		IC4IP<2:0>		IC4IS<1:0>		—	_	—	T4IP<2:0>			T4IS-	<1:0>	0000																				
10E0	IPC5	31:16	—	—	—	—	—	—	—	_	—	_	—	OC5IP<2:0>		•	OC5IS	S<1:0>	0000																				
1020	1 03	15:0	_		—		IC5IP<2:0>		IC5IS	<1:0>	—				T5IP<2:0>		T5IS-	<1:0>	0000																				
		31:16	_		—		AD1IP<2:0>		AD1IS<1:0>		AD1IS<1:0>		—				CNIP<2:0>		CNIS	<1:0>	0000																		
10F0	IPC6																		U1IP<2:0>		U1IS	<1:0>																	
101.0	11 00	15:0	—	—	—		I2C1IP<2:0>		I2C1IS<1:0>		—	—	-		SPI3IP<2:0>	`	SPI3IS	S<1:0>	0000																				
														I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		S<1:0>	
							U3IP<2:0>		U3IS	<1:0>	-																												
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>	>	SPI2IS	S<1:0>	—	—	- 0		CMP2IP<2:0>		CMP2I	S<1:0>	0000																				
							I2C4IP<2:0>		12C419	S<1:0>																													
		15:0	-	_	-	(CMP1IP<2:0	>	CMP1I	S<1:0>	-	_			PMPIP<2:0>	•	PMPIS	S<1:0>	0000																				
		31:16	_	_	_		RTCCIP<2:0	>	RTCCIS<1:0>		_	_		ŀ	-SCMIP<2:0	>	FSCM	S<1:0>	0000																				
1110	IPC8														02IP<2:0>		U2IS	<1:0>	4																				
		15:0	—	_	_		—		_	—	_	—	-		SPI4IP<2:0	`	SPI4IS	5<1:0>	0000																				
		24.40							DMAQ	0.4.0				12C5IP<2:0>		12C5IP<2:0>		12051	S<1:U>																				
1120	IPC9	31:10						>	DIVIA3	5<1:0>	_					>	DIVIAZI	5<1:0>	0000																				
		15:0			_			(2)	DIVIATI	5<1:0>						> (2)	DIVIAUI	5<1:0>	0000																				
1130	IPC10	15.0					MAEID - 2.0>	(2)	DMASIS	(2)	_			DMA6IP < 2:0 > (2)		DMAAIS	(2)	0000																					
		31.16							DIVIASIC	<1.0>						DIVIA4I3	<1.0>	0000																					
1140	IPC11	15.0	_	_	_		USBIP<2:0>	, ,	USBI	S<1.0>	_	_	_			FCEIS	S<1:0>	0000																					
		31.16	_	_	_		U5IP<2:0>		USIS	<1.0>	_	_	_		U6IP<2:0>		UGIS	<1:0>	0000																				
1150	IPC12	15:0		_	_	U3IP<2:0>		U3IP<2.0>		<1:0>	_	_	_		ETHIP<2:0>		ETHIS	6<1:0>	0000																				

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. These bits are not available on PIC32MX664 devices. This register does not have associated CLR, SET, and INV registers.

2:

3:

TABLE 7-5: INTERRUPT REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L PIC32MX575F512L AND PIC32MX575F256L DEVICES (CONTINUED)

ess		0								В	its																										
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets																		
1000		31:16		—	—		INT4IP<2:0>	•	INT4IS	6<1:0>		—	—		OC4IP<2:0>		OC4IS	S<1:0>	0000																		
1000	IPC4	15:0	_	_	—		IC4IP<2:0>		IC4IP<2:0>		IC4IS<1:0>		_	—	_	T4IP<2:0>		T4IS-	<1:0>	0000																	
4050		31:16	—	_	-		SPI1IP<2:0>		SPI1IS	S<1:0>	—	-	_	OC5IP<2:0>		OC5IS<1:0>		0000																			
TUEU	IPC5	15:0	_	—	—	IC5IP<2:0>		C5IP<2:0>		<1:0>	_	—	—		T5IP<2:0>		T5IS-	<1:0>	0000																		
		31:16	_	_	_		AD1IP<2:0>		AD1IS	S<1:0>		—	_		CNIP<2:0>		CNIS	<1:0>	0000																		
10E0	IPC6														U1IP<2:0>		U1IS	<1:0>																			
IUFU	IFCO	15:0	—	-	-		I2C1IP<2:0>		12C115	S<1:0>	—	—	-		SPI3IP<2:0>		SPI3IS	S<1:0>	0000																		
														I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		I2C3IP<2:0>		S<1:0>	
							U3IP<2:0>		U3IS	<1:0>																											
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>	•	SPI2IS	S<1:0>		—	-	(CMP2IP<2:0	>	CMP2I	S<1:0>	0000																		
							I2C4IP<2:0>		12C418	S<1:0>									_																		
		15:0	—		-	(CMP1IP<2:0	>	CMP1I	S<1:0>	—	-			PMPIP<2:0>		PMPIS	6<1:0>	0000																		
		31:16	—	-	-	F	RTCCIP<2:0>		RTCCIP<2:0>		RTCCI	S<1:0>	—	-	—	I	SCMIP<2:0	>	FSCMI	S<1:0>	0000																
1110	IPC8														U2IP<2:0>		U2IS	<1:0>	_																		
		15:0	—	-	-		I2C2IP<2:0>	•	12C218	S<1:0>	—	-	-		SPI4IP<2:0>		SPI4IS	S<1:0>	0000																		
															I2C5IP<2:0>		12C518	S<1:0>	_																		
1120	IPC9	31:16	—	-	-	0	DMA3IP<2:0	>	DMA3I	S<1:0>	—	-	—	l	DMA2IP<2:0	>	DMA2I	S<1:0>	0000																		
20		15:0	—	-	-	0	DMA1IP<2:0	>	DMA1I	S<1:0>	—	-	—	l	DMA0IP<2:0	>	DMA0I	S<1:0>	0000																		
1130	IPC10	31:16	—	—	—	DI	MA7IP<2:0>	(2)	DMA7IS	S<1:0> ⁽²⁾	—	—	—	D	MA6IP<2:0>	(2)	DMA6IS	<1:0> ⁽²⁾	0000																		
1100	11 010	15:0	—	_	_	DI	MA5IP<2:0>	(2)	DMA5IS	S<1:0> ⁽²⁾		_	_	DMA4IP<2:0> ⁽²⁾		DMA4IS	<1:0> ⁽²⁾	0000																			
11/0		31:16	—	_	_						_	_	_	_	CAN1IP<2:0> C		CAN1I	S<1:0>	0000																		
1140		15:0	—	—	—		USBIP<2:0>		USBIS	S<1:0>	_	—	—	FCEIP<2:0> FCEIS<1:0>		6<1:0>	0000																				
1150		31:16	_	_	_		U5IP<2:0>		U5IS	<1:0>	_	—	_		U6IP<2:0>		U6IS	<1:0>	0000																		
1150	11 012	15:0	_	_	_		U4IP<2:0>		U4IS	<1:0>	_	_	_				0000																				

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX534/564 devices.

3: This register does not have associated CLR, SET, and INV registers.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits

- 111 = Clock is multiplied by 24
- 110 = Clock is multiplied by 21
- 101 = Clock is multiplied by 20
- 100 = Clock is multiplied by 19
- 011 = Clock is multiplied by 18
- 010 =Clock is multiplied by 17
- 001 =Clock is multiplied by 16
- 000 =Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)
 - On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).
- bit 7 CLKLOCK: Clock Selection Lock Enable bit

If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):

- 1 = Clock and PLL selections are locked
- 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x):

Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit
 - 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled

bit 4 SLPEN: Sleep Mode Enable bit

- 1 = Device will enter Sleep mode when a WAIT instruction is executed
- 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 12-3: PORTC REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES

ess										Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6090	TRISC	31:16	—	_	_	_	_	_	_		—		—	_	—	—	_		0000
0000	TRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	-	—	-	_	_	—	_	_	_	F000
6000	DODTO	31:16	_	—	—	-	—	_	—		_				_	_	_		0000
6090	PURIC	15:0	RC15	RC14	RC13	RC12	_	—	_	-	—	-	_	_	—	_	_	_	xxxx
6040	LATC	31:16	_	—	—	-	_	_	—	_	_	_	_	-	_	_	-	_	0000
60A0	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	_	_	_	_	-	-	_	_	_	xxxx
CORO	0000	31:16	_	—	—	-	_	_	—	_	_	_	_	-	_	_	-	_	0000
0000	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	_	_	_	_	_	_	_	_	_	_	_	0000
1.0000	al.			Deest			(o) Deset		arrive lies in a surger	la sina al									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-4: PORTC REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										Bi	ts								
Virtual Addr (BF88_#)	(1) (BF88 (1) (BF88 (1) (BF88 (1) (BF88 (1) (BF88 (1) (BF88 (1) (BF88) (1) (BF88) (1) (BF88) (1) (BF88) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6090	TRICC	31:16	_	_	_	_	-	_	_	-	_	-	—	—	_	_	-	_	0000
6080	TRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1	_	FOOF
6000	DODTO	31:16	_	_	—	—	—	_	-	—	_	-	—	—	—	_	—	—	0000
6090	PORIC	15:0	RC15	RC14	RC13	RC12	-	_	_	—	_			RC4	RC3	RC2	RC1	—	xxxx
6040		31:16		-	-	_	-	-		-		—	-	_	-		-	—	0000
OUAU	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	-	-		-		—	-	LATC4	LATC3	LATC2	LATC1	—	xxxx
60P0	00000	31:16	_	_		_	_	_	_	_	_	_	_	_		_	_	_	0000
0000	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12		—	_	-	_	-	1	ODCC4	ODCC3	ODCC2	ODCC1	—	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0	_	_	_	_	_	_	_	_

REGISTER 12-1: CNCON: CHANGE NOTICE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle mode does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31:24	—	—	—	—	—	—	—	ADM_EN
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				ADDR	<7:0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0	R-1
15:8	UTXISE	:L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0, HS	R-0
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:	HS = Set by hardware	HC = Cleared by hardwa	re
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
- bit 13 UTXINV: Transmit Polarity Inversion bit
 - If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
 - 1 = UxTX Idle state is '0'
 - 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by port.
- bit 11 UTXBRK: Transmit Break bit
 - 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion.
 - 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by port.
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

- bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽²⁾
 11111111 = Alarm will trigger 256 times
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <li
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is only reset on a Power-on Reset (POR).

REGISTER 24-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5 (CONTINUED)

FLTEN21: Filter 21 Enable bit
1 = Filter is enabled0 = Filter is disabled
MSEL21<1:0>: Filter 21 Mask Select bits
 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
FSEL21<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
FLTEN20: Filter 20 Enable bit
1 = Filter is enabled0 = Filter is disabled
MSEL20<1:0>: Filter 20 Mask Select bits
 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
FSEL20<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—		
15.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	—	RXBUFSZ<6:4>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7.0		RXBUF	SZ<3:0>		_	_		

REGISTER 25-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-4 RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits
111111 = RX data Buffer size for descriptors is 2032 bytes
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	-	—		—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	-	—		—
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	TXBUSE	RXBUSE	—	-	—	EWMARK	FWMARK
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT		TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15	Unimplemented: Read as '0'
bit 14	TXBUSE: Transmit BVCI Bus Error Interrupt bit
	1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 13	RXBUSE: Receive BVCI Bus Error Interrupt bit
	 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 12-10	Unimplemented: Read as '0'
bit 9	EWMARK: Empty Watermark Interrupt bit
	1 = Empty Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.
bit 8	FWMARK: Full Watermark Interrupt bit
	1 = Full Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 7	RXDONE: Receive Done Interrupt bit
	 1 = RX packet was successfully received 0 = No interrupt pending
	This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
Note:	It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	_	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	—	—	—	—	-
15.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	RESETMGMT	—	—	—	—	—	—	—
7.0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				CLKSEL<3:0> ⁽¹⁾				SCANINC

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 RESETMGMT: Test Reset MII Management bit
 - 1 = Reset the MII Management module
 - 0 = Normal Operation

bit 14-6 **Unimplemented:** Read as '0'

bit 5-2 CLKSEL<3:0>: MII Management Clock Select 1 bits⁽¹⁾

These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

bit 1 NOPRE: Suppress Preamble bit

- 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
- 0 = Normal read/write cycles are performed

bit 0 SCANINC: Scan Increment bit

- 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
- 0 = Continuous reads of the same PHY
- Note 1: Table 25-7 provides a description of the clock divider encoding.

Note:	Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers).
	8-bit accesses are not allowed and are ignored by the hardware.

TABLE 25-7: MIIM CLOCK SELECTION

MIIM Clock Select	EMAC1MCFG<5:2>
SYSCLK divided by 4	000x
SYSCLK divided by 6	0010
SYSCLK divided by 8	0011
SYSCLK divided by 10	0100
SYSCLK divided by 14	0101
SYSCLK divided by 20	0110
SYSCLK divided by 28	0111
SYSCLK divided by 40	1000
Undefined	Any other combination

NOTES:

REGISTER 29-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit
 - 1 = PGEC2/PGED2 pair is used
 - 0 = PGEC1/PGED1 pair is used
- bit 2 Reserved: Write '1'
- bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = Debugger is disabled
 - 10 = Debugger is enabled
 - 01 = Reserved (same as '11' setting)
 - 00 = Reserved (same as '11' setting)

TABLE 32-37: 10-BIT ADC CONVERSION RATE PARAMETERS

Standard Opera (unless otherw Operating tempe	Standard Operating Conditions (see Note 3): 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp							
ADC Speed ⁽²⁾	TAD Minimum	Sampling Time Minimum	Rs Maximum	Vdd	ADC Channels Configuration			
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC			
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX CHX ANX OF VREF- ANX OF VREF-			

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 32-23: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX5XX/6XX/7X

34.1 Package Marking Information (Continued)

121-Lead TFBGA (10x10x1.1 mm)

124-Lead VTLA (9x9x0.9 mm)

Example

-		
Legend	: XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will	
	be carried over to the next line, thus limiting the number of available	
	characters for customer-specific information.	