

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx664f128lt-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	USB and Ethernet															
Device	Pins	Program Memory (KB)	Data Memory (KB)	USB	Ethernet	Timers/Capture/Compare	DMA Channels (Programmable/Dedicated)	UART ^(2,3)	SPI ⁽³⁾	I ² C ⁽³⁾	10-bit 1 Msps ADC (Channels)	Comparators	dSP/PMP	JTAG	Trace	Packages ⁽⁴⁾
PIC32MX664F064H	64	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX664F128H	64	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX675F256H	64	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX675F512H	64	512 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX695F512H	64	512 + 12 ⁽¹⁾	128	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX664F064L	100	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX664F128L	100	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX675F256L	100	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX675F512L	100	512 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG, TL
PIC32MX695F512L	100	512 + 12 ⁽¹⁾	128	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG, TL
Legend: PF, PT =	TQFP	MR = QF	N		BG =	TFBGA	4	TL =	VTL/	ų(5)						

TABLE 2: PIC32MX6XX USB AND ETHERNET FEATURES

Legend: PF, PT = TQFP MR = QFN BG = Note 1: This device features 12 KB boot Flash memory.

2: CTS and RTS pins may not be available for all UART modules. Refer to the "Device Pin Tables" section for more information.

3: Some pins between the UART, SPI and I²C modules may be shared. Refer to the "Device Pin Tables" section for more information.

4: Refer to 34.0 "Packaging Information" for more information.

5: 100-pin devices other than those listed here are available in the VTLA package upon request. Please contact your local Microchip Sales Office for details.

TABLE 12: PIN NAMES FOR USB, ETHERNET, AND CAN DEVICES (CONTINUED)

1	21-PIN TFBGA (BOTTOM VIEW	")	L11						
Not	PIC32MX764F128L L1 A11 PIC32MX775F256L PIC32MX775F512L A11 PIC32MX795F512L Vote: The TFBGA package skips from row "H" to row "J" and has no "I" row. A1 Pin # Full Pin Name Pin # Full Pin Name								
Pin #	Full Pin Name	Pin #	Full Pin Name						
J3	PGED2/AN7/RB7	K8	Vdd						
J4	AVDD	K9	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15						
J5	J5 AN11/ERXERR/AETXERR/PMA12/RB11		USBID/RF3						
J6	TCK/RA1	K11	SDA3/SDI3/U1RX/RF2						
J7	AN12/ERXD0/AECRS/PMA11/RB12	L1	PGEC2/AN6/OCFA/RB6						
J8	No Connect (NC)	L2	VREF-/CVREF-/AERXD2/PMA7/RA9						
J9	No Connect (NC)	L3	AVss						
J10	SCL3/SDO3/U1TX/RF8	L4	AN9/C2OUT/RB9						
J11	D-/RG3	L5	AN10/CVREFOUT/PMA13/RB10						
K1	PGEC1/AN1/CN3/RB1	L6	AC1TX/SCK4/U5TX/U2RTS/RF13						
K2	K2 PGED1/AN0/CN2/RB0		AN13/ERXD1/AECOL/PMA10/RB13						
K3	K3 VREF+/CVREF+/AERXD3/PMA6/RA10		AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15						
K4	AN8/C1OUT/RB8	L9	AETXD0/SS3/U4RX/U1CTS/CN20/RD14						
K5	No Connect (NC)	L10	SDA5/SDI4/U2RX/PMA9/CN17/RF4						
K6	AC1RX/SS4/U5RX/U2CTS/RF12	L11	SCL5/SDO4/U2TX/PMA8/CN18/RF5						
K7	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14								

Note 1: This pin is not available on PIC32MX764F128L devices.

2: Shaded pins are 5V tolerant.

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)

REGIST	
bit 12-10	IP01<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 9-8	IS01<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP00<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 1-0	IS00<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
Nete	This projection proposed to a proposite definition of the IDOs projection Defaulty T-11 T-1 () ()
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

Control Registers 9.2

TABLE 9-1: PREFETCH REGISTER MAP

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	CHECON ^(1,2)	31:16	—		—	_	_	_	—	_		—	_		-	_	_	CHECOH	0000
4000	CHECON	15:0		_	—	_	_	_	DCSZ	<1:0>	_	—	PREFE	N<1:0>	_	F	PFMWS<2:0	>	0007
4010	CHEACC ⁽¹⁾	31:16	CHEWEN	—	—	—	—	—	—	—	-	—	—	_	—	—	—		0000
4010		15:0	—	—	—	—	—	—	—	—	-	—	—	—		CHEID	X<3:0>		0000
4020	CHETAG ⁽¹⁾		LTAGBOOT — — — — — — — LTAG<23:16> 0							00xx									
.020	01121710	15:0						LTAG<	<15:4>						LVALID	LLOCK	LTYPE	—	xxx2
4030	CHEMSK ⁽¹⁾	31:16	—	_	—	—	_	—		—	—	—	—	_	_	_		—	0000
		15:0										0000							
4040	CHEW0	31:16	CHEW0<31:0>									XXXX							
		15:0										XXXX							
4050	CHEW1	31:16	CHEW1<31:0>									XXXX							
		15:0										XXXX							
4060	CHEW2	31:16 15:0										XXXX							
		31:16																	xxxx xxxx
4070	CHEW3	15:0								CHEWS	8<31:0>								XXXX
		31:16	_	_	_	_	_	_	_				CI	HELRU<24:1	6>				0000
4080	CHELRU	15:0								CHELR	J<15:0>		0.						0000
		31:16																	xxxx
4090	CHEHIT	15:0								CHEHI	⁻ <31:0>								xxxx
		31:16																	xxxx
40A0	CHEMIS	15:0								CHEMIS	5<31:0>								xxxx
4000	CHEPFABT	31:16								CHEPFAI	OT -21-0-								xxxx
4000	CHEFFABI	15:0								UNEPFAI	51<31.0>								xxxx

Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Reset value is dependent on DEVCFGx configuration. 1:

2:

Note

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	CHEWEN	—	_	—	—	-	—	—		
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	-	—		—	—		—	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0		—		—	—		—	—		
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				—		CHEID	X<3:0>			

REGISTER 9-2: CHEACC: CACHE ACCESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 CHEWEN: Cache Access Enable bits

- These bits apply to registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and CHEW3.
- 1 = The cache line selected by CHEIDX<3:0> is writeable
- 0 = The cache line selected by CHEIDX<3:0> is not writeable
- bit 30-4 **Unimplemented:** Write '0'; ignore read

bit 3-0 CHEIDX<3:0>: Cache Line Index bits

The value selects the cache line for reading or writing.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0									
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x									
31:24	CHEW1<31:24>																
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x									
23:16	CHEW1<23:16>																
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x									
15:8	CHEW1<15:8>																
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x									
7:0		•	•	CHEW1	<7:0>			CHEW1<7:0>									

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24	CHEW2<31:24>										
00:40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16	CHEW2<23:16>										
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8	CHEW2<15:8>										
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0				CHEW2	<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

PIC32MX5XX/6XX/7XX

REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
51.24	_	_	-		_	-		—					
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16		-						—					
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
15.6	—	_			_			—					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7.0	LSPDEN	DEVADDR<6:0>											

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 **LSPDEN:** Low-Speed Enable Indicator bit
 - 1 = Next token command to be executed at low-speed
 - 0 = Next token command to be executed at full-speed
- bit 6-0 DEVADDR<6:0>: 7-bit USB Device Address bits

REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	-	-		—				-	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	-	-		—				-	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	_	_	_	—	-	_		_	
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0	FRML<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** 11-bit Frame Number Lower bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

TABLE 12-9: PORTF REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX795F512H, DEVICES

ess		e								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TRISF	31:16	_	—	_	—	-	—	_	_	_	—	_	—	—	_	-	—	0000
6140	IRIOF	15:0		_	_	_	_	_	_	_	_	_	TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
6150	PORTF	31:16	_	_		_		_					-	_	_	_			0000
6150	PURIF	15:0		-	-	—	—	—	-	-	-	-	RF5	RF4	RF3		RF1	RF0	xxxx
6160	LATF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
6160	LAIF	15:0	-	_	—	_	_	_	_	_	_	_	LATF5	LATF4	LATF3	—	LATF1	LATF0	xxxx
6170	ODCF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
0170	ODCF	15:0	_	_	_		-						ODCF5	ODCF4	ODCF3		ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-10: PORTF REGISTER MAP PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX775F512L, PIC32MX7

ess		Ċ,								Bi	ts								- y
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
	TDIOF	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6140	TRISF	15:0	_	_	TRISF13	TRISF12	_	_	_	TRISF8	_	_	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6150	PORTF	31:16	-	_	_	_	_	-	_	_	-		-		_		_	_	0000
0150	FUNIF	15:0	-	—	RF13	RF12	_		_	RF8			RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160	LATF	31:16	—	—	_		—	_	_		-	_	_	_	_	_	—	—	0000
0100	LAIF	15:0		—	LATF13	LATF12		-		LATF8		-	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCF	31:16	—	_	_	—	_		_				_		—		-	-	0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	_	-	—	ODCF8	_	-	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

13.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the low-power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

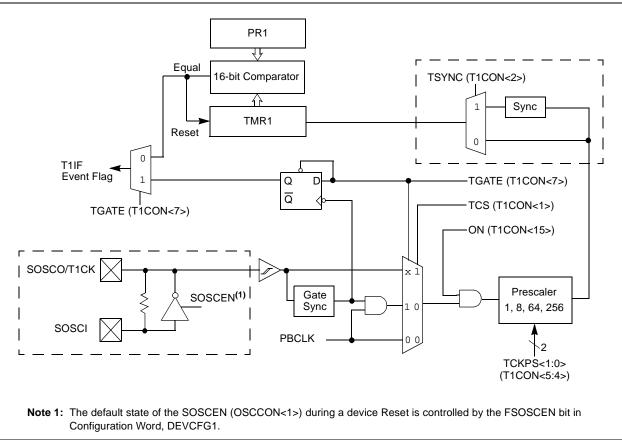

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

13.1 Additional Supported Features

- Selectable clock prescaler
- Timer operation during Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

A simplified block diagram of the Timer1 module is illustrated in Figure 13-1.

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 3 Unimplemented: Read as '0'
 bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit When TCS = 1: 1 = External clock input is synchronized 0 = External clock input is not synchronized When TCS = 0: This bit is ignored.
 bit 1 TCS: Timer Clock Source Select bit 1 = External clock from TxCKI pin 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard. Figure 19-1 illustrates the l^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

										Bi	ts								
7000 PMCON 3	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000 PM		31:16	_	_	_	_	_	_	_	_		_	_	_	—	_	—	_	0000
7000 1 100		15:0	ON	—	SIDL	ADRMU	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010 PMM	MODE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
7010 Pivily	NODE	15:0	15:0 BUSY IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITB<1:0> WAITM<3:0> WAITE<1:0>						<1:0>	0000									
7020 PMA		31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7020 PINA	IADDR	15:0	CS2EN/A15	CS1EN/A14							ADDR	<13:0>							0000
7000 040		31:16								DATAOU	T 04.0								0000
7030 PMD		15:0								DATAOU	1<31:0>								0000
7040 DM	MDIN	31:16									.01.0								0000
7040 PM		15:0								DATAIN	<31:0>								0000
7050 014	MAEN	31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7050 PM/	VIAEN	15:0								PTEN<	:15:0>								0000
7000 0140	10TAT	31:16	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
7060 PMS	ISTAL	15:0	IBF	IBOV	_	-	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	-	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
31:24	—	—	_	—	—	—	CAL<9):8>					
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23.10	CAL<7:0>												
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
0.61	ON ^(1,2)		SIDL	—	—	-		_					
7.0	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0					
7:0	RTSECSEL ⁽³⁾	RTCCLKON	_	—	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE					

REGISTER 22-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Unimplemented: Read as '0'

bit 25-16 **CAL<9:0>:** RTC Drift Calibration bits, which contain a signed 10-bit integer value

~0 10	
	1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute
	•
	•
	• 1000000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute
	0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute
	•
	•
	•
	000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute
	000000000 = No adjustment
bit 15	ON: RTCC On bit ^(1,2)
	1 = RTCC module is enabled
	0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode
	0 = Continue normal operation in Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽³⁾
	1 = RTCC Seconds Clock is selected for the RTCC pin
	0 = RTCC Alarm Pulse is selected for the RTCC pin
bit 6	RTCCLKON: RTCC Clock Enable Status bit
	1 = RTCC Clock is actively running
	0 = RTCC Clock is not running
bit 5-4	Unimplemented: Read as '0'
	•
Note 1:	The ON bit is only writable when RTCWREN = 1.
2:	When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the
	SYSCLK cycle immediately following the instruction that clears the module's ON bit.
3:	Requires $RTCOE = 1$ (RTCCON<0>) for the output to be active.
4:	The RTCWREN bit can only be set when the write sequence is enabled.
5:	This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is only reset on a Power-on Reset (POR).

© 2009-2016 Microchip Technology Inc.

REGISTER 24-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' (n = 0 THROUGH 31)

- bit 6 TXABAT: Message Aborted bit⁽²⁾ 1 = Message was aborted 0 = Message completed successfully bit 5 TXLARB: Message Lost Arbitration bit⁽³⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority 00 = Lowest message priority Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

bit 6	PKTPEND: Packet Pending Interrupt bit
	1 = RX packet pending in memory
	0 = RX packet is not pending in memory
	This bit is set when the BUFCNT counter has a value other than '0'. It is cleared by either a Reset or by writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 5	RXACT: Receive Activity Interrupt bit
	1 = RX packet data was successfully received0 = No interrupt pending
	This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 4	Unimplemented: Read as '0'
bit 3	TXDONE: Transmit Done Interrupt bit
	1 = TX packet was successfully sent0 = No interrupt pending
	This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 2	TXABORT: Transmit Abort Condition Interrupt bit
	1 = TX abort condition occurred on the last TX packet0 = No interrupt pending
	This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons:
	Jumbo TX packet abort
	Underrun abort
	Excessive defer abort
	Late collision abort
	Excessive collisions abort
	This bit is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 1	RXBUFNA: Receive Buffer Not Available Interrupt bit
	 1 = RX Buffer Descriptor Not Available condition has occurred 0 = No interrupt pending
	This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a '1' to the CLR register.
bit 0	RXOVFLW: Receive FIFO Over Flow Error bit
	1 = RX FIFO Overflow Error condition has occurred0 = No interrupt pending
	RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—		_	_	_	_	_	_				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	BUFCNT<7:0>											
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—		_	_	_	_	_	_				
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
7:0	ETHBUSY ⁽¹⁾	TXBUSY ⁽²⁾	RXBUSY ⁽²⁾	—		_		_				

REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x000. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit⁽¹⁾

1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- bit 6 **TXBUSY:** Transmit Busy bit⁽²⁾
 - 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

- **Note 1:** This bit will be *set* when the ON bit (ETHCON1<15>) = 1.
 - **2:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Typical ⁽³⁾	Max.	Units Conditions				
Operatir	ng Current (I	DD) ^(1,2) for	PIC32MX53	34/564/664/764 Family Device	es		
DC20c	6	9	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC		4 MHz
DC20d	7	10			+105⁰C		
DC20e	2			Code executing from SRAM			
DC21b	19	32	~^^	Code executing from Flash		_	25 MHz (Note 4)
DC21c	14	_	mA	Code executing from SRAM			
DC22b	31	50	~^^	Code executing from Flash		—	60 MHz
DC22c	29	_	mA	Code executing from SRAM			(Note 4)
DC23c	39	65	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC		80 MHz
DC23d	49	70			+105⁰C		
DC23e	39	_	1	Code executing from SRAM	_		
DC25b	100	150	μA	—	3.3V	LPRC (31 kHz) (Note 4)	

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- **2:** The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol Characteristics		Min.	Typical ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins:					
		with TTL Buffer	Vss	—	0.15 Vdd	V	
		with Schmitt Trigger Buffer	Vss	—	0.2 Vdd	V	
DI15		MCLR ⁽²⁾	Vss	—	0.2 Vdd	V	
DI16		OSC1 (XT mode)	Vss	—	0.2 Vdd	V	(Note 4)
DI17		OSC1 (HS mode)	Vss	—	0.2 Vdd	V	(Note 4)
DI18		SDAx, SCLx	Vss	_	0.3 Vdd	V	SMBus disabled (Note 4)
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)
	Vih	Input High Voltage					
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	—	Vdd	V	(Note 4,6)
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	_	5.5	V	(Note 4,6)
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 Vdd	_	5.5	V	
DI28		SDAx, SCLx	0.65 Vdd	—	5.5	V	SMBus disabled (Note 4,6)
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)
DI30	ICNPU	Change Notification Pull-up Current	—	—	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	—	50	—	μA	VDD = 3.3V, VPIN = VDD

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).</p>
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

TABLE 32-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V)

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp					
Param. No.	Symbol	Characteristi	Min.	Typical	Max.	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		3.92	_	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes
OS51	Fsys	On-Chip VCO System Frequency		60	_	120	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		_	_	2	ms	—
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25		+0.25	%	Measured over 100 ms period

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 80 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{80}{20}}} = \frac{D_{CLK}}{2}$$

TABLE 32-19: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp					
Param. No.	Characteristics	Min.	Typical Max. Units Conditions		Conditions		
Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾ for PIC32MX575/675/695/775/795 Family Devices							
F20a	FRC	-2	—	+2	%	—	
Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices							
F20b	FRC	-0.9	—	+0.9	%	—	

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PIC32 MX 5XX F 512 H T - 80 I/PT - XXX Example: Microchip Brand					
Flash Memory Fan	nily				
Architecture	MX = 32-bit RISC MCU core				
Product Groups	5XX = General purpose microcontroller family 6XX = General purpose microcontroller family 7XX = General purpose microcontroller family				
Flash Memory Family	F = Flash program memory				
Program Memory Size	64 = 64K 128 = 128K 256 = 256K 512 = 512K				
Pin Count	H = 64-pin L = 100-pin, 121-pin, 124-pin				
Speed (see Note 1)	Blank or 80 = 80 MHz				
Temperature Range	I = -40°C to +85°C (Industrial) V = -40°C to +105°C (V-Temp)				
Package	IngePT= 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack)PT= 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack)PF= 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack)MR= 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)BG= 121-Lead (10x10x1.1 mm) TFBGA (Plastic Thin Profile Ball Grid Array)TL= 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array)				
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample				
Note 1: This opt	ion is not available for PIC32MX534/564/664/764 devices.				