

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f256ht-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 64-PIN USB AND ETHERNET DEVICES

64	64-PIN QFN ⁽²⁾ AND TQFP (TOP VIEW)									
	PIC32MX664F064H PIC32MX664F128H PIC32MX675F256H PIC32MX675F512H PIC32MX695F512H 64	0EN(2)		64						
				TQFP						
Pin #	Full Pin Name	Pin	#	Full Pin Name						
1	ETXEN/PMD5/RE5	33	3	USBID/RF3						
2	ETXD0/PMD6/RE6	34	ļ	VBUS						
3	ETXD1/PMD7/RE7	35	5	VUSB3V3						
4	SCK2/U6TX/U3RTS/PMA5/CN8/RG6	36	6	D-/RG3						
5	SDA4/SDI2/U3RX/PMA4/CN9/RG7	37	7	D+/RG2						
6	SCL4/SDO2/U3TX/PMA3/CN10/RG8	38	3	Vdd						
7	MCLR	39)	OSC1/CLKI/RC12						
8	SS2/U6RX/U3CTS/PMA2/CN11/RG9	40)	OSC2/CLKO/RC15						
9	Vss	41		Vss						
10	Vdd	42	2	RTCC/AERXD1/ETXD3/IC1/INT1/RD8						
11	AN5/C1IN+/VBUSON/CN7/RB5	43	3	AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9						
12	AN4/C1IN-/CN6/RB4	44	1	ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10						
13	AN3/C2IN+/CN5/RB3	45	5	ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11						
14	AN2/C2IN-/CN4/RB2	46	6	OC1/INT0/RD0						
15	PGEC1/AN1/VREF-/CVREF-/CN3/RB1	47	7	SOSCI/CN1/RC13						
16	PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0	48	3	SOSCO/T1CK/CN0/RC14						
17	PGEC2/AN6/OCFA/RB6	49	9	EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1						
18	PGED2/AN7/RB7	50)	SDA3/SDI3/U1RX/OC3/RD2						
19	AVdd	51	l	SCL3/SDO3/U1TX/OC4/RD3						
20	AVss	52	2	OC5/IC5/PMWR/CN13/RD4						
21	AN8/SS4/U5RX/U2CTS/C1OUT/RB8	53	3	PMRD/CN14/RD5						
22	AN9/C2OUT/PMA7/RB9	54	ļ	AETXEN/ETXERR/CN15/RD6						
23	TMS/AN10/CVREFOUT/PMA13/RB10	55	5	ETXCLK/AERXERR/CN16/RD7						
24	TDO/AN11/PMA12/RB11	56	6	VCAP						
25	Vss	57	7	Vdd						
26	VDD	58	3	AETXD1/ERXD3/RF0						
27	TCK/AN12/PMA11/RB12	59	9	AETXD0/ERXD2/RF1						
28	TDI/AN13/PMA10/RB13	60)	ERXD1/PMD0/RE0						
29	AN14/SCK4/U5TX/U2RTSU2RTS/PMALH/PMA1/RB14	61		ERXD0/PMD1/RE1						
30	AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15	62	2	ERXDV/ECRSDV/PMD2/RE2						
31	SDA5/SDI4/U2RX/PMA9/CN17/RF4	63	3	ERXCLK/EREFCLK/PMD3/RE3						
32	SCL5/SDO4/U2TX/PMA8/CN18/RF5	64	1	ERXERR/PMD4/RE4						

Note 1: Shaded pins are 5V tolerant.

2: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES (CONTINUED)

1	21-PIN TFBGA (BOTTOM VIEW	/)	L1	11						
	PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L		L1	A11						
No	Note: The TFBGA package skips from row "H" to row "J" and has no "I" row.									
Pin #	Full Pin Name	Pin #	Full Pin Name							
J3	PGED2/AN7/RB7	K8	VDD							
J4	AVdd	K9	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15							
J5	AN11/ERXERR/AETXERR/PMA12/RB11	K10	USBID/RF3							
J6	TCK/RA1	K11	SDA3/SDI3/U1RX/RF2							
J7	AN12/ERXD0/AECRS/PMA11/RB12	L1	PGEC2/AN6/OCFA/RB6							
J8	No Connect (NC)	L2	VREF-/CVREF-/AERXD2/PMA7/RA9							
J9	No Connect (NC)	L3	AVss							
J10	SCL3/SDO3/U1TX/RF8	L4	AN9/C2OUT/RB9							
J11	D-/RG3	L5	AN10/CVREFOUT/PMA13/RB10							
K1	PGEC1/AN1/CN3/RB1	L6	SCK4/U5TX/U2RTS/RF13							
K2	PGED1/AN0/CN2/RB0	L7	AN13/ERXD1/AECOL/PMA10/RB13							
K3	VREF+/CVREF+/AERXD3/PMA6/RA10	L8	AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15							
K4	AN8/C1OUT/RB8	L9	AETXD0/SS3/U4RX/U1CTS/CN20/RD14							
K5	No Connect (NC)	L10	SDA5/SDI4/U2RX/PMA9/CN17/RF4							
K6	SS4/U5RX/U2CTS/RF12	L11	SCL5/SDO4/U2TX/PMA8/CN18/RF5							
K7	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14									

Note 1: Shaded pins are 5V tolerant.

		Pin Nun	nber ⁽¹⁾			, 			
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description		
PMD0	60	93	A4	B52	I/O	TTL/ST	Parallel Master Port data		
PMD1	61	94	B4	A64	I/O	TTL/ST	(Demultiplexed Master mode) or		
PMD2	62	98	B3	A66	I/O	TTL/ST	address/data (Multiplexed Master		
PMD3	63	99	A2	B56	I/O	TTL/ST	modes)		
PMD4	64	100	A1	A67	I/O	TTL/ST			
PMD5	1	3	D3	B2	I/O	TTL/ST			
PMD6	2	4	C1	A4	I/O	TTL/ST			
PMD7	3	5	D2	B3	I/O	TTL/ST			
PMD8	_	90	A5	A61	I/O	TTL/ST			
PMD9	_	89	E6	B50	I/O	TTL/ST			
PMD10		88	A6	A60	I/O	TTL/ST			
PMD11		87	B6	B49	I/O	TTL/ST			
PMD12	_	79	A9	B43	I/O	TTL/ST			
PMD13	_	80	D8	A54	I/O	TTL/ST			
PMD14	—	83	D7	B45	I/O	TTL/ST			
PMD15	—	84	C7	A56	I/O	TTL/ST			
PMALL	30	44	L8	A29	0	_	Parallel Master Port address latch enable low byte (Multiplexed Master modes)		
PMALH	29	43	K7	B24	0		Parallel Master Port address latch enable high byte (Multiplexed Master modes)		
PMRD	53	82	B8	A55	0		Parallel Master Port read strobe		
PMWR	52	81	C8	B44	0		Parallel Master Port write strobe		
VBUS	34	54	H8	A37	I	Analog	USB bus power monitor		
VUSB3V3	35	55	H9	B30	Р	_	USB internal transceiver supply. If the USB module is <i>not</i> used, this pin must be connected to VDD.		
VBUSON	11	20	H1	A12	0		USB Host and OTG bus power control output		
D+	37	57	H10	B31	I/O	Analog	USB D+		
D-	36	56	J11	A38	I/O	Analog	USB D-		
USBID	33	51	K10	A35	I	ST	USB OTG ID detect		
C1RX	58	87	B6	B49	I	ST	CAN1 bus receive pin		
C1TX	59	88	A6	A60	0		CAN1 bus transmit pin		
AC1RX	32	40	K6	A27	I	ST	Alternate CAN1 bus receive pin		
AC1TX	31	39	L6	B22	0		Alternate CAN1 bus transmit pin		
C2RX	29	90	A5	A61	Ι	ST	CAN2 bus receive pin		
C2TX	21	89	E6	B50	0		CAN2 bus transmit pin		
AC2RX	_	8	E2	A6	1	ST	Alternate CAN2 bus receive pin		
Legend: C	CMOS = CMC ST = Schmitt T	S compatib	le input or c t with CMOS	output S levels	A O	nalog = A = Outpu	nalog input P = Power t I = Input		

PINOLIT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB[®] REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- "MPLAB[®] ICD 3 Design Advisory" (DS50001764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 Trace

The trace pins can be connected to a hardware-traceenabled programmer to provide a compress real time instruction trace. When used for trace the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22Ω series resistor between the trace pins and the trace connector.

2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. Refer to **Section 8.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	Ebase	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration Register 1.
16	Config2	Configuration Register 2.
16	Config3	Configuration Register 3.
17-22	Reserved	Reserved.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

3.3 Power Management

The MIPS32 M4K Processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 28.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-5XX/6XX/7XX family core is in the clock tree and clocking registers. The PIC32 family uses extensive use of local gated clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS32 M4K Processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the MIPS M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the MIPS32 M4K processor core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

11.1 **Control Registers**

TABLE 11-1: USB REGISTER MAP

SSS											Bits								
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040		31:16	_	_	_		_	—	_	_	—	-	—	—	-	-	—	_	0000
0040	3040 01010IK	15:0	_	_	—	_	_	—	_	_	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF	0000
5050	U1OTGIE	31:16	—	_	—	_	_	—		_	—	_	—	—	_	—		_	0000
		15:0	_	_	_	_	_	_	_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	0000
5060	5060 U1OTGSTAT ⁽³⁾	31:16	_	_	_		_	_		_	-		-	_	-	—	_	—	0000
		15:0	_	_	_		_	_		_	ID		LSTATE	_	SESVD	SESEND	_	VBUSVD	0000
5070	U1OTGCON	31:16	_	_	_	_	_			—	-	-					-	-	0000
		15:0	_	_	_	_	_			—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
5080	U1PWRC	31:16	_	_	_	_	_	_	_	_		_	_			_			0000
		15.0	_					_			UACTPIND()		_	USLPGRD	0300031		USUSPEND	USDPWK	0000
5200	LI41D(2)	31.10	_					_				_	_		_	_			0000
	UTIKY	15:0	—	—	—	—	—	—	—	—	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5210	U1IE	15:0	_	_	_	-	_	_	_		STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE		0000
		31.16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
5220	U1EIR ⁽²⁾	00															CRC5EF		0000
0220	0.2.11	15:0	—	—	—	—	—	—	—	-	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF	PIDEF	0000
		31:16	_		-			_			-		_	-			-		0000
5230	U1EIE	15.0	_	_	_	_	_	_	_	_	BTSEE	BMXEE		BTOFF		CRC16EE	CRC5EE	PIDEE	0000
		10.0									DIGEL	DIWIXEE	DMALL	DIGEL	DINOLL	ONOTOLL	EOFEE	TIDEE	0000
5240	U1STAT(3)	31:16	—	_	—	_	—	—	_	—	—	—	_	—	_	_	—	_	0000
02.0	010.0	15:0	—	_	—	_	_	—	_	—		ENDPT	<3:0> ⁽⁴⁾		DIR	PPBI	—	_	0000
		31:16	—	_	—	_	_	—		_	—	_	—	—	_	—		_	0000
5250	U1CON	15:0	_	_	_	_	_	_	_	_	JSTATE ⁽⁴⁾	SE0 ⁽⁴⁾	PKTDIS	USBRST	HOSTEN	RESUME	PPBRST	USBEN	0000
													TOKBUSY					SOFEN	0000
5260	U1ADDR	31:16	-	_	_	_	_	-	_	_	-	_	—		—		—	—	0000
		15:0	—	—	_	_	_	—	—	_	LSPDEN			DE	VADDR<6:0)>			0000
5270	U1BDTP1	31:16	—	—	_	_	_	—	—	_	_	—			—	—	—	_	0000
		15:0	-	_	-	-	-	-	-	-			BL	JIPIRL :1				—	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for Note 1: more information.

2:

This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	—	_	_	_	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPDEN			D	EVADDR<6:0)>		

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **LSPDEN:** Low-Speed Enable Indicator bit
 - 1 = Next token command to be executed at low-speed
 - 0 = Next token command to be executed at full-speed
- bit 6-0 DEVADDR<6:0>: 7-bit USB Device Address bits

REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				FRML	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** 11-bit Frame Number Lower bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	FRMCNT<2:0>			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
23.10	—	—	—	—	—	—	SPIFE	ENHBUF ⁽²⁾		
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	ON ⁽¹⁾	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾		
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXIS	EL<1:0>		

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FRMEN: Framed SPI Support	bit
		Dir

- 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
- 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on SSx pin bit (only Framed SPI mode) 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 **FRMPOL:** Frame Sync Polarity bit (only Framed SPI mode)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed Sync mode.
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23-18 Unimplemented: Read as '0'
- bit 17 SPIFE: Frame Sync Pulse Edge Select bit (only Framed SPI mode)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 ENHBUF: Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

19.1 Control Registers

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP

SSS		_								Bi	ts								
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	1000001	31:16	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5000	12C3CON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010	12026747	31:16	—	-	_	_	_	_	—	_	-	_	_	_		_	-	_	0000
5010	12033 IAI	15:0	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5020		31:16	—	_	—	—	_	—	_	—	_	—	—	—	—	—	_	_	0000
5020	1200ADD	15:0	—	_	_	—	_	—					ADD	<9:0>					0000
5030	12C3MSK	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5050	120010101	15:0	—	_	—	—	—	—					MSK	<9:0>					0000
5040	I2C3BRG	31:16	_	_	_	—	_	—	—	—	_	—	_	—	—	—	_	—	0000
00.0	.2005.10	15:0	—	_		_					Ba	ud Rate Ger	nerator Regis	ster					0000
5050	I2C3TRN	31:16	_	_		—	—	—		_	—	—		—	—		—	_	0000
		15:0	_	_		—	—	—		_				Transmit	Register				0000
5060	I2C3RCV	31:16	—	—	—	—	—	—	-	_	—	—	—	_	—	—	—	_	0000
		15:0	_	_		—	—	—		_				Receive	Register				0000
5100	I2C4CON	31:16	—	_	—	—	—	—	_	—	—	—		—	_		—	_	0000
		15:0	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C4STAT	31:16	—	_	—	—	—	—	_	—	—	—		—	_		—	_	0000
		15:0	ACKSTAT	TRSTAT		—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5120	I2C4ADD	31:16	—	—	—	—	—	—	-	—	—	—	_	—	—	—	—	—	0000
		15:0	_	_	_	-	_	-					ADD	<9:0>					0000
5130	I2C4MSK	31:16	_	_	_	-	_	-	-	-	_	_	—	-	_	_	_	_	0000
		15:0				_		_					MSK	<9:0>					0000
5140	I2C4BRG	31:16	_	_	_	-	_	—	—	-			—	—	_	_	—	-	0000
		15:0				_					Ва	ud Rate Ger	erator Regi	ster					0000
5150	I2C4TRN	31:16	_		_	_	_		_		_		_		—	_	_		0000
		15:0				_		_						Transmit	Register				0000
5160	I2C4RCV	15.0									_	_	_	- Receive	— Pegister	—	—	_	0000
		31.16																	0000
5200	I2C5CON	15.0				SCI PEI	STRICT			SMEN	GCEN	STREN				DEN		SEN	1000
		31.16	_	_			_					_							0000
5210	I2C5STAT	15.0	ACKSTAT	TRSTAT	_	_	_	BCI	GOSTAT	ADD10	IWCOL	120.01/	D/A	Р	S	R/W	RBF	TBE	0000
		31.16							5001AT			12007				1./ **			0000
5220	I2C5ADD	15.0	_	_		_		_		_	_	_		-0:0>	_	_	_	_	0000
		15:0	—		—	_	—	_					ADD	<9.0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31:24		HR104	<3:0>		HR01<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:10		MIN10	<3:0>		MIN01<3:0>			
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8		SEC10	<3:0>		SEC01<3:0>			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_	_	_	_
Legend:								
R = Readable bit W = Writab				e bit	U = Unimple	emented bit, re	ead as '0'	

REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 31-28 HR10<3:0>: Binary-Co	ded Decimal Value of Hou	irs bits, 10 digits; contains a	value from 0 to 2

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

REGISTER 23-2:	AD1CON2: ADC CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
15:8		VCFG<2:0>		OFFCAL	—	CSCNA	—	—
7:0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	BUFS	—		SMP	l<3:0>		BUFM	ALTS

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

Bit Value	VREFH	VREFL	
1xx	AVdd	AVss	
011	External VREF+ pin	External VREF- pin	
010	AVdd	External VREF- pin	
001	External VREF+ pin	AVss	
000	AVdd	AVss	

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the S&H circuit are connected to VREFL.

0 = Disable Offset Calibration mode

The inputs to the S&H circuit are controlled by AD1CHS or AD1CSSL.

bit 11 Unimplemented: Read as '0'

- bit 10 **CSCNA:** Input Scan Select bit
 - 1 = Scan inputs

0 = Do not scan inputs

- bit 9-8 Unimplemented: Read as '0'
- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
- 1110 = Interrupts at the completion of conversion for each 15" sample/convert sequence
- •

0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, and then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31.24		SID<10:3>									
00.40	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x			
23.10		SID<2:0>		—	EXID	—	EID<17:16>				
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
10.0	EID<15:8>										
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
				EID<	:7:0>						

REGISTER 24-18: CIRXFn: CAN ACCEPTANCE FILTER 'n' REGISTER 7 (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Message address bit SIDx must be '1' to match filter
- 0 = Message address bit SIDx must be '0' to match filter
- bit 20 Unimplemented: Read as '0'
- bit 19 **EXID:** Extended Identifier Enable bits
 - 1 = Match only messages with extended identifier addresses
 - 0 = Match only messages with standard identifier addresses
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

REGISTER 24-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' (n = 0 THROUGH 31)

- bit 9 TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is \leq half full 0 = FIFO is > half full TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 8 **TXEMPTYIF:** Transmit FIFO Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is empty 0 = FIFO is not empty, at least 1 message queued to be transmitted TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 7-4 Unimplemented: Read as '0' bit 3 **RXOVFLIF:** Receive FIFO Overflow Interrupt Flag bit TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = Overflow event has occurred 0 = No overflow event occuredbit 2 **RXFULLIF:** Receive FIFO Full Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is full 0 = FIFO is not full RXHALFIF: Receive FIFO Half Full Interrupt Flag bit⁽¹⁾ bit 1 TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is \geq half full 0 = FIFO is < half full bit 0 **RXNEMPTYIF:** Receive Buffer Not Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty
- Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R-x	R-x									
31.24		CiFIFOUAn<31:24>									
00.40	R-x	R-x									
23.10	CiFIFOUAn<23:16>										
15.0	R-x	R-x									
15.0	CiFIFOUAn<15:8>										
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
				CiFIFOU	IAn<7:0>						

REGISTER 24-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER 'n' (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	_		—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	—	—	_	—	_	_	—			
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	—	—	—	—	_		—			
7:0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
	_	_	_		(CiFIFOCI<4:0	>				

REGISTER 24-23: CiFIFOCIN: CAN MODULE MESSAGE INDEX REGISTER 'n' (n = 0 THROUGH 31)

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

31:24 U-0 U-0 </th <th>I-0 U-0 U-0 U-0 </th> <th>U-0 —</th> <th>U-0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th> <th></th>	I-0 U-0 U-0 U-0 	U-0 —	U-0	U-0	U-0	U-0	
31.24	 N-0 R/W-0 R/W-0 R/W-0	— 	—				
23:16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	W-0 R/W-0 R/W-0 R/W-0	P/W_0				—	31:24
23.10 BUFCNT<7:0>		10/00-0	R/W-0	R/W-0	R/W-0	R/W-0	22.16
		23:16					
15-8 U-0 U-0 U-0 U-0 U-0 U-0 U-0	-0 U-0 U-0 U-0	U-0	U-0	U-0	U-0	U-0	15.0
		_	-		—	—	15:8
7-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0	-0 U-0 U-0 U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	7:0
ETHBUSY ⁽¹⁾ TXBUSY ⁽²⁾ RXBUSY ⁽²⁾		_	_	RXBUSY ⁽²⁾	TXBUSY ⁽²⁾	ETHBUSY ⁽¹⁾	

REGISTER 25-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

Legend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x000. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit⁽¹⁾

1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- bit 6 **TXBUSY:** Transmit Busy bit⁽²⁾
 - 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

- **Note 1:** This bit will be *set* when the ON bit (ETHCON1<15>) = 1.
 - **2:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24		_	—	—	—	—	—	—
22.16	U-0	U-0						
23.10		_	—	—	—	—	—	—
15.0	U-0	U-0						
15:8		_	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7.0			_	_	_	TESTBP	TESTPAUSE ⁽¹⁾	SHRTQNTA ⁽¹⁾

REGISTER 25-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

- bit 2 TESTBP: Test Backpressure bit
 - 1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure.
 0 = Normal operation

bit 1 TESTPAUSE: Test PAUSE bit⁽¹⁾

- 1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received
- 0 = Normal operation

bit 0 SHRTQNTA: Shortcut PAUSE Quanta bit⁽¹⁾

- 1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time
- 0 = Normal operation
- **Note 1:** This bit is only for testing purposes.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 29-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit
 - 1 = PGEC2/PGED2 pair is used
 - 0 = PGEC1/PGED1 pair is used
- bit 2 Reserved: Write '1'
- bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = Debugger is disabled
 - 10 = Debugger is enabled
 - 01 = Reserved (same as '11' setting)
 - 00 = Reserved (same as '11' setting)

FIGURE 32-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 32-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS

АС СНА	$\label{eq:characteristics} \begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$							
Param. No.	Symbol	Charac	cteristics ⁽¹⁾	Min.	Max.	Units	Con	ditions
IC10	TccL	ICx Input	t Low Time	[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)
IC11	ТссН	ICx Input	t High Time	[(12.5 ns or 1 ТРВ)/N] + 25 ns	-	ns	Must also meet parameter IC15.	
IC15	TCCP	ICx Input	t Period	[(25 ns or 2 Трв)/N] + 50 ns	-	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 32-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
OC10	TCCF	OCx Output Fall Time	—	—		ns	See parameter DO32	
OC11	TCCR	OCx Output Rise Time		—		ns	See parameter DO31	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		124		
Pitch	eT		0.50 BSC		
Pitch (Inner to outer terminal ring)	eR	0.50 BSC			
Overall Height	A	0.80	0.85	0.90	
Standoff	A1	0.00	-	0.05	
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	6.40	6.55	6.70	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	6.40	6.55	6.70	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-193A Sheet 2 of 2