

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f256ht-80v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES

1	21-PIN TFBGA (BOTTOM VIEW)		L11
	PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L		L1 A11
	te: The TFBGA package skips from row "H		
Pin #	Full Pin Name	Pin #	Full Pin Name
A1	PMD4/RE4	E2	T4CK/RC3
A2	PMD3/RE3	E3	ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6
A3	TRD0/RG13	E4	T3CK/RC2
A4	PMD0/RE0	E5	VDD
A5	PMD8/RG0	E6	ETXERR/PMD9/RG1
A6	ETXD0/PMD10/RF1	E7	Vss
A7	Vdd	E8	AETXEN/SDA1/INT4/RA15
A8	Vss	E9	RTCC/EMDIO/AEMDIO/IC1/RD8
A9	ETXD2/IC5/PMD12/RD12	E10	SS1/IC2/RD9
A10	OC3/RD2	E11	AETXCLK/SCL1/INT3/RA14
A11	OC2/RD1	F1	MCLR
B1	No Connect (NC)	F2	ERXDV/AERXDV/ECRSDV/AECRSDV//SCL4/SDO2/U3TX/PMA3/CN10/RG8
B2	AERXERR/RG15	F3	ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9
B3	PMD2/RE2	F4	ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7
B4	PMD1/RE1	F5	Vss
B5	TRD3/RA7	F6	No Connect (NC)
B6	ETXD1/PMD11/RF0	F7	No Connect (NC)
B7	VCAP	F8	VDD
B8	PMRD/CN14/RD5	F9	OSC1/CLKI/RC12
B9	OC4/RD3	F10	Vss
B10	Vss	F11	OSC2/CLKO/RC15
B11	SOSCO/T1CK/CN0/RC14	G1	AERXD0/INT1/RE8
C1	PMD6/RE6	G2	AERXD1/INT2/RE9
C2	VDD	G3	TMS/RA0
C3 C4	TRD1/RG12 TRD2/RG14	G4 G5	No Connect (NC) VDD
C4	TRCLK/RA6	G5 G6	Vss
	No Connect (NC)	G0 G7	Vss
C0 C7	ETXCLK/PMD15/CN16/RD7	G7 G8	No Connect (NC)
C8	OC5/PMWR/CN13/RD4	G9	TDO/RA5
C9	VDD	G10	SDA2/RA3
C10	SOSCI/CN1/RC13	G11	TDI/RA4
C11	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	H1	AN5/C1IN+/VBUSON/CN7/RB5
D1	T2CK/RC1	H2	AN4/C1IN-/CN6/RB4
D2	PMD7/RE7	H3	Vss
D3	PMD5/RE5	H4	VDD
D4	Vss	H5	No Connect (NC)
D5	Vss	H6	VDD
D6	No Connect (NC)	H7	No Connect (NC)
D7	ETXEN/PMD14/CN15/RD6	H8	VBUS
D8	ETXD3/PMD13/CN19/RD13	H9	VUSB3V3
D9	SDO1/OC1/INT0/RD0	H10	D+/RG2
D10	No Connect (NC)	H11	SCL2/RA2
D11	SCK1/IC3/PMCS2/PMA15/RD10	J1	AN3/C2IN+/CN5/RB3
E1 Note	T5CK/SDI1/RC4 1: Shaded pins are 5V tolerant.	J2	AN2/C2IN-/CN4/RB2

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	Ebase	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration Register 1.
16	Config2	Configuration Register 2.
16	Config3	Configuration Register 3.
17-22	Reserved	Reserved.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.
	I	

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

Bit

Bit

Bit

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24		_	—	_	_	—	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16		_	_		—							
45.0	R/W-0, HC	R/W-0	R-0, HS	R-0, HS	R-0, HSC	U-0	U-0	U-0				
15:8	WR	WREN	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	LVDSTAT ⁽¹⁾	—	—					
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0	—	—	—	—		NVMOF	P<3:0>					
Legend:		U = Unimple	emented bit, r	ead as '0'		HSC = Set an	d Cleared by	hardware				
R = Reac	lable bit	W = Writable		HS = Set by	/ hardware	HC = Cleared	-					
-n = Value		'1' = Bit is se		'0' = Bit is c		x = Bit is unkr	•					
				0 - Dit 10 0								
bit 31-16	Unimpleme	nted: Read a	is '0'									
bit 15	WR: Write C											
	This bit is w	ritable when V	VREN = 1 an	d the unlock	sequence is fo	ollowed.						
	1 = Initiate a	a Flash operat	tion. Hardwar	e clears this I	bit when the o	peration compl	etes					
		•										
bit 14	0 = Flash operation complete or inactiveWREN: Write Enable bit											
	1 = Enable writes to WR bit and enables LVD circuit											
	0 = Disable writes to WR bit and disables LVD circuit											
	Note:	This is the on	lv bit in this re	aister that is	reset by a dev	vice Reset.						
bit 13	WRERR: Write Error bit ⁽¹⁾											
	This bit is read-only and is automatically set by hardware.											
	1 = Program or erase sequence did not complete successfully											
	0 = Program or erase sequence completed normally											
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽¹⁾											
	This bit is read-only and is automatically set by hardware.											
	1 = Low-voltage detected (possible data corruption, if WRERR is set)											
	0 = Voltage level is acceptable for programming											
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽¹⁾											
	This bit is read-only and is automatically set, and cleared, by hardware.											
	1 = Low-voltage event is active											
	 Low-voltage event is active Low-voltage event is not active 											
bit 10-4		nted: Read a										
bit 3-0	-	0>: NVM Ope										
		re writable wi		0.								
	1111 = Res											
	•	orrou										
	•	•										
	•	a m ca d										
	0111 = Reserved 0110 = No operation											
		•	FM) erase or	eration eras	es PFM if all r	bages are not v	vrite-protected	Ч				
						R if it is not wr		4				
						DDR if it is not		ed				
	0010 = No c		P9-		,		- F	-				
			eration: progr	ams word se	elected by NVM	MADDR if it is r	not write-prote	ected				
	0000 = No o	operation			-		-					

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Bit

Bit

Bit

Bit

Bit

Bit

Note 1: This bit is cleared by setting NVMOP == 0000b, and initiating a Flash operation (i.e., WR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
31:24	NVMKEY<31:24>											
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
23:16	NVMKEY<23:16>											
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
15:8	NVMKEY<15:8>											
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
7:0				NVMK	EY<7:0>							

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read.

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

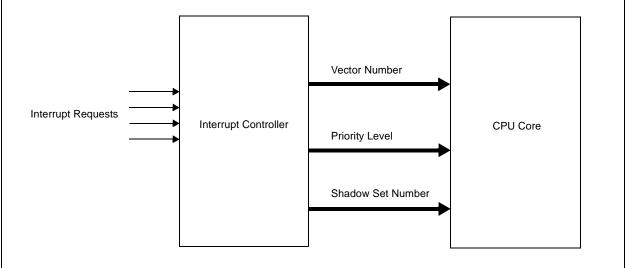
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMADDR<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	NVMADDR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMADDR<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				NVMAE	DDR<7:0>							

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8. "Interrupts"** (DS60001108) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).


PIC32MX5XX/6XX/7XX devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The Interrupt Controller module includes the following features:

- Up to 96 interrupt sources
- Up to 64 interrupt vectors
- Single and multi-vector mode operations
- · Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable sub-priority levels within each priority
- Dedicated shadow set for user-selectable priority level
- Software can generate any interrupt
- User-configurable interrupt vector table location
- · User-configurable interrupt vector spacing

A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1.

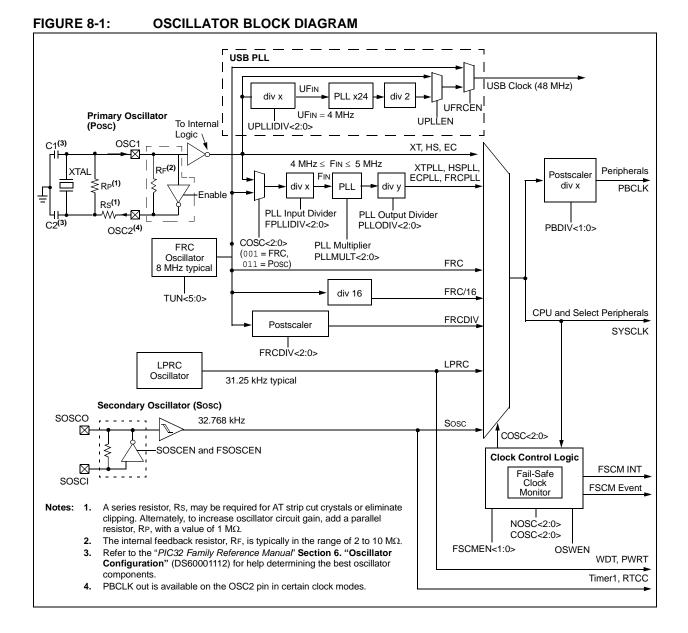
7.1 **Control Registers**

TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES

	1		CJZIWIA																1		
ess										Bits											
Virtual Address (BF88_#)	(BF88_#) (BF88_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
4000	INITOON	31:16	—	_	_	_	_	—	-	_	_	_		_	—	_	_	SS0	0000		
1000	INTCON	15:0	—	—	_	MVEC	—		TPC<2:0>		—	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000		
1010	INTSTAT ⁽³⁾	31:16	_	_	_	—	_	_	—	—	—	_			—	_	_	—	0000		
1010	INTSTAT	15:0	—	—	—	—	—		SRIPL<2:0>		—	—			VEC<5:0)>			0000		
1020	IPTMR	31:16 15:0								IPTMR<3	1:0>								0000		
1030	IFS0		I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000		
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000		
		31:16	IC3EIF	IC2EIF	IC1EIF	_	_	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000		
1040	IFS1							U2TXIF	U2RXIF	U2EIF	U3TXIF	U3RXIF	U3EIF								
1040	11 31	15:0	RTCCIF	FSCMIF	—	-	—	SPI4TXIF	SPI4RXIF	SPI4EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000		
								I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF								
1050	IFS2	31:16	_	—	—	—		—	_	_	—	—	_	_			—	—	0000		
		15:0	—	—	—	—	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000		
1060	IEC0	31:16	31:16	31:16 I	I6 I2C1MIE	C1MIE I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE	U1RXIE SPI3RXIE	U1EIE SPI3EIE	_	_	_	OC5IE	IC5IE	T5IE INT4I	INT4IE	OC4IE	IC4IE	T4IE	0000
1000	ILC0					I2C3MIE	I2C3SIE	I2C3BIE													
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000		
		31:16	IC3EIE	IC2EIE	IC1EIE	—	—	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000		
1070	IEC1							U2TXIE	U2RXIE	U2EIE	U3TXIE	U3RXIE	U3EIE								
1070	1201	15:0	RTCCIE	FSCMIE	—	—	—	SPI4TXIE	SPI4RXIE	SPI4EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000		
								I2C5MIE	I2C5SIE	I2C5BIE	I2C4MIE	I2C4SIE	I2C4BIE								
1080	IEC2	31:16	—	—	—	_	—	—	—	—	—	—	_	—	—	—	—	—	0000		
		15:0	—	—	—	—	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE		PMPEIE	IC5EIE	IC4EIE	0000		
1090	IPC0	31:16	—	—	—		INT0IP<2:0>		INTOIS		—	—	_		S1IP<2:0>		CS1IS		0000		
	90 IFC0		—	—	—		CS0IP<2:0> s '0'. Reset v		CS0IS		—	—	—	C	CTIP<2:0>		CTIS	<1:0>	0000		

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET Note 1: and INV Registers" for more information.

These bits are not available on PIC32MX534/564/664/764 devices. 2:


This register does not have associated CLR, SET, and INV registers. 3:

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The Oscillator module has the following features:

- A total of four external and internal oscillator options as clock sources
- On-chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

Figure 8-1shows the Oscillator module block diagram.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—		_		_	_	_	—			
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
23:16	CHAIRQ<7:0> ⁽¹⁾										
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
15:8	CHSIRQ<7:0> ⁽¹⁾										
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	—			

REGISTER 10-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit
	 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0	Unimplemented: Read as '0'

Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—		—				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	—	—	—		—				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHCSIZ<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHCSIZ	/<7:0>							

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

111111111111111 = 65,535 bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	CHCPTR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0	CHCPTR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

12.1 Parallel I/O (PIO) Ports

All port pins have three registers (TRIS, LAT and PORT) that are directly associated with their operation.

TRIS is a Data Direction or Tri-State Control register that determines whether a digital pin is an input or an output. Setting a TRISx register bit = 1, configures the corresponding I/O pin as an input; setting a TRISx register bit = 0, configures the corresponding I/O pin as an output. All port I/O pins are defined as inputs after a device Reset. Certain I/O pins are shared with analog peripherals and default to analog inputs after a device Reset.

PORT is a register used to read the current state of the signal applied to the port I/O pins. Writing to a PORTx register performs a write to the port's latch, LATx register, latching the data to the port's I/O pins.

LAT is a register used to write data to the port I/O pins. The LATx Latch register holds the data written to either the LATx or PORTx registers. Reading the LATx Latch register reads the last value written to the corresponding PORT or Latch register.

Not all port I/O pins are implemented on some devices, therefore, the corresponding PORTx, LATx and TRISx register bits will read as zeros.

12.1.1 CLR, SET AND INV REGISTERS

Every I/O module register has a corresponding Clear (CLR), Set (SET) and Invert (INV) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

Note:	Using a PORTxINV register to toggle a bit							
	is recommended because the operation is							
	performed in hardware atomically, using							
	fewer instructions, as compared to the							
	traditional read-modify-write method, as							
	follows:							
	PORTC $^{ = 0x0001:}$							

12.1.2 DIGITAL INPUTS

Pins are configured as digital inputs by setting the corresponding TRIS register bits = 1. When configured as inputs, they are either TTL buffers or Schmitt Triggers. Several digital pins share functionality with analog inputs and default to the analog inputs at POR. Setting the corresponding bit in the AD1PCFG register = 1 enables the pin as a digital pin.

The maximum input voltage allowed on the input pins is the same as the maximum VIH specification. Refer to **Section 32.0 "Electrical Characteristics"** for VIH specification details.

Note:	Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume
	current that exceeds the device specifications.

12.1.3 ANALOG INPUTS

Certain pins can be configured as analog inputs used by the ADC and comparator modules. Setting the corresponding bits in the AD1PCFG register = 0 enables the pin as an analog input pin and must have the corresponding TRIS bit set = 1 (input). If the TRIS bit is cleared = 0 (output), the digital output level (VOH or VOL) will be converted. Any time a port I/O pin is configured as analog, its digital input is disabled and the corresponding PORTx register bit will read '0'. The AD1PCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

12.1.4 DIGITAL OUTPUTS

Pins are configured as digital outputs by setting the corresponding TRIS register bits = 0. When configured as digital outputs, these pins are CMOS drivers or can be configured as open-drain outputs by setting the corresponding bits in the Open-Drain Configuration (ODCx) register.

The open-drain feature allows generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

12.1.5 ANALOG OUTPUTS

Certain pins can be configured as analog outputs, such as the CVREF output voltage used by the comparator module. Configuring the comparator reference module to provide this output will present the analog output voltage on the pin, independent of the TRIS register setting for the corresponding pin.

12.1.6 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports (CNx) allows devices to generate interrupt requests in response to change-of-state on selected pin.

Each CNx pin also has a weak pull-up, which acts as a current source connected to the pin. The pull-ups are enabled by setting the corresponding bit in the CNPUE register.

13.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the low-power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

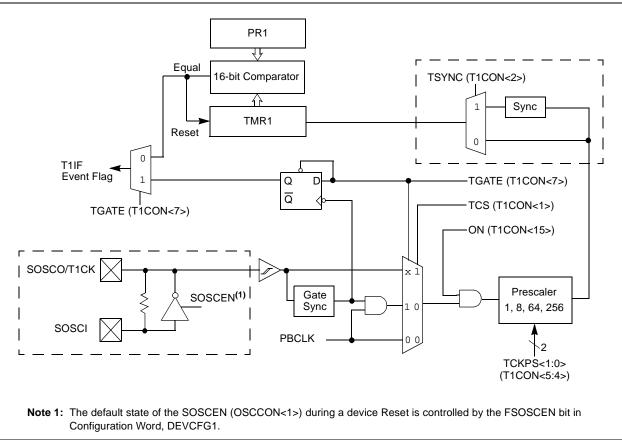

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

13.1 Additional Supported Features

- Selectable clock prescaler
- Timer operation during Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

A simplified block diagram of the Timer1 module is illustrated in Figure 13-1.

20.1 Control Registers

TABLE 20-1: UART1 THROUGH UART6 REGISTER MAP

			Bits																
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	U1MODE ⁽¹⁾	31:16			—					_		_		_					0000
0000	UTWODE: /	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6010	U1STA ⁽¹⁾	31:16	_				—	_		ADM_EN				ADDR	<7:0>			-	0000
0010	UIUIA	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6020	U1TXREG	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	OTIMALO	15:0	—	—	—	_	—	—	—	TX8				Transmit	Register				0000
6030	U1RXREG	31:16		_	_	_	—	_	_	_		—	—	—	—	—	—	_	0000
0000	OHOULEO	15:0		_	_	_	—	_	_	RX8				Receive	Register				0000
6040	U1BRG ⁽¹⁾	31:16	—	_	—	—	—	—	_	—	-	_	—	_	_	—	_	—	0000
		15:0								BRG<	15:0>								0000
6200	U4MODE ⁽¹⁾	31:16			_	_	_	_		—		—	_		_	—	—	—	0000
		15:0	ON	_	SIDL	IREN	_	_	_	—	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6210	10 U4STA ⁽¹⁾ 31:1			—	_	—	—	—	—	ADM_EN				ADDR		1		r	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6220	U4TXREG	31:16	—				_	_		—			—		—	—	—	_	0000
		15:0	—	—	_	—	—	—	—	TX8				Transmit	Register				0000
6230	U4RXREG	31:16	—				_	_		—			—		—	—	—	_	0000
		15:0	—				_	_		RX8				Receive	Register				0000
6240	U4BRG ⁽¹⁾	31:16		—	—	—	—	—	—	—			—		—	—	—	_	0000
		15:0					1			BRG<	15:0>	1		1				1	0000
6400	U3MODE ⁽¹⁾	31:16	—	_	—	—	—	—	_	—	-	—	—	_	_	-	_	—	0000
		15:0	ON		SIDL	IREN	RTSMD		UEN		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6410	U3STA ⁽¹⁾	31:16	—	_	—	—	—	—	_	ADM_EN				ADDR		1		I.	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6420	U3TXREG	31:16	—				_	_		—			—		—	—	—	_	0000
		15:0	—				_	_		TX8				Transmit	Register				0000
6430	U3RXREG	31:16	_	_	-	_	—	—	_	—	-	_	—	—	_	—	_	—	0000
		15:0	—				_	_		RX8				Receive	Register				0000
6440	U3BRG ⁽¹⁾	31:16	—	—	-	_	—	—	—	—	—	—	_	—	—	—	—	—	0000
		15:0									0000								
6600	U6MODE ⁽¹⁾	31:16	_	_	-	—	—	_	_	—	—	—	—	—	—	—	—	—	0000
	CONODE	15:0	ON	_	SIDL	IREN	—	_	—	—	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6610	U6STA ⁽¹⁾	31:16	—	—	-	—	—		—	ADM_EN				ADDR		1			0000
0010	2001/1	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

								,		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31.24				SID<	10:3>					
22:46	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x		
23:16		SID<2:0>		—	EXID	_	EID<17:16>			
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8	EID<15:8>									
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7:0	EID<7:0>									

REGISTER 24-18: CIRXFn: CAN ACCEPTANCE FILTER 'n' REGISTER 7 (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Message address bit SIDx must be '1' to match filter
- 0 = Message address bit SIDx must be '0' to match filter
- bit 20 Unimplemented: Read as '0'
- bit 19 **EXID:** Extended Identifier Enable bits
 - 1 = Match only messages with extended identifier addresses
 - 0 = Match only messages with standard identifier addresses
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

PIC32MX5XX/6XX/7XX

REGISTER 25-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	_	_	_	_	—	—	
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	_	_	_	—	—	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	FRMTXOKCNT<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				FRMTXOK	(CNT<7:0>				

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	_	—	_	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		_	_	_	_	—	_	_
7.0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	_			B2	BIPKTGP<6:()>		

Legend:

Logona.			
R = Readable bit	= Readable bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

27.1 Control Register

TABLE 27-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

lress ¢)		e								Bits									
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	CVRCON	31:16			—	—	—	-	—	_	_	_		_		—		—	0000
9800	CVRCON	15:0	ON	-	_	—	_	VREFSEL ⁽²⁾	BGSEL	<1:0> ⁽²⁾	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0100

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX575/675/695/775/795 devices. On these devices, reset value for CVRCON is '0000'.

PIC32MX5XX/6XX/7XX

NOTES:

TABLE 32-14: VOLTAGE REFERENCE SPECIFICATIONS

DC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$							
Param. No.	Symbol Characteristics		Min.	Typical	Max.	Units	Comments			
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.	_	_	10	μs	See Note 1			
D313	DACREFH	CVREF Input Voltage	AVss	_	AVdd	V	CVRSRC with CVRSS = 0			
		Reference Range	VREF-	_	VREF+	V	CVRSRC with CVRSS = 1			
D314	DVref	CVREF Programmable Output Range	0	—	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size			
			0.25 x DACREFH	—	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size			
D315	DACRES	Resolution	—	_	DACREFH/ 24		CVRCON <cvrr> = 1</cvrr>			
			—	—	DACREFH/ 32		CVRCON <cvrr> = 0</cvrr>			
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>			
			—	_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>			

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 32-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHA	RACTERIS	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D321	Cefc	External Filter Capacitor Value	8	10	—	μF	Capacitor must be low series resistance (1 ohm)		
D322	TPWRT	Power-up Timer Period	_	64	_	ms	—		

PIC32MX5XX/6XX/7XX

TABLE 32-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Charact	Min.	Max.	Units	Conditions				
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz			
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz			
			1 MHz mode ⁽¹⁾	0.5		μs	—			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz			
			400 kHz mode	0.6	—	μS	PBCLK must operate at a minimum of 3.2 MHz			
			1 MHz mode ⁽¹⁾	0.5	—	μs	—			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from			
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
			1 MHz mode ⁽¹⁾	—	100	ns				
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from			
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
			1 MHz mode ⁽¹⁾	—	300	ns				
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	_			
			400 kHz mode	100		ns				
			1 MHz mode ⁽¹⁾	100		ns				
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns	_			
			400 kHz mode	0	0.9	μs				
			1 MHz mode ⁽¹⁾	0	0.3	μs				
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4700		ns	Only relevant for Repeated			
			400 kHz mode	600		ns	Start condition			
			1 MHz mode ⁽¹⁾	250		ns				
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4000		ns	After this period, the first			
			400 kHz mode	600		ns	clock pulse is generated			
			1 MHz mode ⁽¹⁾	250		ns				
IS33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4000		ns	—			
			400 kHz mode	600	_	ns				
			1 MHz mode ⁽¹⁾	600	_	ns				
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000		ns	—			
			400 kHz mode	600	—	ns]			
			1 MHz mode ⁽¹⁾	250		ns	1			
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	—			
		Clock	400 kHz mode	0	1000	ns	1			
			1 MHz mode ⁽¹⁾	0	350	ns	1			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	The amount of time the bus			
			400 kHz mode	1.3	—	μS	must be free before a new			
			1 MHz mode ⁽¹⁾	0.5	—	μS	transmission can start			
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	_			
	· · · ·	n pin capacitance =	.				1			

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0958-8