

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f256lt-80i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6:PIN NAMES FOR 64-PIN USB, ETHERNET, AND CAN DEVICES

64-PIN QFN⁽³⁾ AND TQFP (TOP VIEW)

PIC32MX764F128H PIC32MX775F256H PIC32MX775F512H PIC32MX795F512H

	64	1	
		(3)	64
			TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	ETXEN/PMD5/RE5	33	USBID/RF3
2	ETXD0/PMD6/RE6	34	VBUS
3	ETXD1/PMD7/RE7	35	VUSB3V3
4	SCK2/U6TX/U3RTS/PMA5/CN8/RG6	36	D-/RG3
5	SDA4/SDI2/U3RX/PMA4/CN9/RG7	37	D+/RG2
6	SCL4/SDO2/U3TX/PMA3/CN10/RG8	38	Vdd
7	MCLR	39	OSC1/CLKI/RC12
8	SS2/U6RX/U3CTS/PMA2/CN11/RG9	40	OSC2/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	RTCC/AERXD1/ETXD3/IC1/INT1/RD8
11	AN5/C1IN+/VBUSON/CN7/RB5	43	AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9
12	AN4/C1IN-/CN6/RB4	44	ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10
13	AN3/C2IN+/CN5/RB3	45	ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11
14	AN2/C2IN-/CN4/RB2	46	OC1/INT0/RD0
15	PGEC1/AN1/VREF-/CVREF-/CN3/RB1	47	SOSCI/CN1/RC13
16	PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0	48	SOSCO/T1CK/CN0/RC14
17	PGEC2/AN6/OCFA/RB6	49	EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1
18	PGED2/AN7/RB7	50	SDA3/SDI3/U1RX/OC3/RD2
19	AVdd	51	SCL3/SDO3/U1TX/OC4/RD3
20	AVss	52	OC5/IC5/PMWR/CN13/RD4
21	AN8/C2TX ⁽²⁾ /SS4/U5RX/U2CTS/C1OUT/RB8	53	PMRD/CN14/RD5
22	AN9/C2OUT/PMA7/RB9	54	AETXEN/ETXERR/CN15/RD6
23	TMS/AN10/CVREFOUT/PMA13/RB10	55	ETXCLK/AERXERR/CN16/RD7
24	TDO/AN11/PMA12/RB11	56	VCAP
25	Vss	57	Vdd
26	Vdd	58	C1RX/AETXD1/ERXD3/RF0
27	TCK/AN12/PMA11/RB12	59	C1TX/AETXD0/ERXD2/RF1
28	TDI/AN13/PMA10/RB13	60	ERXD1/PMD0/RE0
29	AN14/C2RX ⁽²⁾ /SCK4/U5TX/U2RTS/PMALH/PMA1/RB14	61	ERXD0/PMD1/RE1
30	AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15	62	ERXDV/ECRSDV/PMD2/RE2
31	AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4	63	ERXCLK/EREFCLKPMD3/RE3
32	AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5	64	ERXERR/PMD4/RE4

Note 1: Shaded pins are 5V tolerant.

2: This pin is not available on PIC32MX765F128H devices.

3: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

1

TABLE 9: PIN NAMES FOR 100-PIN USB, ETHERNET, AND CAN DEVICES (CONTINUED)

100-PIN TQFP (TOP VIEW)

PIC32MX764F128L PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L

100

Pin #	Full Pin Name	Pin #	Full Pin Name
71	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	86	VDD
72	SDO1/OC1/INT0/RD0	87	C1RX/ETXD1/PMD11/RF0
73	SOSCI/CN1/RC13	88	C1TX/ETXD0/PMD10/RF1
74	SOSCO/T1CK/CN0/RC14	89	C2TX ⁽¹⁾ /ETXERR/PMD9/RG1
75	Vss	90	C2RX ⁽¹⁾ /PMD8/RG0
76	OC2/RD1	91	TRCLK/RA6
77	OC3/RD2	92	TRD3/RA7
78	OC4/RD3	93	PMD0/RE0
79	ETXD2/IC5/PMD12/RD12	94	PMD1/RE1
80	ETXD3/PMD13/CN19/RD13	95	TRD2/RG14
81	OC5/PMWR/CN13/RD4	96	TRD1/RG12
82	PMRD/CN14/RD5	97	TRD0/RG13
83	ETXEN/PMD14/CN15/RD6	98	PMD2/RE2
84	ETXCLK/PMD15/CN16/RD7	99	PMD3/RE3
85	VCAP/VDDCORE	100	PMD4/RE4

Note 1: This pin is not available on PIC32MX764F128L devices.

2: Shaded pins are 5V tolerant.

3.3 Power Management

The MIPS32 M4K Processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 28.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-5XX/6XX/7XX family core is in the clock tree and clocking registers. The PIC32 family uses extensive use of local gated clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS32 M4K Processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the MIPS M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the MIPS32 M4K processor core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX575F512H, PIC32MX575F512L, PIC32MX675F512H, PIC32MX675F512L, PIC32MX775F512H AND PIC32MX775F512L DEVICES

(DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

6.1 Control Registers

TABLE 6-1: RESETS REGISTER MAP

ess	Bits										(2)								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	DCON	31:16		—	—	—	—		—	—		—	—		—	—	-	—	0000
F600	RCON	15:0	_	_	_	-	-	_	CMR	VREGS	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR	POR	0000
5040	DOWDOT	31:16	_	_	_	-	-	_	_	_	_	_	_	_	-	_	_	_	0000
FOIU	ROWROI	15:0		_	-	-	_		-		-	_		-	_	-	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	_	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—		_	_	—	_	—	_	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	CHCSIZ<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				CHCSIZ	2<7:0>				

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

111111111111111 = 65,535 bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		—	—	_	—			_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16		—	—	—	—	—		—	
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	CHCPTR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				CHCPTF	R<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	_	—	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	STALLIE		RESUMEIE			SOEIE		URSTIE ⁽²⁾
	OTALLIL			IDELIE		COLL	OLIVIL	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt is enabled
	0 = STALL interrupt is disabled
bit 6	ATTACHIE: ATTACH Interrupt Enable bit
	1 = ATTACH interrupt is enabled
	0 = ATTACH interrupt is disabled
bit 5	RESUMEIE: RESUME Interrupt Enable bit
	1 = RESUME interrupt is enabled
	0 = RESUME interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit
	1 = Idle interrupt is enabled
	0 = Idle interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt Enable bit
	1 = TRNIF interrupt is enabled
	0 = IRNIF interrupt is disabled
bit 2	SOFIE: SOF Token Interrupt Enable bit
	1 = SOFIF interrupt is enabled
bit 1	UERRIE: USB Error Interrupt Enable bit
	1 = USB Error interrupt is enabled
	0 = 0.5B Error interrupt is disabled
bit 0	URSTIE: USB Reset Interrupt Enable bit ⁽²⁾
	1 = URSTIF interrupt is enabled
	0 = 0RSTIF Interrupt is disabled DETACHIE: USB Datash Interrupt Enable hit(3)
	$\perp = DATICHIF Interrupt is enabled$

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

12.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32 MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. Following are some of the key features of this module:

- · Individual output pin open-drain enable/disable
- · Individual input pin weak pull-up enable/disable
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

© 2009-2016 Microchip Technology Inc.

FIGURE 14-2: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (32-BIT)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15.6	ON ⁽¹⁾	—	SIDL	—	—	—	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	ON: Input Capture Module Enable bit ⁽¹⁾
	 1 = Module is enabled 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Control bit
	1 = Halt in Idle mode0 = Continue to operate in Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
	 1 = Capture rising edge first 0 = Capture falling edge first
bit 8	C32: 32-bit Capture Select bit
	1 = 32-bit timer resource capture0 = 16-bit timer resource capture
bit 7	ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')
	 1 = Timer2 is the counter source for capture 0 = Timer3 is the counter source for capture
bit 6-5	ICI<1:0>: Interrupt Control bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	00 = Interrupt on every second capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	 1 = Input capture overflow is occurred 0 = No input capture overflow is occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty

Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_				_	—		—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	-	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.0	—	—	—	FILHIT<4:0>				
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7.0	_				CODE<6:0> ⁽¹	1)		

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	• 00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	1111111 = Reserved
	•
	•
	•
	1001001 = Reserved
	1001000 = Invalid message received (IVRIF)
	1000111 = CAN module mode change (MODIF) 1000110 = CAN timestamp timer (CTMPIE)
	1000110 = Bus bandwidth error (SERRE)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0111111 = Reserved
	•
	:
	0100000 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	• 0000001 - FIEO1 Interrupt (CiESTAT<1> set)
	0.000000 = FIFOO Interrupt (CiFSTAT<0 > set)

Note 1: These bits are only updated for enabled interrupts.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.10	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	TERRCNT<7:0>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				RERRC	NT<7:0>			

REGISTER 24-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT \geq 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning $(128 > \text{RERRCNT} \ge 96)$
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 24-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
22:46	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	-	—		—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	-	—		—
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSE	RXBUSE	—	-	—	EWMARK	FWMARK
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT		TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15	Unimplemented: Read as '0'
bit 14	TXBUSE: Transmit BVCI Bus Error Interrupt bit
	1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 13	RXBUSE: Receive BVCI Bus Error Interrupt bit
	 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 12-10	Unimplemented: Read as '0'
bit 9	EWMARK: Empty Watermark Interrupt bit
	1 = Empty Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.
bit 8	FWMARK: Full Watermark Interrupt bit
	1 = Full Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 7	RXDONE: Receive Done Interrupt bit
	 1 = RX packet was successfully received 0 = No interrupt pending
	This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
Note:	It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	-	—	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	-	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	—	—	-	—	-	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_	_	_	LINKFAIL	NOTVALID	SCAN	MIIMBUSY

Legend:

6			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3 LINKFAIL: Link Fail bit

When '1' is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register.

bit 2 NOTVALID: MII Management Read Data Not Valid bit When '1' is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid.

bit 1 SCAN: MII Management Scanning bit When '1' is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress.

bit 0 MIIMBUSY: MII Management Busy bit

When '1' is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—	_	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	_	—	—	—
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
15.0	STNADDR6<7:0>							
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
7.0				STNADDR5<	<7:0>			

REGISTER 25-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR6<7:0>:** Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address.
- bit 7-0 **STNADDR5<7:0>:** Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

32.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3)	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V (Note 3)	-0.3V to +3.6V
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).

3: See the "Device Pin Tables" section for the 5V tolerant pins.

TABLE 32-20: INTERNAL RC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions		
LPRC @ 31.25 kHz ⁽¹⁾								
F21	LPRC	-15		+15	%			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 32-3: I/O TIMING CHARACTERISTICS

TABLE 32-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No. Symbol Characterist			stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Time		_	5	15	ns	Vdd < 2.5V
				—	5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Tim	е	—	5	15	ns	Vdd < 2.5V
				_	5	10	ns	VDD > 2.5V
DI35	TINP	INTx Pin High or Low Time		10	—		ns	—
DI40	Trbp	CNx High or Low Tir	me (input)	2	—	_	TSYSCLK	—

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Contacts	Ν		121	
Contact Pitch	е	0.80 BSC		
Overall Height	Α	1.00 1.10 1.20		
Ball Height	A1	0.25	0.30	0.35
Overall Width	E	10.00 BSC		
Array Width	E1	8.00 BSC		
Overall Length	D	10.00 BSC		
Array Length	D1	8.00 BSC		
Contact Diameter	b	0.35	0.40	0.45

Notes:

- 1. Ball A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.
- 4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N		124		
Pitch	eT		0.50 BSC		
Pitch (Inner to outer terminal ring)	eR	0.50 BSC			
Overall Height	A	0.80 0.85 0.90			
Standoff	A1	0.00	-	0.05	
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	6.40 6.55 6.7			
Overall Length	D		9.00 BSC		
Exposed Pad Length	D2	6.40 6.55 6.70			
Contact Width	b	0.20 0.25 0.30			
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-193A Sheet 2 of 2