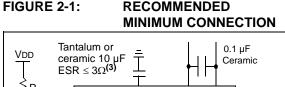


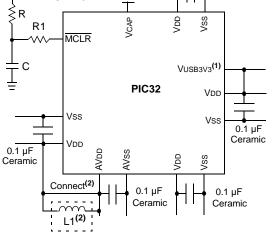
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f256lt-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note 1: If the USB module is not used, this pin must be connected to VDD.

2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 3Ω and the inductor capacity greater than 10 mA.

Where:

$$f = \frac{F_{CNV}}{2}$$
 (i.e., ADC conversion rate/2)
$$f = \frac{1}{(2\pi\sqrt{LC})}$$
$$L = \left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$$

3: Aluminum or electrolytic capacitors should not be used. ESR $\leq 3\Omega$ from -40°C to 125°C @ SYSCLK frequency (i.e., MIPS).

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

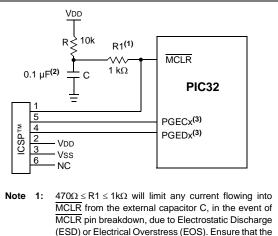
2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (1 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 32.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met without interfering with the Debug/Programmer tools.

- 2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
- **3:** No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	_	_	—	_	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8	BMXDUDBA<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				BMXDU	DBA<7:0>					

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

TABLE 7-7: INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED)

ess										В	its											
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets			
10D0	IPC4	31:16	_	—	-		INT4IP<2:0>		INT4IS	S<1:0>	_	_	_		OC4IP<2:0>		OC4IS	5<1:0>	0000			
TODO	IPC4	15:0	_	_	—		IC4IP<2:0>		IC4IS	<1:0>	_	_	-		T4IP<2:0>		T4IS-	<1:0>	0000			
10E0	IPC5	31:16	_		—		SPI1IP<2:0>	•	SPI1IS	S<1:0>	_	_	_		OC5IP<2:0>	•	OC5IS	6<1:0>	0000			
IUEU	IPC5	15:0	—	_	_		IC5IP<2:0>		IC5IS	<1:0>	_	_	_		T5IP<2:0>		T5IS-	<1:0>	0000			
		31:16	—	_	_		AD1IP<2:0>		AD1IS	S<1:0>	_	_	_		CNIP<2:0>		CNIS	<1:0>	0000			
10F0	IPC6									I2C1IS<1:0>								U1IP<2:0>		U1IS-	<1:0>	
1000	IFCO	15:0	_	-	-		I2C1IP<2:0>		I2C1IS<1:0>			I2C1IS<1:0>		I2C1IS<1:0>	—	—	—		SPI3IP<2:0>	•	SPI3IS	S<1:0>
															12C3IP<2:0>		12C315	5<1:0>				
							U3IP<2:0>		U3IS	U3IS<1:0>												
1100	IPC7	31:16	—	—	-		SPI2IP<2:0>		SPI2IS	S<1:0>	—	—	-	– CMP2IP<2:0> C		CMP2I	S<1:0>	0000				
1100	11 07						I2C4IP<2:0>		12C418	S<1:0>												
		15:0	_			(CMP1IP<2:0	>	CMP1I	S<1:0>	—	—	—	PMPIP<2:0>		PMPIS	S<1:0>	0000				
		31:16	—	—	—	F	RTCCIP<2:0	>	RTCCI	S<1:0>	—	—	—	I	SCMIP<2:0	>	FSCMI	S<1:0>	0000			
1110	IPC8														U2IP<2:0>		U2IS	<1:0>				
1110	11 00	15:0	—	—	-		I2C2IP<2:0>		12C218	S<1:0>	—	—	—		SPI4IP<2:0>	•	SPI4IS	S<1:0>	0000			
															I2C5IP<2:0>	•	12C515	5<1:0>				
1120	IPC9	31:16	—	—	—	[DMA3IP<2:0	>	DMA3I	S<1:0>	—	—	—	I	DMA2IP<2:0	>	DMA2I	S<1:0>	0000			
1120	IFC9	15:0	—	-	—		DMA1IP<2:0		DMA1I	S<1:0>	—	—	_		DMA0IP<2:0		DMA0I	S<1:0>	0000			
1130	IPC10	31:16	—	—	—	D	MA7IP<2:0>	(2)	DMA7IS	S<1:0> ⁽²⁾	—	—	—	D	MA6IP<2:0>	(2)	DMA6IS	<1:0> ⁽²⁾	0000			
1130	IFCIU	15:0	—	_	_	D	MA5IP<2:0>	(2)	DMA5IS	S<1:0> ⁽²⁾	_	—	_	D	MA4IP<2:0>	(2)	DMA4IS	<1:0> ⁽²⁾	0000			
1140	IPC11	31:16		-	—	C	AN2IP<2:0>	(2)	CAN2IS	S<1:0> ⁽²⁾	_	_	_		CAN1IP<2:0	>	CAN1	S<1:0>	0000			
1140	IFCII	15:0	—	_	—		USBIP<2:0>		USBIS	S<1:0>	_	—	_		FCEIP<2:0>		FCEIS	<1:0>	0000			
1150	IPC12	31:16	_	_	—		U5IP<2:0>		U5IS	<1:0>	—	—	—		U6IP<2:0>		U6IS-	<1:0>	0000			
1150	IFC12	15:0		—	_		U4IP<2:0>		U4IS	<1:0>	—	_	—		ETHIP<2:0>		ETHIS	<1:0>	0000			

DS60001156J-page 88

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information.

2: This bit is unimplemented on PIC32MX764F128L device.

3: This register does not have associated CLR, SET, and INV registers.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS09	IFS08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS07	IFS06	IFS05	IFS04	IFS03	IFS02	IFS01	IFS00

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit	= Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC09	IEC08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC07	IEC06	IEC05	IEC04	IEC03	IEC02	IEC01	IEC00

Legend:

· J · · ·						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 IEC31-IEC00: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		CHSSA<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CHSSA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CHSSA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				CHSSA	<7:0>						

REGISTER 10-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CHSSA<31:0> Channel Source Start Address bits Channel source start address. Note: This must be the physical address of the source.

REGISTER 10-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24		CHDSA<31:24>								
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	CHDSA<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHDSA<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHDSA	<7:0>					

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits Channel destination start address.

Note: This must be the physical address of the destination.

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	—	—	—	—	_	—	_	
23:16	U-0	U-0						
23.10	—	—	—	—	_	—	_	
15:8	U-0	U-0						
15.6	—	—	—	—	_	—	_	
	R/W-0	R/W-0						
7:0	STALLIE	ATTACHIE	RESUMEIE		TRNIE		UERRIE ⁽¹⁾	URSTIE ⁽²⁾
	STALLIE	ATTACHIE	RESUMEIE	IDLEIE		SOFIE	UERRIE'	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

	•·····
bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt is enabled
	0 = STALL interrupt is disabled
bit 6	ATTACHIE: ATTACH Interrupt Enable bit
	1 = ATTACH interrupt is enabled
	0 = ATTACH interrupt is disabled
bit 5	RESUMEIE: RESUME Interrupt Enable bit
	1 = RESUME interrupt is enabled
	0 = RESUME interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit
	1 = Idle interrupt is enabled
	0 = Idle interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt Enable bit
	1 = TRNIF interrupt is enabled
	0 = TRNIF interrupt is disabled
bit 2	SOFIE: SOF Token Interrupt Enable bit
	1 = SOFIF interrupt is enabled
	0 = SOFIF interrupt is disabled
bit 1	UERRIE: USB Error Interrupt Enable bit ⁽¹⁾
	1 = USB Error interrupt is enabled
	0 = USB Error interrupt is disabled
bit 0	URSTIE: USB Reset Interrupt Enable bit ⁽²⁾
	1 = URSTIF interrupt is enabled
	0 = URSTIF interrupt is disabled
	DETACHIE: USB Detach Interrupt Enable bit ⁽³⁾
	1 = DATTCHIF interrupt is enabled
	0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess				Bits															
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16				—							CAL<	9:0>					0000
0200	RICCON	15:0	ON	-	SIDL	—	—	—		_	RTSECSEL	RTCCLKON	—		RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	_	-	_	—	—	—		_	—	_	—		_	_	_	—	0000
0210	RICALKI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>					ARPT	<7:0>				0000
0220	RTCTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN0 ²	<3:0>		xxxx
0220	RICTIVIE	15:0		SEC1	0<3:0>			SEC01	<3:0>		_	_	—	-	_	—	—	—	xx00
0000	DTODATE	31:16		YEAR'	10<3:0>			YEAR0	1<3:0>			MONTH1)<3:0>			MONTH	01<3:0>		xxxx
0230	RTCDATE	15:0		DAY1	0<3:0>			DAY01	l<3:0>		-	-	_	_		WDAY()1<3:0>		xx00
0040		31:16		HR10)<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN0 ²	<3:0>		xxxx
0240	ALRMTIME	15:0		SEC1	0<3:0>			SEC01	<3:0>		_	—	_	_	_	_	_	_	xx00
0050		31:16	_	_	_	—	_	_	_	_		MONTH1)<3:0>			MONTH	01<3:0>		00xx
0250	ALRMDATE	15:0		DAY1	0<3:0>			DAY01	<3:0>		_	_	_	_		WDAY)1<3:0>		xx0x
	، بام	unknow	n voluo on D	aaati u	nimploment	0' ac hear ha	, Depet volu	an ara ahau	un in hoved	aimal					•				

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—		_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_	_	—	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15:8	—	_	_			FILHIT<4:0>		
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7:0	_			l	CODE<6:0> ⁽¹)		

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	11111111 = Reserved
	•
	•
	• 1001001 = Reserved
	1001000 = Invalid message received (IVRIF)
	1001111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0111111 = Reserved
	•
	•
	0100000 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Note 1: These bits are only updated for enabled interrupts.

REGISTER 25-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—		—				—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	_	—		_	—	—
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSEIE ⁽¹⁾	RXBUSEIE ⁽²⁾	_	_	—	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	RXDONEIE ⁽²⁾	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾		TXDONEIE ⁽¹⁾	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾
 - 1 = Enable TXBUS Error Interrupt
 - 0 = Disable TXBUS Error Interrupt
- bit 13 **RXBUSEIE:** Receive BVCI Bus Error Interrupt Enable bit⁽²⁾
 - 1 = Enable RXBUS Error Interrupt 0 = Disable RXBUS Error Interrupt
 - 0 = Disable RABOS Efformetry
- bit 12-10 Unimplemented: Read as '0'

bit 9	EWMARKIE: Empty Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable EWMARK Interrupt 0 = Disable EWMARK Interrupt
bit 8	FWMARKIE: Full Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable FWMARK Interrupt 0 = Disable FWMARK Interrupt
bit 7	RXDONEIE: Receiver Done Interrupt Enable bit ⁽²⁾ 1 = Enable RXDONE Interrupt 0 = Disable RXDONE Interrupt
bit 6	PKTPENDIE: Packet Pending Interrupt Enable bit ⁽²⁾ 1 = Enable PKTPEND Interrupt 0 = Disable PKTPEND Interrupt
bit 5	RXACTIE: RX Activity Interrupt Enable bit 1 = Enable RXACT Interrupt 0 = Disable RXACT Interrupt
bit 4	Unimplemented: Read as '0'
bit 3	TXDONEIE: Transmitter Done Interrupt Enable bit ⁽¹⁾ 1 = Enable TXDONE Interrupt 0 = Disable TXDONE Interrupt
bit 2	TXABORTIE: Transmitter Abort Interrupt Enable bit ⁽¹⁾ 1 = Enable TXABORT Interrupt 0 = Disable TXABORT Interrupt
bit 1	RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit ⁽²⁾ 1 = Enable RXBUFNA Interrupt 0 = Disable RXBUFNA Interrupt
bit 0	RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit ⁽²⁾ 1 = Enable RXOVFLW Interrupt 0 = Disable RXOVFLW Interrupt

- **Note 1:** This bit is only used for TX operations.
 - **2:** This bit is only used for RX operations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—		—	—	—		—		
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		-		—	—			—		
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
15.6	—	—	SIDL	—	—	—		—		
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0		
7:0	—	—	—	—		—	C2OUT	C1OUT		

REGISTER 26-2: CMSTAT: COMPARATOR STATUS REGISTER

-	-	
	ond	
Leu	ena:	

zogonan				
R = Readable bit	bit W = Writable bit		ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-14 Unimplemented: Read as '0'

bit 13 SIDL: Stop in Idle Control bit

1 = All Comparator modules are disabled while in Idle mode

0 = All Comparator modules continue to operate while in Idle mode

bit 12-2 Unimplemented: Read as '0'

- bit 1 **C2OUT:** Comparator Output bit
 - 1 = Output of Comparator 2 is a '1'
 - 0 = Output of Comparator 2 is a '0'

bit 0 C1OUT: Comparator Output bit

- 1 = Output of Comparator 1 is a '1'
- 0 = Output of Comparator 1 is a '0'

31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Typical ⁽³⁾	Max.	Units	Units Conditions				
Operatir	ng Current (I	DD) ^(1,2,4) f O I	PIC32MX5	575/675/695/775/795 Family D)evices			
DC20	6	9	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC		4 MHz	
DC20b	7	10			+105⁰C			
DC20a	4			Code executing from SRAM	_			
DC21	37	40	mA	Code executing from Flash			25 MHz	
DC21a	25		IIIA	Code executing from SRAM	_	_	23 10112	
DC22	64	70	mA	Code executing from Flash			60 MH-	
DC22a	61	_	IIIA	Code executing from SRAM		_	60 MHz	
DC23	85	98	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	80 MHz	
DC23b	90	120]		+105⁰C			
DC23a	85]	Code executing from SRAM	—			
DC25a	125	150	μA	—	+25°C	3.3V	LPRC (31 kHz)	

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽²⁾	Max.	Units		Conditions				
Idle Current (IIDLE) ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices									
DC30a	1.5	5		-40°C, +25°C, +85°C		4 MHz			
DC30c	3.5	6	mA	+105⁰C	—	4 10172			
DC31a	7	11		-40°C, +25°C, +85°C	—	25 MHz (Note 3)			
DC32a	13	20	mA	-40°C, +25°C, +85°C	—	60 MHz (Note 3)			
DC33a	17	25	mA	-40°C, +25°C, +85°C		80 MHz			
DC33c	20	27	IIIA	+105°C	—	00 1011 12			
DC34c		40		-40°C					
DC34d		75		+25°C	2.3V				
DC34e		800	μA	+85°C	2.3V				
DC34f		1000		+105°C					
DC35c	30			-40°C					
DC35d	55			+25°C	2.21/	LPRC (31 kHz) (Note 3)			
DC35e	230	_	μA	+85°C	3.3V				
DC35f	800			+105°C					
DC36c		43		-40°C		1			
DC36d		106	.	+25°C	2.01/				
DC36e		800	μA	+85°C	3.6V				
DC36f		1000	1	+105°C					

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

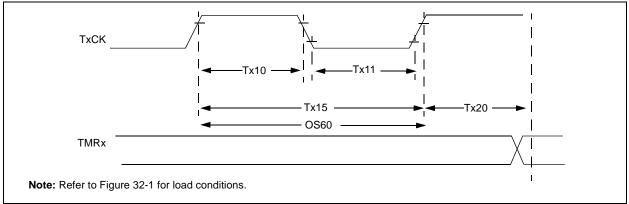
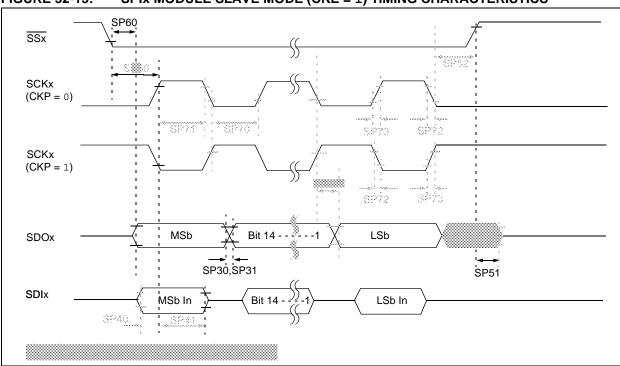

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
DI50	lil	Input Leakage Current ⁽³⁾ I/O Ports	_	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance	
DI51		Analog Input Pins	—	—	<u>+</u> 1	μΑ	VSS \leq VPIN \leq VDD, Pin at high-impedance	
DI55 DI56		MCLR ⁽²⁾ OSC1	—	_	<u>+</u> 1 <u>+</u> 1	μΑ μΑ	$\label{eq:VSS} \begin{array}{l} \forall SS \leq VPIN \leq VDD \\ \forall SS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (7,10)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.	
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(8,9,10)	mA	This parameter applies to all pins, with the exception of all 5V toler- ant pins, SOSCI, and RB10. Maximum IICH current for these exceptions is 0 mA.	
DI60c	∑IICT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽¹¹⁾	_	+20 ⁽¹¹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

FIGURE 32-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS


TABLE 32-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

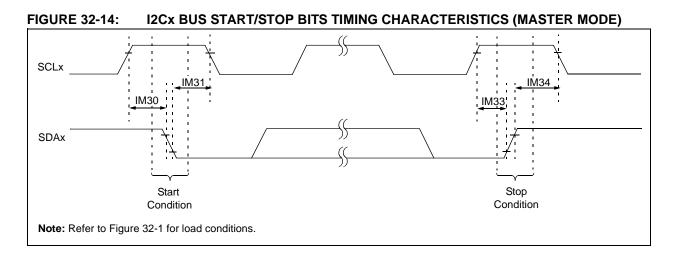
AC CHA		TICS		(unl		ions: 2.3 °C ≤ Ta ≤ °C ≤ Ta ≤	+85°C	for Ind			
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Typical	Max.	Units	Conditions		
TA10	T⊤xH	TxCK High Time	Synchrono with presca		[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15		
			Asynchron with presca		10		—	ns	—		
TA11	T⊤xL	TxCK Low Time	Synchrono with presca		[(12.5 ns or 1 Трв)/N] + 25 ns	_	_	ns	Must also meet parameter TA15		
			Asynchronous, with prescaler		10	_	—	ns	_		
TA15	ΤτχΡ	TxCK Input Period	Synchronous, d with prescaler				[(Greater of 25 ns or 2 TPB)/N] + 30 ns		_	ns	VDD > 2.7V
					[(Greater of 25 ns or 2 TPB)/N] + 50 ns	—	_	ns	Vdd < 2.7V		
			Asynchron with presca		20	—	_	ns	VDD > 2.7V (Note 3)		
					50	—	_	ns	VDD < 2.7V (Note 3)		
OS60	FT1	Input Freque (oscillator en	OSC1/T1CK Oscillator nput Frequency Range oscillator enabled by setting CS bit (T1CON<1>))		32	—	100	kHz	_		
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		ĸ	—	—	1	Трв	—		

Note 1: Timer1 is a Type A.

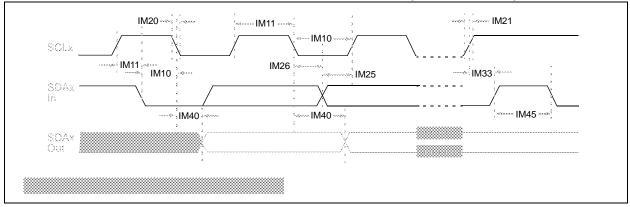
2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

FIGURE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

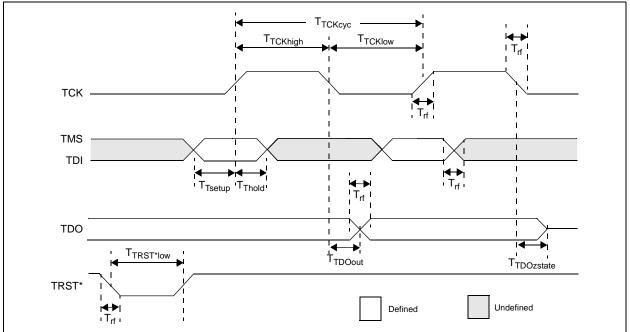

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA		(unless o	d Operating otherwise st g temperatur	t ated) e -40°	°C ≤ TA ≤	3V to 3.6V ≤ +85°C for Industrial ≤ +105°C for V-Temp	
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2		—	ns	—
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	—	_	ns	—
SP72	TscF	SCKx Input Fall Time	_	5	10	ns	—
SP73	TscR	SCKx Input Rise Time		5	10	ns	—
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾		—	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after		_	20	ns	VDD > 2.7V
	TscL2doV	SCKx Edge		_	30	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—	—	ns	—


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.



AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
USB313	VUSB3V3	USB Voltage	3.0	—	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
USB315	VILUSB	Input Low Voltage for USB Buffer	_	—	0.8	V	—
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—
USB318	VDIFS	Differential Input Sensitivity	—	—	0.2	V	The difference between D+ and D- must exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—
USB320	Ζουτ	Driver Output Impedance	28.0	—	44.0	Ω	—
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3
USB322	Vон	Voltage Output High	2.8	_	3.6	V	14.25 k Ω load connected to ground

TABLE 32-42: USB OTG ELECTRICAL SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-28: EJTAG TIMING CHARACTERISTICS

TABLE 32-43: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T A \leq +105^\circ C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions				
EJ1	Ттсксүс	TCK Cycle Time	25	_	ns					
EJ2	Ттскнідн	TCK High Time	10		ns	—				
EJ3	TTCKLOW	TCK Low Time	10		ns	—				
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_				
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_				
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	_				
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	-	5	ns	—				
EJ8	TTRSTLOW	TRST Low Time	25	_	ns	—				
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_				

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE B-4: SECTION UPDATES (CONTINUED)

Section Name	Update Description
7.0 "Interrupt Controller"	Updated the following Interrupt Sources in Table 7-1:
	- Changed IC2AM – I2C4 Master Event to: IC4M – I2C4 Master Event
	- Changed IC3AM – I2C5 Master Event to: IC5M – I2C4 Master Event
	 Changed U1E – UART1A Error to: U1E – UART1 Error
	- Changed U4E – UART1B Error to: U4E – UART4 Error
	- Changed U1RX – UART1A Receiver to: U1RX – UART1 Receiver
	 Changed U4RX – UART1B Receiver to: U4RX – UART4 Receiver Changed U1TX – UART1A Transmitter to: U1TX – UART1 Transmitter
	 Changed UTTX – UART1A Transmitter to: UTTX – UART4 Transmitter Changed U4TX – UART1B Transmitter to: U4TX – UART4 Transmitter
	 Changed U6E – UART2B Error to: U6E – UART6 Error
	- Changed U6RX – UART2B Receiver to: U6RX – UART6 Receiver
	- Changed U6TX – UART2B Transmitter to: U6TX – UART6 Transmitter
	 Changed U5E – UART3B Error to: U5E – UART5 Error
	 Changed U5RX – UART3B Receiver to: U5RX – UART5 Receiver
	- Changed U5TX – UART3B Transmitter to: U5TX – UART5 Transmitter
1.0 "Oscillator Configuration"	Updated Figure 1-1
1.0 "Output Compare"	Updated Figure 1-1
1.0 "Ethernet Controller"	Added a note on using the Ethernet controller pins (see note above Table 1-3)
1.0 "Comparator Voltage Reference (CVREF)"	Updated the note in Figure 1-1
1.0 "Special Features"	Updated the bit description for bit 10 in Register 1-2
	Added notes 1 and 2 to Register 1-4
1.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings:
	 Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V - 0.3V to +3.6V was updated
	 Voltage on VBUS with respect to VSS - 0.3V to +5.5V was added
	Updated the maximum value of DC16 as 2.1 in Table 1-4
	Updated the Typical values for the following parameters: DC20b, DC20c, DC21c, DC22c and DC23c (see Table 1-5)
	Updated Table 1-11:
	 Removed the following DC Characteristics: Programming temperature 0°C ≤ TA ≤ +70°C (25°C recommended)
	 Updated the Minimum value for the Parameter number D131 as 2.3 Removed the Conditions for the following Parameter numbers: D130, D131, D132, D135, D136 and D137
	Updated the condition for the parameter number D130a and D132a
	Updated the Minimum, Typical and Maximum values for parameter D305 in Table 1-13
	Added note 2 to Table 1-18
	Updated the Minimum and Maximum values for parameter F20b (see Table 1-19)
	Updated the following figures:
	• Figure 1-4
	• Figure 1-9
	• Figure 1-22
	• Figure 1-23
Appendix A: "Migrating from PIC32MX3XX/4XX to PIC32MX5XX/	Removed the A.3 Pin Assignments sub-section.
6XX/7XX Devices"	