

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f256lt-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
31:24				CHEW3<	:31:24>										
23:16	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
23:16	CHEW3<23:16>														
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
15:8	CHEW3<15:8>														
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
7:0		CHEW3<7:0>													

REGISTER 9-8: CHEW3: CACHE WORD 3

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-0 **CHEW3<31:0>:** Word 3 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Note: This register is a window into the cache data array and is only readable if the device is not code-protected.

REGISTER 9-9: CHELRU: CACHE LRU REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0						
31.24	— —		_	—	—	_	—	CHELRU<24>						
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
23:16	CHELRU<23:16>													
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8	CHELRU<15:8>													
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7.0				CHELF	RU<7:0>									

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-25 Unimplemented: Write '0'; ignore read

bit 24-0 **CHELRU<24:0>:** Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_		_	_	_	_	_	_	—	_	_	_	_	_	_	_	0000
3290	DCH2DAT	15:0	_		_	_	_	_	_	_				CHPDA	AT<7:0>				0000
32A0	DCH3CON	31:16	31:16										_	0000					
32A0	DENSCON	15:0 CHBUSY CHCHNS CHEN CHAED CHCHN CHAEN - CHEDET CHPRI<1									l<1:0>	0000							
32B0	DCH3ECON	31:16		_	—	—	—	—		—		1	1		Q<7:0>				00FF
		15:0					Q<7:0>			-	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	—	—	FF00
32C0	DCH3INT	31:16	—	_	—	—	_	_	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0		—	—	-	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
32D0	DCH3SSA	31:16								CHSSA	A<31:0>								0000
		15:0 31:16														0000			
32E0	DCH3DSA	15:0 CHDSA<31:0>												0000					
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
32F0	DCH3SSIZ	Z CHSSIZ<15:0>												0000					
		31:16													0000				
3300	DCH3DSIZ	DCH3DSIZ											0000						
	DOLIGODITO	31:16	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	0000
3310	DCH3SPTR	15:0				•	•			CHSPT	R<15:0>		•		•				0000
2220	DCH3DPTR	31:16	_		_	—	_	_	_	—	_	_	_	_	—	—	_	_	0000
3320	DCH3DFTK	15:0								CHDPT	R<15:0>								0000
3330	DCH3CSIZ	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	DOI 130012	15:0								CHCSI	Z<15:0>		-		-				0000
3340	DCH3CPTR	31:16	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—	0000
		15:0				-	-			CHCPT	R<15:0>		-		-				0000
3350	DCH3DAT	31:16	_	_	—	_		_	_		_		_	—	—	_	_		0000
		15:0	_		_			_	-						AT<7:0>	1			0000
3360	DCH4CON	31:16	-		_	_	_	_	_	-	-	-	-	-	-		-	—	0000
		15:0											(1<1:0>	0000					
3370	DCH4ECON	31:16 15:0	_				 Q<7:0>			—	CFORCE	CABORT	PATEN	SIRQEN	Q<7:0> AIRQEN		_	_	00FF FF00
		31:16	_	_						_	CHSDIE	CABORT	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
3380	DCH4INT	15:0		_	_	_	_	_		_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		31:16						1				Shorm	51000		0110011	0110011	JIIAI	SHER	0000
3390	DCH4SSA	15:0								CHSSA	A<31:0>								0000
		31:16	0.0												0000				
33A0	DCH4DSA	15:0	CHD\$A <31:05												0000				
Legen	d: x = u	nknown	value on Re	eset; — = ur	nimplemente	ed, read as '0)'. Reset valu	ues are show	vn in hexade	ecimal.									<u>ا</u> ا

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24				_			_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
				_			-	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0				_			-	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

bit 7

•								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

DPPULUP: D+ Pull-Up Enable bit 1 = D+ data line pull-up resistor is enabled 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D+ data line pull-down resistor is enabled
 - 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled

bit 3 VBUSON: VBUS Power-on bit

- 1 = VBUS line is powered
- 0 = VBUS line is not powered
- bit 2 **OTGEN:** OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		—	—	—	—
R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
STALLE					SOFIE		URSTIF ⁽⁵⁾
STALLIF		RESUMEIR /	IULEIF		30717		DETACHIF ⁽⁶⁾
	31/23/15/7 U-0 U-0 U-0 U-0 U-0	31/23/15/7 30/22/14/6 U-0 U-0 — — R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 U-0 U-0 U-0 — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 — — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 U-0 U-0

REGISTER 11-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **STALLIF:** STALL Handshake Interrupt bit
 - 1 = In Host mode a STALL handshake was received during the handshake phase of the transaction. In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction.
 - 0 = STALL handshake has not been sent
- bit 6 ATTACHIF: Peripheral Attach Interrupt bit⁽¹⁾
 - 1 = Peripheral attachment was detected by the USB module
 - 0 = Peripheral attachment was not detected
- bit 5 **RESUMEIF:** Resume Interrupt bit⁽²⁾
 - 1 =K-State is observed on the D+ or D- pin for 2.5 μ s
 - 0 =K-State is not observed
- bit 4 **IDLEIF:** Idle Detect Interrupt bit
 - 1 = Idle condition detected (constant Idle state of 3 ms or more)
 - 0 = No Idle condition detected
- bit 3 **TRNIF:** Token Processing Complete Interrupt bit⁽³⁾
 - 1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information
 - 0 = Processing of current token not complete
- bit 2 SOFIF: SOF Token Interrupt bit
 - 1 = SOF token received by the peripheral or the SOF threshold reached by the host
 - 0 = SOF token was not received nor threshold reached
- bit 1 UERRIF: USB Error Condition Interrupt bit⁽⁴⁾
 - 1 = Unmasked error condition has occurred
 - 0 = Unmasked error condition has not occurred
- bit 0 URSTIF: USB Reset Interrupt bit (Device mode)⁽⁵⁾
 - 1 = Valid USB Reset has occurred
 - 0 = No USB Reset has occurred
 - DETACHIF: USB Detach Interrupt bit (Host mode)⁽⁶⁾
 - 1 = Peripheral detachment was detected by the USB module
 - 0 = Peripheral detachment was not detected
- **Note 1:** This bit is only valid if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for 2.5 μs, and the current bus state is not SE0.
 - **2:** When not in Suspend mode, this interrupt should be disabled.
 - 3: Clearing this bit will cause the STAT FIFO to advance.
 - 4: Only error conditions enabled through the U1EIE register will set this bit.
 - 5: Device mode.
 - 6: Host mode.

PIC32MX5XX/6XX/7XX

NOTES:

TABLE 12-13: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512 AND PIC32MX795F512L DEVICES PIC32MX795F512L DEVICES

ess		đ								Bi	ts								s
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6100	CNCON	31:16	-	_	_	_	—	—	—	_	_	_	_	—	-	—	-	—	0000
6100	CINCOIN	15:0	ON	_	SIDL	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
61D0	CNEN	31:16	—		_	-				-	_		CNEN21	CNEN20	CNEN19	CNEN18	CNEN17	CNEN16	0000
6100	CINEIN	15:0	CNEN15	CNEN14	CNEN13	CNEN12	CNEN11	CNEN10	CNEN9	CNEN8	CNEN7	CNEN6	CNEN5	CNEN4	CNEN3	CNEN2	CNEN1	CNEN0	0000
61E0	CNPUE	31:16									_		CNPUE21	CNPUE20	CNPUE19	CNPUE18	CNPUE17	CNPUE16	0000
01EU	GINPUE	15:0	CNPUE15	CNPUE14	CNPUE13	CNPUE12	CNPUE11	CNPUE10	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-14: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F512H, PIC32MX675F512H, PIC32MX675F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX795F512H, DEVICES

ess		e		Bits													s		
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6100	CNCON	31:16	_	_	—	_	_	_	_	_	_	_	—	_	_	_	-	_	0000
6100	CINCOIN	15:0	ON	—	SIDL	—	_	_	-	-	_	—	—	—	—	_	-	_	0000
61D0	CNEN	31:16	—		_	_	_	_	_	_	_		—			CNEN18	CNEN17	CNEN16	0000
0100	CINEIN	15:0	CNEN15	CNEN14	CNEN13	CNEN12	CNEN11	CNEN10	CNEN9	CNEN8	CNEN7	CNEN6	CNEN5	CNEN4	CNEN3	CNEN2	CNEN1	CNEN0	0000
61E0	CNPUE	31:16	-		_	_	_	_	-	-	_		_			CNPUE18	CNPUE17	CNPUE16	0000
OTEU	CINPUE	15:0	CNPUE15	CNPUE14	CNPUE13	CNPUE12	CNPUE11	CNPUE10	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

16.1 Control Registers

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	IC1CON ⁽¹⁾	31:16		—	—	—	_	—	_	_	_	—	—	_	—	—	_	_	0000
2000	IC ICON.	15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2010	IC1BUF	31:16								IC1BUF	~31.0>								xxxx
2010		15:0								101201				-					xxxx
2200	IC2CON ⁽¹⁾	31:16		_	—	—	_	_	—	_	_	_	_	—	—		—	—	0000
2200	.0200.1	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2210	IC2BUF	31:16	IC2BUF<31:0>											xxxx					
		15:0			-										-				xxxx
2400	IC3CON ⁽¹⁾	31:16	-	_	-	_	_	—	_	_	-	-	—	—	—		-		0000
		15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2410	IC3BUF	31:16	IC3BUF<31:0>											xxxx					
		15:0										XXXX							
2600	IC4CON ⁽¹⁾	31:16	-		-	_			-	-	-	-		—		—	-	_	0000
		15:0	ON	_	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2610	IC4BUF	31:16 15:0								IC4BUF	<31:0>								XXXX
		31:16		_	_	_	_		_	_	_	_			_		_	_	xxxx 0000
2800	IC5CON ⁽¹⁾	15:0	ON	_		_			FEDGE	 C32	ICTMR	ICI<		ICOV	ICBNE		ICM<2:0>		
		31:16	UN		SIDL	—	_		FEDGE	632	ICTIVIR		1.0>	1000	ICDINE	l	10101<2.0>		0000
2810	IC5BUF	15:0								IC5BUF	<31:0>								XXXX
		15.0																	XXXX

TABLE 16-1: INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

bit 0

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

PIC32MX5XX/6XX/7XX

REGISTER 24-21: CIFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' (n = 0 THROUGH 31)										
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit		
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0		

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	_		_		TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—				RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	_		_		TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
6447	0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO not empty
	0 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a transmit buffer)
	1 = FIFO is not full 0 = FIFO is full
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

REGISTER 25-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	_	_	_	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15:8	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	RESETMGMT	—	—	—	—	—	_	—
7:0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		—		CLKSEL	_<3:0> ⁽¹⁾		NOPRE	SCANINC

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 RESETMGMT: Test Reset MII Management bit
 - 1 = Reset the MII Management module
 - 0 = Normal Operation

bit 14-6 **Unimplemented:** Read as '0'

bit 5-2 CLKSEL<3:0>: MII Management Clock Select 1 bits⁽¹⁾

These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

bit 1 NOPRE: Suppress Preamble bit

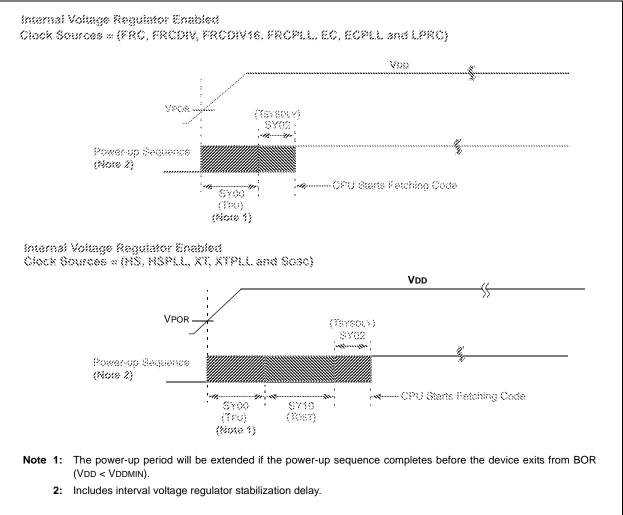
- 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
- 0 = Normal read/write cycles are performed

bit 0 SCANINC: Scan Increment bit

- 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
- 0 = Continuous reads of the same PHY
- Note 1: Table 25-7 provides a description of the clock divider encoding.

Note:	Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers).
	8-bit accesses are not allowed and are ignored by the hardware.

TABLE 25-7: MIIM CLOCK SELECTION


MIIM Clock Select	EMAC1MCFG<5:2>
SYSCLK divided by 4	000x
SYSCLK divided by 6	0010
SYSCLK divided by 8	0011
SYSCLK divided by 10	0100
SYSCLK divided by 14	0101
SYSCLK divided by 20	0110
SYSCLK divided by 28	0111
SYSCLK divided by 40	1000
Undefined	Any other combination

REGISTER 29-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider

PIC32MX5XX/6XX/7XX

FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS

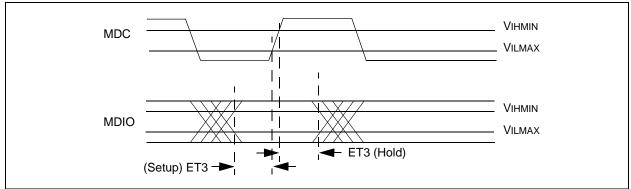
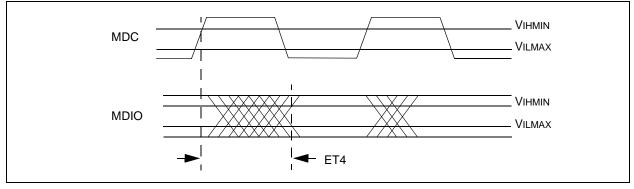
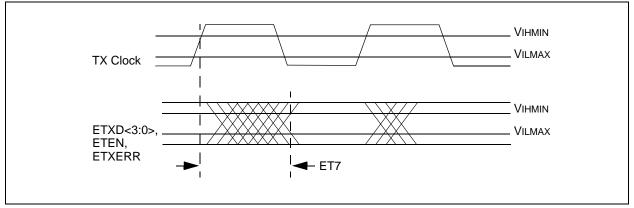


TABLE 32-35: ETHERNET MODULE SPECIFICATIONS


АС СНА	RACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Characteristic	Min.	Typical	Max.	Units	Conditions		
MIIM Tin	ning Requirements							
ET1	MDC Duty Cycle	40		60	%	—		
ET2	MDC Period	400	—	_	ns	—		
ET3	MDIO Output Setup and Hold	10	—	10	ns	See Figure 32-19		
ET4	MDIO Input Setup and Hold	0	—	300	ns	See Figure 32-20		
MII Timi	ng Requirements							
ET5	TX Clock Frequency	—	25	_	MHz	—		
ET6	TX Clock Duty Cycle	35	—	65	%	—		
ET7	ETXDx, ETEN, ETXERR Output Delay	0	—	25	ns	See Figure 32-21		
ET8	RX Clock Frequency	—	25	_	MHz	—		
ET9	RX Clock Duty Cycle	35	—	65	%	—		
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	—	30	ns	See Figure 32-22		
RMII Tin	ning Requirements							
ET11	Reference Clock Frequency		50	—	MHz	—		
ET12	Reference Clock Duty Cycle	35		65	%	—		
ET13	ETXDx, ETEN, Setup and Hold	2	—	4	ns	—		
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	—	4	ns	—		

Note 1: The Ethernet module is functional at VBORMIN < VDD < 2.9V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.


FIGURE 32-19: MDIO SOURCED BY THE PIC32 DEVICE

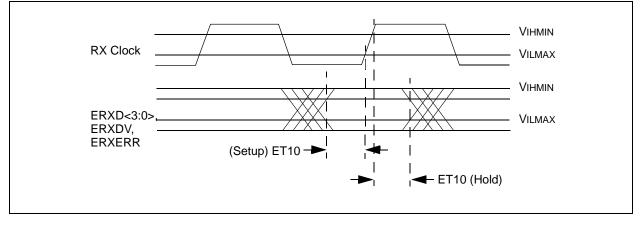
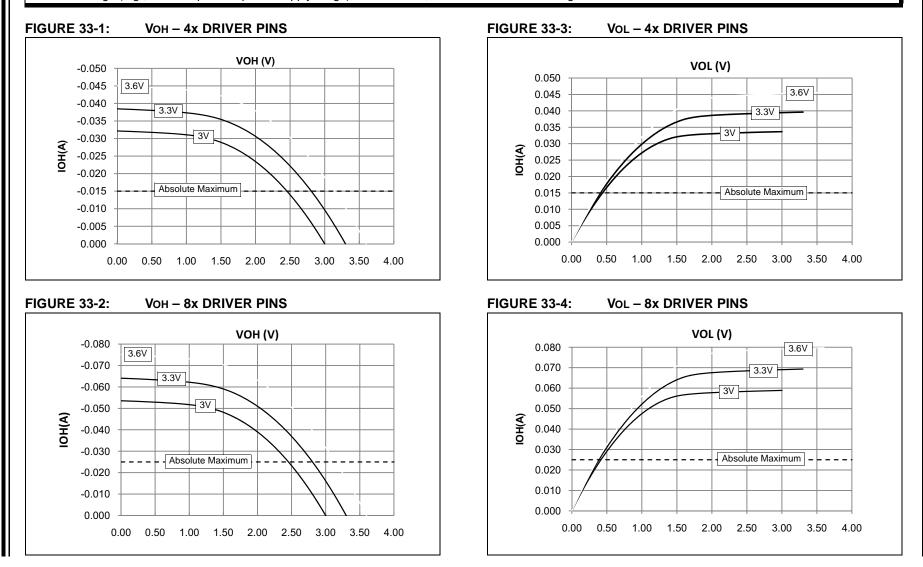
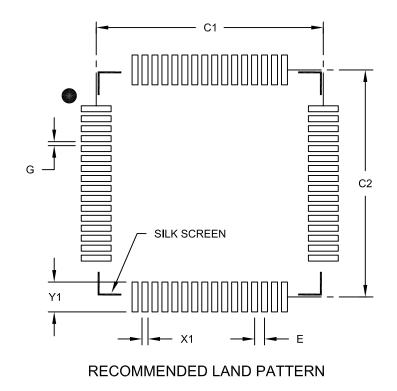

FIGURE 32-20: MDIO SOURCED BY THE PHY

FIGURE 32-21: TRANSMIT SIGNAL TIMING RELATIONSHIPS AT THE MII



33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS


Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX5XX/6XX/7X

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

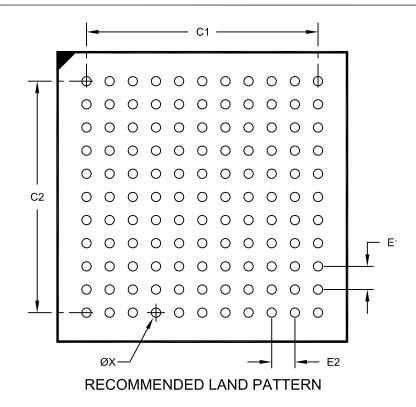
Microchip Technology Drawing No. C04-2085B

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units					
Dimensio	Dimension Limits			MAX		
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E		9.00 BSC			
Exposed Pad Width	E2	7.05	7.15	7.50		
Overall Length	D		9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.50		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E1		0.80 BSC		
Contact Pitch	E2	0.80 BSC			
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Diameter (X121)	X			0.32	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D

Revision J (September 2016)

This revision includes typographical and formatting updates throughout the data sheet text. In addition, all SFR Register maps were moved from the Memory chapter to their respective peripheral chapters.

All other major updates are referenced by their respective section in Table B-7.

Section Name	Update Description
"32-bit Microcontrollers (up to 512	Updated Communication Interfaces for LIN support to 2.1.
KB Flash and 128 KB SRAM) with Graphics Interface, USB, CAN, and Ethernet"	Updated Qualification and Class B Support to AEC-Q100 REVH.
2.0 "Guidelines for Getting Started with 32-bit MCUs"	The Recommended Minimum Connection diagram was updated (see Figure 2-1).
	The Example of MCLR Pin Connections diagram was updated (see Figure 2- 2).
	2.11 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.
4.0 "Memory Organization"	The SFR Memory Map was added (see Table 4-1).
7.0 "Interrupt Controller"	The UART interrupt sources were updated in the Interrupt IRQ, Vector, and Bit location table (see Table 7-1).
8.0 "Oscillator Configuration"	Updated the bit value definitions for the TUN<5:0> bits in the OCSTUN register (see Register 8-2).
15.0 "Watchdog Timer (WDT)"	The content in this chapter was relocated from the Special Features chapter to its own chapter.
18.0 "Serial Peripheral Interface (SPI)"	The register map tables were combined (see Table 18-1).
19.0 "Inter-Integrated Circuit (I ² C)"	The register map tables were combined (see Table 19-1).
	The PMADDR register was updated (see Register 21-3).
21.0 "Parallel Master Port (PMP)"	The bit value definitions for the ADRMUX<1:0> and CSF<1:0> bits in the PMCON register were updated (see Register 21-1).
29.0 "Special Features"	Removed the duplicate bit value definition for '010' in the DEVCFG2 register (see Register 29-3).
	Note 1 was added to the Programming, Debugging, and Trace Ports block diagram (see Figure 29-2).
	The DDPCON register was relocated (see Register 29-6).
	The Device ID, Revision, and Configuration Summary was updated (see Table 29-2).

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support