

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XEI

2 0 14110	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f512h-80i-mr

Email: info@E-XFL.COM

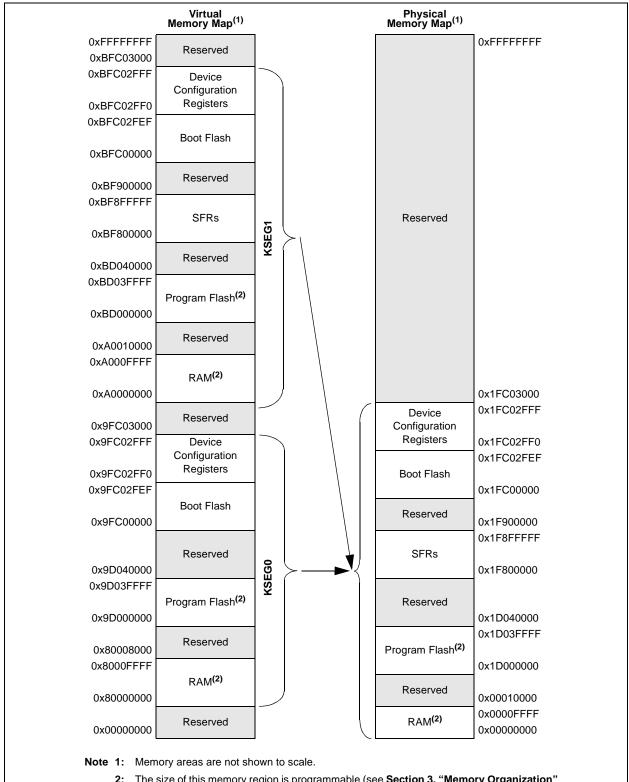
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX795F512L

TABLE 12: PIN NAMES FOR USB, ETHERNET, AND CAN DEVICES

121-PIN TFBGA (BOTTOM VIEW)		L11
PIC32MX764F128L PIC32MX775F256L PIC32MX775F512L	L1	A11

A1


Note: The TFBGA package skips from row "H" to row "J" and has no "I" row.

Pin #	Full Pin Name	Pin #	Full Pin Name
A1	PMD4/RE4	E2	T4CK/AC2RX ⁽¹⁾ /RC3
A2	PMD3/RE3	E3	ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6
A3	TRD0/RG13	E4	T3CK/AC2TX ⁽¹⁾ /RC2
A4	PMD0/RE0	E5	Vdd
A5	C2RX ⁽¹⁾ /PMD8/RG0	E6	C2TX ⁽¹⁾ /ETXERR/PMD9/RG1
A6	C1TX/ETXD0/PMD10/RF1	E7	Vss
A7	VDD	E8	AETXEN/SDA1/INT4/RA15
A8	Vss	E9	RTCC/EMDIO/AEMDIO/IC1/RD8
A9	ETXD2/IC5/PMD12/RD12	E10	SS1/IC2/RD9
A10	OC3/RD2	E11	AETXCLK/SCL1/INT3/RA14
A11	OC2/RD1	F1	MCLR
B1	No Connect (NC)	F2	ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8
B2	AERXERR/RG15	F3	ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9
B3	PMD2/RE2	F4	ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7
B4	PMD1/RE1	F5	Vss
B5	TRD3/RA7	F6	No Connect (NC)
B6	C1RX/ETXD1/PMD11/RF0	F7	No Connect (NC)
B7	VCAP	F8	Vdd
B8	PMRD/CN14/RD5	F9	OSC1/CLKI/RC12
B9	OC4/RD3	F10	Vss
B10	Vss	F11	OSC2/CLKO/RC15
B11	SOSCO/T1CK/CN0/RC14	G1	AERXD0/INT1/RE8
C1	PMD6/RE6	G2	AERXD1/INT2/RE9
C2	VDD	G3	TMS/RA0
C3	TRD1/RG12	G4	No Connect (NC)
C4	TRD2/RG14	G5	Vdd
C5	TRCLK/RA6	G6	Vss
C6	No Connect (NC)	G7	Vss
C7	ETXCLK/PMD15/CN16/RD7	G8	No Connect (NC)
C8	OC5/PMWR/CN13/RD4	G9	TDO/RA5
C9	VDD	G10	SDA2/RA3
C10	SOSCI/CN1/RC13	G11	TDI/RA4
C11	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	H1	AN5/C1IN+/VBUSON/CN7/RB5
D1	T2CK/RC1	H2	AN4/C1IN-/CN6/RB4
D2	PMD7/RE7	H3	Vss
D3	PMD5/RE5	H4	VDD
D4	Vss	H5	No Connect (NC)
D5	Vss	H6	VDD
D6		H7	No Connect (NC)
D7	ETXEN/PMD14/CN15/RD6	H8	VBUS
D8	ETXD3/PMD13/CN19/RD13	H9	VUSB3V3
D9	SD01/0C1/INT0/RD0	H10	D+/RG2
D10	No Connect (NC) SCK1/IC3/PMCS2/PMA15/RD10	H11	SCL2/RA2 AN3/C2IN+/CN5/RB3
D11		J1	
E1 Note	T5CK/SDI1/RC4 1: This pin is not available on PIC32MX764	J2	AN2/C2IN-/CN4/RB2

2: Shaded pins are 5V tolerant.

NOTES:

FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX575F256H, PIC32MX575F256L, PIC32MX675F256H, PIC32MX675F256L, PIC32MX775F256H AND PIC32MX775F256L DEVICES

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

Interment Course(1)	IRQ	Vector		Interru	pt Bit Location	
Interrupt Source ⁽¹⁾	Number	Number	Flag	Enable	Priority	Sub-Priority
	Highe	est Natural	Order Priorit	y		
CT – Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>
CS0 – Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>
CS1 – Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>
INT0 – External Interrupt 0	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>
T1 – Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>
IC1 – Input Capture 1	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>
OC1 – Output Compare 1	6	6	IFS0<6>	IEC0<6>	IPC1<20:18>	IPC1<17:16>
INT1 – External Interrupt 1	7	7	IFS0<7>	IEC0<7>	IPC1<28:26>	IPC1<25:24>
T2 – Timer2	8	8	IFS0<8>	IEC0<8>	IPC2<4:2>	IPC2<1:0>
IC2 – Input Capture 2	9	9	IFS0<9>	IEC0<9>	IPC2<12:10>	IPC2<9:8>
OC2 – Output Compare 2	10	10	IFS0<10>	IEC0<10>	IPC2<20:18>	IPC2<17:16>
INT2 – External Interrupt 2	11	11	IFS0<11>	IEC0<11>	IPC2<28:26>	IPC2<25:24>
T3 – Timer3	12	12	IFS0<12>	IEC0<12>	IPC3<4:2>	IPC3<1:0>
IC3 – Input Capture 3	13	13	IFS0<13>	IEC0<13>	IPC3<12:10>	IPC3<9:8>
OC3 – Output Compare 3	14	14	IFS0<14>	IEC0<14>	IPC3<20:18>	IPC3<17:16>
INT3 – External Interrupt 3	15	15	IFS0<15>	IEC0<15>	IPC3<28:26>	IPC3<25:24>
T4 – Timer4	16	16	IFS0<16>	IEC0<16>	IPC4<4:2>	IPC4<1:0>
IC4 – Input Capture 4	17	17	IFS0<17>	IEC0<17>	IPC4<12:10>	IPC4<9:8>
OC4 – Output Compare 4	18	18	IFS0<18>	IEC0<18>	IPC4<20:18>	IPC4<17:16>
INT4 – External Interrupt 4	19	19	IFS0<19>	IEC0<19>	IPC4<28:26>	IPC4<25:24>
T5 – Timer5	20	20	IFS0<20>	IEC0<20>	IPC5<4:2>	IPC5<1:0>
IC5 – Input Capture 5	21	21	IFS0<21>	IEC0<21>	IPC5<12:10>	IPC5<9:8>
OC5 – Output Compare 5	22	22	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>
SPI1E – SPI1 Fault	23	23	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>
SPI1RX – SPI1 Receive Done	24	23	IFS0<24>	IEC0<24>	IPC5<28:26>	IPC5<25:24>
SPI1TX – SPI1 Transfer Done	25	23	IFS0<25>	IEC0<25>	IPC5<28:26>	IPC5<25:24>
U1E – UART1 Error						
SPI3E – SPI3 Fault	26	24	IFS0<26>	IEC0<26>	IPC6<4:2>	IPC6<1:0>
I2C3B – I2C3 Bus Collision Event						
U1RX – UART1 Receiver						
SPI3RX – SPI3 Receive Done	27	24	IFS0<27>	IEC0<27>	IPC6<4:2>	IPC6<1:0>
I2C3S - I2C3 Slave Event						
U1TX – UART1 Transmitter						
SPI3TX – SPI3 Transfer Done	28	24	IFS0<28>	IEC0<28>	IPC6<4:2>	IPC6<1:0>
I2C3M – I2C3 Master Event	1					
I2C1B – I2C1 Bus Collision Event	29	25	IFS0<29>	IEC0<29>	IPC6<12:10>	IPC6<9:8>
I2C1S – I2C1 Slave Event	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>
I2C1M – I2C1 Master Event	31	25	IFS0<31>	IEC0<31>	IPC6<12:10>	IPC6<9:8>
CN – Input Change Interrupt	32	26	IFS1<0>	IEC1<0>	IPC6<20:18>	IPC6<17:16>

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3180	DCH1DSIZ	31:16	_	-	—	_	-	-	_	—	_	_	_	_	—	_	_	_	0000
5100		15:0				-			-	CHDSIZ	<15:0>			-	-				0000
3190	DCH1SPTR	31:16	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	0000
5150	Donnor IIX	15:0								CHSPTI	R<15:0>								0000
31A0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5170		15:0								CHDPTI	R<15:0>								0000
31B0	DCH1CSIZ	31:16	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	0000
0100		15:0								CHCSIZ	2<15:0>								0000
31C0	DCH1CPTR	31:16	_	—	—	_	—	—	—	—	_	—	—	—	—	—	—	—	0000
0100		15:0								CHCPTI	R<15:0>					-	-	-	0000
31D0	DCH1DAT	31:16	_	_	—	_	_	_	_	—	—	—	—	—	_	—	—	—	0000
0120	Bonnbra	15:0	_	_	—	_	_	_	_	—				CHPDA	\T<7:0>	-	-	-	0000
31E0	DCH2CON	31:16	—	—	—	—	—	—		—	—	—	—	—	—	—	—	—	0000
0120	DONZOON	15:0	CHBUSY	_	—	—	_	_		CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	:l<1:0>	0000
31E0	DCH2ECON	31:16	—	—	—	—	—	—	_	—		-		CHAIR					OOFF
511.0	DONZEOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FF00
3200	DCH2INT	31:16	_	_	—	—	_	_		—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
5200	DONZINI	15:0	—	—	—	—	—	—	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3210	DCH2SSA	31:16 15:0								CHSSA	<31:0>								0000
3220	DCH2DSA	31:16 15:0								CHDSA	<31:0>								0000
		31:16		_	_	_	_	_	_		_	_	_	_			_		0000
3230	DCH2SSIZ	15:0								CHSSIZ									0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	0000
3240	DCH2DSIZ	15:0								CHDSIZ									0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3250	DCH2SPTR	15:0								CHSPTI									0000
<u> </u>		31:16	_	_	_	_	_	_	_	_		_	_	_			_		0000
3260	DCH2DPTR	15:0								CHDPTI	8<15.0>								0000
<u> </u>		31:16	_						_			_		_	_		_	_	0000
3270	DCH2CSIZ	15:0																	
										010312	.< 10.02								
3280	DCH2CPTR	31:16	_	_	—	—	_	_	_	—	_	—	—	—	—	_	_	_	0000
		15:0				n, tead as ,0				CHCPTI	۲<15:0>								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded Host, full-speed Device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Endpoint buffering anywhere in system RAM
- Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, as well as other third party may specifications or technologies, require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

REGISTER 14-1: TXCON: TYPE B TIMER CONTROL REGISTER (CONTINUED)

- bit 3 T32: 32-Bit Timer Mode Select bit⁽²⁾
 - 1 = Odd numbered and even numbered timers form a 32-bit timer
 - 0 = Odd numbered and even numbered timers form a separate 16-bit timer

bit 2 Unimplemented: Read as '0'

- bit 1 **TCS:** Timer Clock Source Select bit⁽³⁾ 1 = External clock from TxCK pin 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is only available on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

NOTES:

TABLE 20-1: UART1 THROUGH UART6 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6620	U6TXREG	31:16	_	_	—	—			—	—		—	_		—	—	—	—	0000
0020			_	_	_	—	_	_	_	TX8				Transmit	Register	-		-	0000
6630	U6RXREG	31:16	_	-	_	—	_	_	_		_	—	_		_	_	—	_	0000
0030	UUKAREG	15:0	_	_	—	—	—	—	—	RX8				Receive	Register				0000
6640	U6BRG ⁽¹⁾	31:16	_	_	—	—	—	—	—	—	_	—	—	—	—	_	—	_	0000
0040	OODING	15:0			-	-				BRG<	15:0>				-	-		-	0000
6800	U2MODE ⁽¹⁾	31:16	_	_	_	—	_	_	_	—	_	-	—	_	_	—	-	_	0000
0000	OZIVIODE	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U2STA ⁽¹⁾	31:16	-	_		—	—	—	_	ADM_EN				ADDR	R<7:0>	-		-	0000
0010	0251A.		UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6820	U2TXREG	31:16	_	_	_	—	_	_	_	—	_	-	—	_	—	—	-	—	0000
0020	OZTARLO	15:0	-	_		_	—	—	_	TX8				Transmit	Register	-		-	0000
6830	U2RXREG	31:16	-	_		_	—	—	_	—	_	-	—	_	_	_	-	_	0000
0000	OZIVAREO	15:0	-	_		_	_	—	_	RX8				Receive	Register	-		-	0000
6840	U2BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010		15:0								BRG<	15:0>								0000
6A00	U5MODE ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0/100		15:0	ON	_	SIDL	IREN	_	—	_	—	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6A10	U5STA ⁽¹⁾	31:16	—	—	—	—	_	—	—	ADM_EN				ADDR		-		-	0000
0,110		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6A20	U5TXREG	31:16	-	_	_	_	_	_		—	_	-	—	_			-		0000
		15:0	—	_	_	—	_	_		TX8			1	Transmit	Register	1		1	0000
6A30	U5RXREG	31:16	-	_	_	_	_	_		—	_	-	—	_			-		0000
		15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6A40	U5BRG ⁽¹⁾	31:16	—	—		—	—	—	—	—	—	—	—	_			—		0000
Legen		15:0				d, read as '0				BRG<	15:0>								0000

DS60001156J-page 206

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31:24		—	_	_	—	—	—	ADM_EN
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				ADDR<	<7:0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0	R-1
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0, HS	R-0
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:	HS = Set by hardware	HC = Cleared by hardwar	re
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
- bit 13 UTXINV: Transmit Polarity Inversion bit
 - If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
 - 1 = UxTX Idle state is '0'
 - 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by port.
- bit 11 UTXBRK: Transmit Break bit
 - 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion.
 - 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by port.
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	_	_	_	—
45.0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	PTEN14	_	—	_		PTEN<10:8>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				PTEN	<7:0>			

REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-15 **Unimplemented:** Read as '0'
- bit 15-14 **PTEN14:** PMCS1 Strobe Enable bits
 - 1 = PMA14 functions as either PMA14 or PMCS1⁽¹⁾
 - 0 = PMA14 functions as port I/O
- bit 13-11 Unimplemented: Read as '0'
- bit 10-2 PTEN<10:2>: PMP Address Port Enable bits
 - 1 = PMA<10:2> function as PMP address lines
 - 0 = PMA<10:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- **Note 1:** The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN3	MSEL:	3<1:0>		F	SEL3<4:0>				
22.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN2	MSEL	2<1:0>	FSEL2<4:0>						
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	FLTEN1	MSEL	1<1:0>		F	SEL1<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN0 MSEL0<1:0>			F	SEL0<4:0>					

REGISTER 24-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL2<1:0>: Filter 2 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL2<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

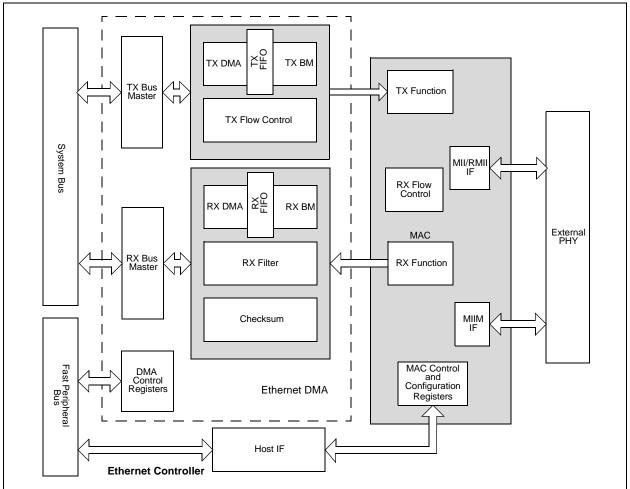
REGISTER 24-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED)

bit 15	FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	<pre>FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

25.0 ETHERNET CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Ethernet Controller" (DS60001155) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system.

Key features of the Ethernet Controller include:

- Supports 10/100 Mbps data transfer rates
- Supports full-duplex and half-duplex operation
- Supports RMII and MII PHY interface
- Supports MIIM PHY management interface
- Supports both manual and automatic Flow Control
- RAM descriptor-based DMA operation for both receive and transmit path
- · Fully configurable interrupts
- Configurable receive packet filtering
 - CRC check
 - 64-byte pattern match
 - Broadcast, multicast and unicast packets
 - Magic Packet™
 - 64-bit hash table
 - Runt packet
- Supports packet payload checksum calculation
- · Supports various hardware statistics counters

Figure 25-1 illustrates a block diagram of the Ethernet controller.

FIGURE 25-1: ETHERNET CONTROLLER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				PMM<	31:24>				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	PMM<23:16>								
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	PMM<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				PMM	<7:0>				

REGISTER 25-7: ETHPMM0: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	PMM<31:24>: Pattern Match Mask 3 bits
hit 23-16	PMM-23-16- Pattern Match Mask 2 hits

- bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits
- bit 15-8 **PMM<15:8>:** Pattern Match Mask 1 bits
- bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits
- Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				PMM<	63:56>				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	PMM<55:48>								
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	PMM<47:40>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				PMM<	39:32>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	PMM<63:56>: Pattern Match Mask 7 bits
bit 23-16	PMM<55:48>: Pattern Match Mask 6 bits
bit 15-8	PMM<47:40>: Pattern Match Mask 5 bits
bit 7-0	PMM<39:32>: Pattern Match Mask 4 bits

Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_		—	_	—	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	—	_	—	_	—
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
10.0	—	_	—	PHYADDR<4:0>				
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_		REGADDR<4:0>				

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Parameter No.	Typical ⁽²⁾	Max.	Units	Units Conditions				
Idle Current (I	IDLE) ^(1,3) for P	PIC32MX575	/675/695/775	795 Family Devices				
DC30	4.5	6.5	mA	-40°C, +25°C, +85°C		4 MHz		
DC30b	5	7	mA	+105°C	—	4 IVITIZ		
DC31	13	15	mA	-40°C, +25°C, +85°C	—	25 MHz		
DC32	28	30	mA	-40°C, +25°C, +85°C	—	60 MHz		
DC33	36	42	mA	-40°C, +25°C, +85°C		80 MHz		
DC33b	39	45	mA	+105°C	—			
DC34		40		-40°C				
DC34a		75	μΑ	+25°C	2.3V			
DC34b		800		+85°C				
DC34c		1000		+105°C				
DC35	35			-40°C				
DC35a	65			+25°C	2 2\/			
DC35b	600	_	μA	+85°C	3.3V	LPRC (31 kHz)		
DC35c	800			+105°C				
DC36		43		-40°C				
DC36a		106		+25°C	3.6V			
DC36b		800	μA	+85°C	3.0V			
DC36c		1000		+105°C				

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)

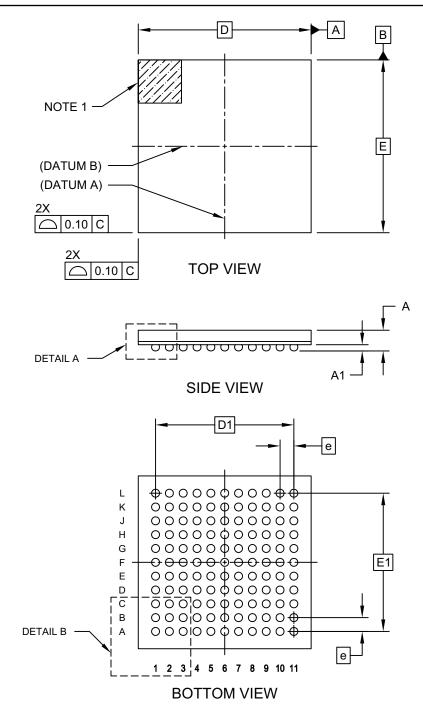
DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le T_A \le +105^{\circ}C$ for V-Temp					
Parameter No.	Typical ⁽²⁾	Max.	Units		Conditions			
Idle Current (IIDLE) ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices								
DC30a	1.5	5		-40°C, +25°C, +85°C		4 MHz		
DC30c	3.5	6	mA	+105⁰C	—	4 10172		
DC31a	7	11		-40°C, +25°C, +85°C	—	25 MHz (Note 3)		
DC32a	13	20	mA	-40°C, +25°C, +85°C	—	60 MHz (Note 3)		
DC33a	17	25	- mA	-40°C, +25°C, +85°C		80 MHz		
DC33c	20	27	mA	+105°C	—			
DC34c		40		-40°C				
DC34d		75 +25°C	2.3V					
DC34e		800	μA 800	+85°C	2.3V			
DC34f		1000		+105°C				
DC35c	30			-40°C				
DC35d	55			+25°C	2.21/	LPRC (31 kHz) (Note 3)		
DC35e	230	_	μA	+85°C	3.3V			
DC35f	800			+105°C				
DC36c		43		-40°C		1		
DC36d		106		+25°C	2.01/			
DC36e		800	μA	+85°C	3.6V			
DC36f		1000	1	+105ºC				

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

TABLE 32-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_
			400 kHz mode	Трв * (BRG + 2)	_	μS	_
			1 MHz mode ⁽²⁾	Tpb * (BRG + 2)	—	μS	_
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_
			400 kHz mode	Tpb * (BRG + 2)	—	μS	_
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	μS	_
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽²⁾	—	100	ns	
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽²⁾	—	300	ns	
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	_
			400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	100	_	ns	
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μS	—
			400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0	0.3	μS	
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Трв * (BRG + 2)	—	ns	Only relevant for Repeated Start condition
			400 kHz mode	Трв * (BRG + 2)	_	ns	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	
IM31	Thd:sta	Start Condition Hold Time	100 kHz mode	Трв * (BRG + 2)	—	ns	After this period, the first clock pulse is generated
			400 kHz mode	Трв * (BRG + 2)	_	ns	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	Трв * (BRG + 2)	_	ns	
			400 kHz mode	Трв * (BRG + 2)	_	ns	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Трв * (BRG + 2)	_	ns	_
			400 kHz mode	Трв * (BRG + 2)	_	ns	-
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	
IM40	TAA:SCL	Output Valid from Clock	100 kHz mode	_	3500	ns	_
			400 kHz mode	_	1000	ns	_
			1 MHz mode ⁽²⁾	_	350	ns	_
IM45 IM50	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	The amount of time the
			400 kHz mode	1.3	<u> </u>	μS	bus must be free before
			1 MHz mode ⁽²⁾	0.5	<u> </u>	μS	a new
	CD	Rue Consolitive La	oding		400		transmission can start
	Св	Bus Capacitive Lo	-	-	400	pF	—
IM51	TPGD	Pulse Gobbler Del	-	52	312	ns	_


Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

3: The typical value for this parameter is 104 ns.

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2