

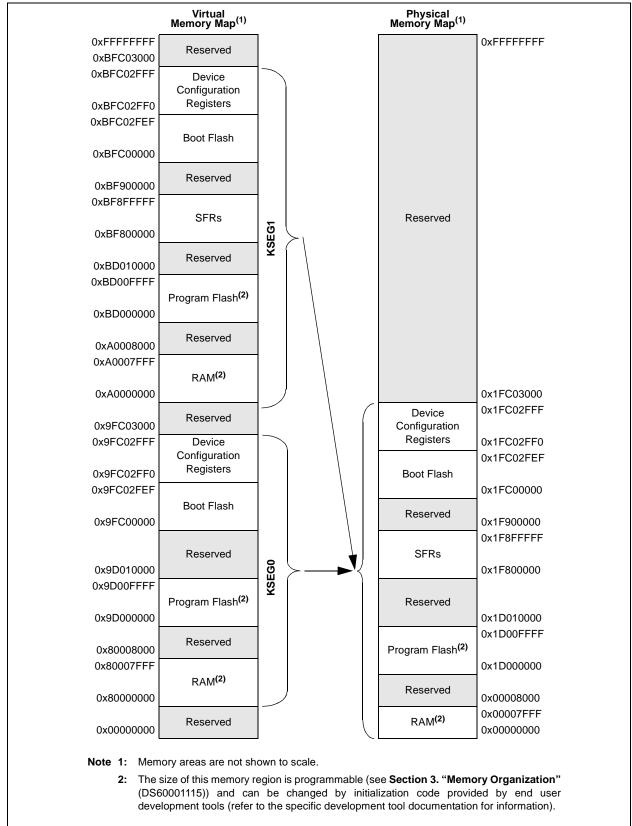
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f512h-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX564F064H, PIC32MX564F064L, PIC32MX664F064H AND PIC32MX664F064L DEVICES

NOTES:

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX5XX/6XX/7XX devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the "*PIC32 Flash Programming Specification*" (DS60001145), which can be downloaded from the Microchip web site.

Note: For PIC32MX5XX/6XX/7XX devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	—	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	_	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0		_	_	—	—			SWRST ⁽¹⁾

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Le	gend:	HC = Cleared by hardwar	e	
R =	= Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n :	= Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾ 1 = Enable software Reset event 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES (CONTINUED)

ess		0								Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
10A0	IPC1	31:16	_	—	—		INT1IP<2:0>		INT1IS	<1:0>	-	_	_	C	C1IP<2:0>	>	OC1IS	S<1:0>	0000
TUAU	IFCI	15:0		_	_		IC1IP<2:0>		IC1IS<	<1:0>	_	_		-	T1IP<2:0>		T1IS	<1:0>	0000
10B0	IPC2	31:16		—	—		INT2IP<2:0>		INT2IS	<1:0>	—	_	-	C	C2IP<2:0>	>	OC2IS	S<1:0>	0000
тово	IF 02	15:0		_	_		IC2IP<2:0>		IC2IS<	<1:0>	_	-		-	T2IP<2:0>		T2IS	<1:0>	0000
10C0	IPC3	31:16		_	_		INT3IP<2:0>		INT3IS	<1:0>	—	_		C	C3IP<2:0>	>	OC3IS	S<1:0>	0000
1000	11 00	15:0	—	—	—		IC3IP<2:0>		IC3IS<	<1:0>	—	—	—	-	T3IP<2:0>		T3IS	<1:0>	0000
10D0	IPC4	31:16	—	—	—		INT4IP<2:0>		INT4IS	<1:0>	—	—	—	C	C4IP<2:0>	>	OC4IS	S<1:0>	0000
TODO	11 04	15:0	—	—	—		IC4IP<2:0>		IC4IS<	<1:0>	—	—	—	-	T4IP<2:0>		T4IS	<1:0>	0000
10E0	IPC5	31:16	—	—	—		—	—	—	—	—	—	_	-	C5IP<2:0>	>	OC5IS	S<1:0>	0000
IOLO	1 00	15:0	—	—	—		IC5IP<2:0>		IC5IS<	<1:0>	—	—	—		T5IP<2:0>		T5IS		0000
		31:16	—	—	—		AD1IP<2:0>		AD1IS-	<1:0>	—	—	—	(CNIP<2:0>		CNIS	-	0000
10F0	IPC6													l	J1IP<2:0>		U1IS	<1:0>	
101.0	1 00	15:0	—	—	—		I2C1IP<2:0>		I2C1IS	<1:0>	—	—	—	S	PI3IP<2:0:	>	SPI3IS	S<1:0>	0000
														12	2C3IP<2:0>	>	12C31	S<1:0>	
							U3IP<2:0>		U3IS<	:1:0>									
1100	IPC7	31:16	—	—	—		SPI2IP<2:0>		SPI2IS	<1:0>	—	—	—	C	MP2IP<2:0	>	CMP2I	S<1:0>	0000
1100	11 07						I2C4IP<2:0>		I2C4IS	-									
		15:0	—	—	—	(CMP1IP<2:0>	•	CMP1IS		—	—	_		MPIP<2:0		PMPIS	S<1:0>	0000
		31:16	—	—	—	F	RTCCIP<2:0>	•	RTCCIS	S<1:0>	—	—	_		SCMIP<2:0	>		S<1:0>	0000
1110	IPC8														J2IP<2:0>		U2IS		
	11 00	15:0	—	—	—	—	—	—	—	—	—	—	—	S	PI4IP<2:0;	>	SPI4IS	S<1:0>	0000
															2C5IP<2:0>		12C518		
1120	IPC9	31:16	_	—	—		DMA3IP<2:0>		DMA3IS		_	—	_		MA2IP<2:0		DMA2I		0000
1120	11 00	15:0	_	—	—		DMA1IP<2:0>		DMA1IS		_	—	_		MA0IP<2:0		DMA0I		0000
1130	IPC10	31:16	—	—	—		MA7IP<2:0>(DMA7IS-	-	—	—	—		A6IP<2:0>			S<1:0> ⁽²⁾	0000
1100	1 010	15:0	—	—	—	D	MA5IP<2:0>(2)	DMA5IS-	<1:0> ⁽²⁾	—	—	—	DM	IA4IP<2:0>	(2)	DMA4IS	S<1:0> ⁽²⁾	0000
1140	IPC11	31:16	_	_	_	_	—	_	_	_	—	_	_	-	AN1IP<2:0		CAN1I	S<1:0>	0000
1140		15:0	—	—	—		USBIP<2:0>		USBIS	<1:0>	—	—	_	F	CEIP<2:0>	•	FCEIS	6<1:0>	0000
1150	IPC12	31:16	_	—	—		U5IP<2:0>		U5IS<	:1:0>	—	—	—	l	J6IP<2:0>		U6IS	<1:0>	0000
1100	1 012	15:0	—	—	—		U4IP<2:0>		U4IS<	:1:0>	—	—	_	—	—	-	-	—	0000

PIC32MX5XX/6XX/7XX

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET Note 1: and INV Registers" for more information.

These bits are not available on PIC32MX534/564/664/764 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

		P	IC32M)	(795F5 1	12L DEV	/ICES													
SS										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	—	_	_	-	—	_	_	—	—	_		—	—	SS0	0000
1000	INTCON	15:0	_	-	_	MVEC	_		TPC<2:0>		_	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16		—	_	—	_	_	—	—	_	_	—		—	—	—		0000
		15:0	_	_	—	—	—		SRIPL<2:0>		—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	SPI1TXIF	SPI1RXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF ⁽²⁾	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF SPI4TXIF I2C5MIF	U2RXIF SPI4RXIF I2C5SIF	U2EIF SPI4EIF I2C5BIF	U3TXIF SPI2TXIF I2C4MIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF I2C4BIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1050	IFS2	15:0		_	_	_	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	SPI1TXIE	SPI1RXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE ⁽²⁾	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
	1500	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1080	IEC2	15:0	_	—	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16		_	—		INT0IP<2:0>		INTOIS	S<1:0>	_	—	—		CS1IP<2:0>	>	CS1IS	S<1:0>	0000
1090	IFCU	15:0	—	—	—		CS0IP<2:0>		CSOIS	5<1:0>	—	—	—		CTIP<2:0>		CTIS	<1:0>	0000
10A0	IPC1	31:16		—			INT1IP<2:0>		INT1IS		—		—		OC1IP<2:0>	>	OC1IS		0000
		15:0		—	—		IC1IP<2:0>		IC1IS		_	—	—		T1IP<2:0>		T1IS		0000
10B0	IPC2	31:16		—			INT2IP<2:0>		INT2IS		_		—		OC2IP<2:0>	>	OC2IS		0000
		15:0	_	_	_		IC2IP<2:0>		IC2IS		_	_	_		T2IP<2:0>		T2IS		0000
10C0	IPC3	31:16 15:0			_		INT3IP<2:0> IC3IP<2:0>		INT3IS IC3IS						OC3IP<2:0> T3IP<2:0>	>	OC3IS T3IS		0000
í		15.0					10315 <2.0>		10313	<1.U2			_		1015 <2.0>		1313	<1.02	0000

TABLE 7-7:INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND
PIC32MX795F512L DEVICES

d: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This bit is unimplemented on PIC32MX764F128L device.

3: This register does not have associated CLR, SET, and INV registers.

PIC32MX5XX/6XX/7XX

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24		_	BYTO	<1:0>	WBO ⁽¹⁾	_	_	BITO
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	_	_	_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	_			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	—	(CRCCH<2:0>	,

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 **Unimplemented:** Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (reverse source byte order)
 - 00 = No swapping (source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (not reflected)
- bit 23-13 Unimplemented: Read as '0'
- bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24				_			_	_
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16				_			-	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0				_			-	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

bit 7

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

DPPULUP: D+ Pull-Up Enable bit 1 = D+ data line pull-up resistor is enabled 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D+ data line pull-down resistor is enabled
 - 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled

bit 3 VBUSON: VBUS Power-on bit

- 1 = VBUS line is powered
- 0 = VBUS line is not powered
- bit 2 **OTGEN:** OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

REGIST	ER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)
bit 15	ON: SPI Peripheral On bit ⁽¹⁾
	1 = SPI Peripheral is enabled
bit 11	0 = SPI Peripheral is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit 1 = Discontinue operation when CPU enters in Idle mode
	0 = Continue operation in Idle mode
bit 12	DISSDO: Disable SDOx pin bit
	1 = SDOx pin is not used by the module (pin is controlled by associated PORT register)
	0 = SDOx pin is controlled by the module
bit 11-10	MODE<32,16>: 32/16-Bit Communication Select bits
	MODE32 MODE16 Communication
	1 x 32-bit 0 1 16-bit
	0 1 16-bit 0 0 8-bit
bit 9	SMP: SPI Data Input Sample Phase bit
	Master mode (MSTEN = 1):
	1 = Input data sampled at end of data output time
	0 = Input data sampled at middle of data output time
	Slave mode (MSTEN = 0):
	SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾
	1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
h:+ 7	0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
bit 7	SSEN: Slave Select Enable (Slave mode) bit 1 = SSx pin used for Slave mode
	0 = SSx pin not used for Slave mode (pin is controlled by port function)
bit 6	CKP: Clock Polarity Select bit
	1 = Idle state for clock is a high level; active state is a low level
	0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	Unimplemented: Read as '0'
bit 3-2	STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
Dit 0-2	11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
	10 = Interrupt is generated when the buffer is empty by one-half or more
	01 = Interrupt is generated when the buffer is completely empty
	00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are
	complete
bit 1-0	SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits 11 = Interrupt is generated when the buffer is full
	10 = Interrupt is generated when the buffer is full by one-half or more
	01 = Interrupt is generated when the buffer is not empty
	00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
	When using the 1.1 DPOLK divisor the user's activises should not used anywrite the mentation " OPP i
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2:	This bit can only be written when the ON bit = 0 .
3:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI
0.	mode (FRMEN = 1).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>		
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		MONTH	10<3:0>		MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		DAY10	<3:0>		DAY01<3:0>				
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
7:0	—	—	_	_		WDAYC)1<3:0>		
Legend:									
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'				

0' = Bit is cleared

REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

'1' = Bit is set

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

-n = Value at POR

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

x = Bit is unknown

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0						
31:24	—	—	—		_	—	—	_
00.40	U-0	U-0						
23:16	—	—	—	_	—	—	—	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	_	—	F	ORM<2:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
7:0		SSRC<2:0>		CLRASAM	—	ASAM	SAMP ⁽²⁾	DONE ⁽³⁾

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit⁽¹⁾
 - 1 = ADC module is operating
 - 0 = ADC module is not operating
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 Unimplemented: Read as '0'

bit 10-8 **FORM<2:0>:** Data Output Format bits

- 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000)
- 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
- 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss dddd dddd)
- 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
- 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
- 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)
- 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

- 111 = Internal counter ends sampling and starts conversion (auto convert)
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CTMU ends sampling and starts conversion
- 010 = Timer 3 period match ends sampling and starts conversion
- 001 = Active transition on INT0 pin ends sampling and starts conversion
- 000 = Clearing the SAMP bit ends sampling and starts conversion
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write a '0' to end sampling and start conversion. If SSRC<2:0> ≠ '000', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	_	_	—	_	—	—	
23:16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	
15:8	R-0	R-0	R-0	R-0 R-0		R-0	R-0	R-0	
10.6				TERRCI	NT<7:0>				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				RERRC	NT<7:0>				

REGISTER 24-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT \geq 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning $(128 > \text{RERRCNT} \ge 96)$
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 24-6: CIFSTAT: CAN FIFO STATUS REGISTER

		Bit 30/22/14/6			Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31:24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

REGISTER 25-26: EMAC1IPGR: ETHERNET CONTROLLER MAC NON-BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24		—					—	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10		—					—	—		
15:8	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0		
10.0	—	NB2BIPKTGP1<6:0>								
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0		
7.0				NB2E	BIPKTGP2<6:	0>				

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-15 Unimplemented: Read as '0'

bit 14-8 NB2BIPKTGP1<6:0>: Non-Back-to-Back Interpacket Gap Part 1 bits

This is a programmable field representing the optional carrierSense window referenced in section 4.2.3.2.1 "Deference" of the IEEE 80.23 Specification. If the carrier is detected during the timing of IPGR1, the MAC defers to the carrier. If, however, the carrier comes after IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus ensuring fair access to the medium. Its range of values is 0x0 to IPGR2. Its recommend value is 0xC (12d).

bit 7 Unimplemented: Read as '0'

bit 6-0 NB2BIPKTGP2<6:0>: Non-Back-to-Back Interpacket Gap Part 2 bits

This is a programmable field representing the non-back-to-back Inter-Packet-Gap. Its recommended value is 0x12 (18d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps).

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24		—	_	_	_	_	—	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	—	—	_	_	—	_	—			
45.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P			
15:8	STNADDR2<7:0>										
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P			
7:0				STNADDR	1<7:0>						

REGISTER 25-39: EMAC1SA2: ETHERNET CONTROLLER MAC STATION ADDRESS 2 REGISTER

Legend:	P = Programmable bit					
R = Readable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-16 Reserved: Maintain as '0'; ignore read
- bit 15-8 **STNADDR2<7:0>:** Station Address Octet 2 bits These bits hold the second transmitted octet of the station address.
- bit 7-0 **STNADDR1<7:0>:** Station Address Octet 1 bits These bits hold the most significant (first transmitted) octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

27.1 Control Register

TABLE 27-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

lress ¢)		e		Bits															
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	CVRCON	31:16			—	—	—	-	—	_	_	_	-	_		—		—	0000
9800	CVRCON	15:0	ON	-	_	—	_	VREFSEL ⁽²⁾	BGSEL	<1:0> ⁽²⁾	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0100

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX575/675/695/775/795 devices. On these devices, reset value for CVRCON is '0000'.

REGISTER 29-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

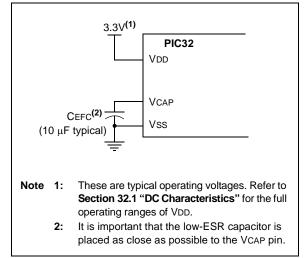
- bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit
 - 1 = PGEC2/PGED2 pair is used
 - 0 = PGEC1/PGED1 pair is used
- bit 2 Reserved: Write '1'
- bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = Debugger is disabled
 - 10 = Debugger is enabled
 - 01 = Reserved (same as '11' setting)
 - 00 = Reserved (same as '11' setting)

29.2 On-Chip Voltage Regulator

All PIC32MX5XX/6XX/7XX devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX-5XX/6XX/7XX family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 32.1 "DC Characteristics"**.

Note: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin.


29.2.1 ON-CHIP REGULATOR AND POR

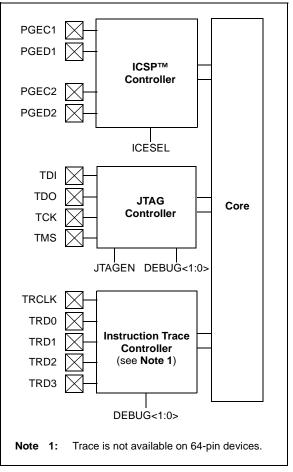
It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

29.2.2 ON-CHIP REGULATOR AND BOR

PIC32MX5XX/6XX/7XX devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset (BOR). This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in **Section 32.1 "DC Characteristics"**.

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

29.3 **Programming and Diagnostics**


PIC32MX5XX/6XX/7XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 29-2:

PROGRAMMING, DEBUGGING, AND TRACE PORTS BLOCK DIAGRAM

31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

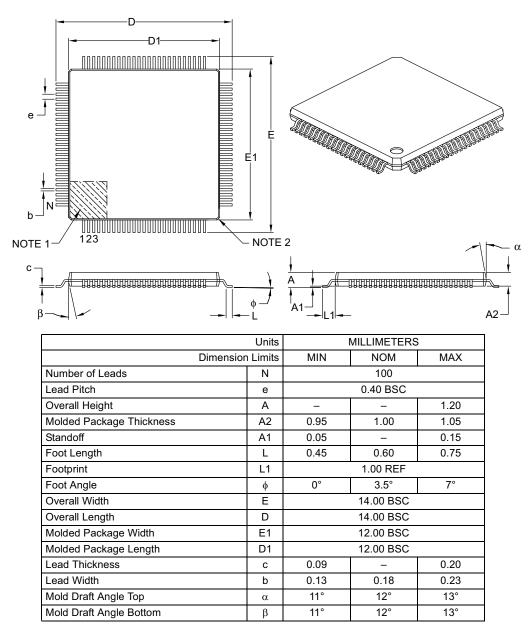
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B