

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f512ht-80v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nun	nber ⁽¹⁾			D "	
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
CN0	48	74	B11	B40	I	ST	Change notification inputs. Can be
CN1	47	73	C10	A47	I	ST	software programmed for internal weak
CN2	16	25	K2	B14	I	ST	pull-ups on all inputs.
CN3	15	24	K1	A15	I	ST	
CN4	14	23	J2	B13	I	ST	
CN5	13	22	J1	A13	I	ST	
CN6	12	21	H2	B11	I	ST	
CN7	11	20	H1	A12	I	ST	
CN8	4	10	E3	A7	I	ST	
CN9	5	11	F4	B6	I	ST	
CN10	6	12	F2	A8	I	ST	
CN11	8	14	F3	A9	I	ST	
CN12	30	44	L8	A29	I	ST	
CN13	52	81	C8	B44	I	ST	
CN14	53	82	B8	A55	I	ST	
CN15	54	83	D7	B45	I	ST	
CN16	55	84	C7	A56	I	ST	
CN17	31	49	L10	B27	I	ST	
CN18	32	50	L11	A32	I	ST	
CN19	—	80	D8	A54	I	ST	
CN20	—	47	L9	B26	I	ST	
CN21	—	48	K9	A31	I	ST	
IC1	42	68	E9	B37	I	ST	Capture Inputs 1-5
IC2	43	69	E10	A45	I	ST	
IC3	44	70	D11	B38	I	ST	-
IC4	45	71	C11	A46	I	ST	-
IC5	52	79	A9	A60	I	ST	-
OCFA	17	26	L1	A20	I	ST	Output Compare Fault A Input
OC1	46	72	D9	B39	0	_	Output Compare Output 1
OC2	49	76	A11	A52	0		Output Compare Output 2
OC3	50	77	A10	B42	0		Output Compare Output 3
OC4	51	78	B9	A53	0	_	Output Compare Output 4
OC5	52	81	C8	B44	0		Output Compare Output 5
OCFB	30	44	L8	A29	I	ST	Output Compare Fault B Input
INT0	46	72	D9	B39	I	ST	External Interrupt 0
INT1	42	18	G1	A11	I	ST	External Interrupt 1
INT2	43	19	G2	B10	I	ST	External Interrupt 2
INT3	44	66	E11	B36	1	ST	External Interrupt 3
INT4	45	67	E8	A44	1	ST	External Interrupt 4
Legend: C S	MOS = CMO T = Schmitt T TL = TTL inp	S compatib rigger input	le input or c	output	A		Analog input P = Power

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX5XX/6XX/7XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see 2.8 "External Oscillator Pins")

The following pin may be required, as well: VREF+/ VREF- pins used when external voltage reference for ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of the ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

PIC32MX5XX/6XX/7XX

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	-	_	_	—	_	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8				BMXDU	DBA<15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	BMXDUDBA<7:0>										

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

TABLE 12-5: PORTD REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, AND PIC32MX795F512H DEVICES

ess										Bi	ts								ú
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
60C0	TRISD	31:16	-	-	-	_	_	-	—	—	—	—	—	-	_	-	-	—	0000
6000	TRISD	15:0	_	_	_	-	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
6000	PORTD	31:16	_			_	_		-					_	_		_	_	0000
6000	PORID	15:0	-	-	_	_	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0	LATD	31:16	_	_	_	-	_	-	_	_	_	_	_	_	-	_	_	_	0000
60E0	LAID	15:0	_	_	_	-	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60F0	ODCD	31:16	_	-	_	_	_	—	-	-	-			—	_	_	_	-	0000
OUFU	ODCD	15:0		_	—	_	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-6: PORTD REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F512L, AND PIC32MX795F512L DEVICES

ess		Ċ,								Bi	ts								6
Virtual Address (BF88_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
60C0	TRISD	31:16	_	_	_	-	-	_		_	-	-	_		-	-	—	—	0000
6000	TRISD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
60D0	PORTD	31:16	_	_				-					-				_	_	0000
0000	FORID	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0	LATD	31:16	—	_	_	_	_	_	_	_	-	_	_	_	_	_	—	—	0000
OUEU	LAID	15:0	LAT15	LAT14	LAT13	LAT12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60F0	ODCD	31:16	_	_				_	-				_	-			_	-	0000
OUFU	ODCD	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Ļ

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

14.2 Control Registers

TABLE 14-1:	TIMER2 THROUGH TIMER5 REGISTER MAP

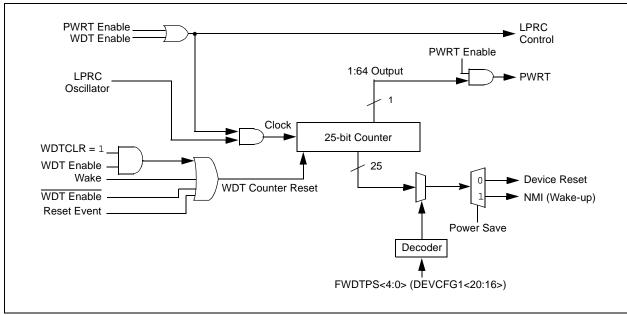
		••																	
ess										В	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0800	T2CON	31:16	—	_	—	—		—			—	—	—		—	-	—		0000
0800	12001	15:0) ON - SIDL TGATE TCKPS<2:0> T32 - TCS ⁽²⁾ -								0000								
0810	TMR2	31:16										0000							
0010	T IVIT VZ	15:0											0000						
0820	PR2	31:16	—									0000							
0020	1112	15:0								PR2<	15:0>		•						FFFF
0A00	T3CON	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0,100	100011	15:0	ON	—	SIDL	_	_	—	_	_	TGATE		TCKPS<2:0>	`	—	—	TCS ⁽²⁾	_	0000
0A10	TMR3	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0			1					TMR3	<15:0>								0000
0A20	PR3	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	-	15:0								PR3<	15:0>		-						FFFF
0C00	T4CON	31:16	_	—	—	—	—	—	—	—	—	—	—	—		—		—	0000
		15:0	ON	_	SIDL	—	_	_		_	TGATE		TCKPS<2:0>	>	T32	_	TCS ⁽²⁾	_	0000
0C10	TMR4	31:16	—	—		—	—	—	_			—	—	—		_	—	_	0000
		15:0								TMR4									0000
0C20	PR4	31:16	-	—	—	—	_	_	_	-	-	_	—	_	—	_	_	—	0000
		15:0	_			_				PR4<				_		_	_	_	FFFF
0E00	T5CON	31:16 15:0	ON								— TGATE		 TCKPS<2:0>				— TCS ⁽²⁾		0000
<u> </u>		31:16	- UN		SIDL					_	IGATE	_		, 	_		-	_	0000
0E10	TMR5	15:0	_		_	_		—		 TMR5		_	_		_	_		_	0000
		31:16	_	_		_	_	_	_	—		_	_	_	_	_	_	_	0000
0E20	PR5	15:0																	
		13.0	PR5<15:0> FFFF																

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on 64-pin devices.

15.0 WATCHDOG TIMER (WDT)


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Watchdog Timer and Power-up Timer" in the "PIC32 (DS60001114) Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes the operation of the WDT and Power-up Timer of the PIC32MX5XX/6XX/7XX.

The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle mode

FIGURE 15-1: WATCHDOG TIMER AND POWER-UP TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—			_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	_	_	_	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	_	_	_	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR ICI<		1:0>	ICOV	ICBNE		ICM<2:0>	

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	ON: Input Capture Module Enable bit ⁽¹⁾
	 1 = Module is enabled 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Control bit
	1 = Halt in Idle mode0 = Continue to operate in Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
	 1 = Capture rising edge first 0 = Capture falling edge first
bit 8	C32: 32-bit Capture Select bit
	1 = 32-bit timer resource capture0 = 16-bit timer resource capture
bit 7	ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')
	 1 = Timer2 is the counter source for capture 0 = Timer3 is the counter source for capture
bit 6-5	ICI<1:0>: Interrupt Control bits
	11 = Interrupt on every fourth capture event
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	 1 = Input capture overflow is occurred 0 = No input capture overflow is occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty

Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

21.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

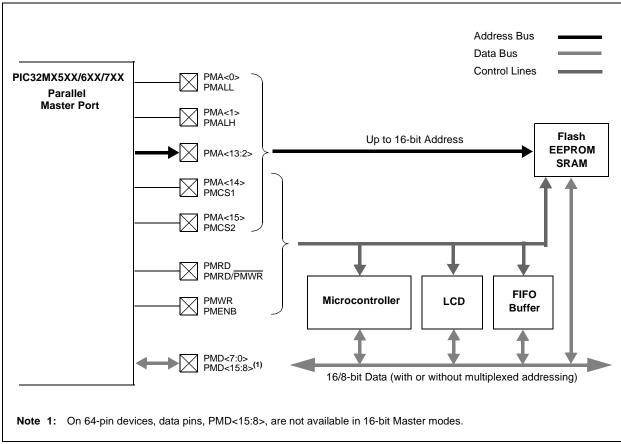

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Figure 21-1 shows the PMP module pinout and its connections to external devices.

FIGURE 21-1:

The following are key features of the PMP module:

- 8-bit and 16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- · Address auto-increment/auto-decrement
- · Programmable address/data multiplexing
- Programmable polarity on control signals
- · Parallel Slave Port support
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable wait states
- · Operates during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Note: On 64-pin devices, the PMD<15:8> data pins are not available.

PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽²⁾
 - 1 = Active-high (PMCS1)
 - $0 = \text{Active-low}(\overline{\text{PMCS1}})$
- bit 2 Unimplemented: Read as '0'
- bit 1 WRSP: Write Strobe Polarity bit
 - For Slave Modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Write strobe active-high (PMWR)
 - $0 = Write strobe active-low (\overline{PMWR})$

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Enable strobe active-high (PMENB)
- 0 = Enable strobe active-low (PMENB)
- bit 0 RDSP: Read Strobe Polarity bit
 - For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Read Strobe active-high (PMRD)
 - 0 = Read Strobe active-low (PMRD)

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Read/write strobe active-high (PMRD/ \overline{PMWR})
- 0 = Read/write strobe active-low (PMRD/PMWR)
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	_	_	—	_	—	—				
23:16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN				
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
10.6				TERRCI	NT<7:0>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0	RERRCNT<7:0>											

REGISTER 24-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT \geq 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning $(128 > \text{RERRCNT} \ge 96)$
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 24-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

PIC32MX5XX/6XX/7XX

REGISTER 25-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	_	_	_	_	—	—		
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	_	_	_	—	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				FRMTXOK	CNT<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FRMTXOKCNT<7:0>									

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

DC CHA	RACTERIS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp							
Param. No.	Typical ⁽²⁾	Max.	Units		Conditions				
Power-D	Oown Curre	nt (IPD) ⁽¹⁾ f	or PIC32	AX534/564/	/664/764	Family Devices			
DC40g	12	40		-40°C					
DC40h	20	120		+25°C	2.3V	Base Power-Down Current (Note 6)			
DC40i	210	600		+85°C	2.30	Base Power-Down Current (Note 6)			
DC40o	400	1000		+105°C					
DC40j	20	120		+25°C	3.3V Base Power-Down Current				
DC40k	15	80	μA	-40°C					
DC40I	20	120		+25°C					
DC40m	113	350 ⁽⁵⁾		+70°C	3.6V	Base Power-Down Current			
DC40n	220	650		+85°C					
DC40p	500	1000		+105°C					
Module	Differential	Current fo	or PIC32N	IX534/564/0	664/764	Family Devices			
DC41c	_	10			2.5V	Watchdog Timer Current: AIWDT (Notes 3,6)			
DC41d	5		μA	—	3.3V	Watchdog Timer Current: AIWDT (Note 3)			
DC41e	_	20			3.6V	Watchdog Timer Current: AIWDT (Note 3)			
DC42c	—	40			2.5V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6)			
DC42d	23	_	μA	—	3.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)			
DC42e	—	50			3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)			
DC43c	—	1300			2.5V	ADC: ΔIADC (Notes 3,4,6)			
DC43d	1100		μA	—	3.3V ADC: △IADC (Notes 3,4)				
DC43e	_	1300			3.6V	ADC: ΔIADC (Notes 3,4)			

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}} = \text{VDD}$
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

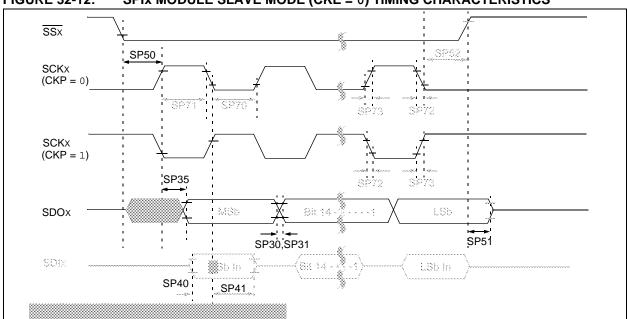

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins:					
		with TTL Buffer	Vss	—	0.15 Vdd	V	
		with Schmitt Trigger Buffer	Vss	—	0.2 Vdd	V	
DI15		MCLR ⁽²⁾	Vss	—	0.2 Vdd	V	
DI16		OSC1 (XT mode)	Vss	—	0.2 Vdd	V	(Note 4)
DI17		OSC1 (HS mode)	Vss	—	0.2 Vdd	V	(Note 4)
DI18		SDAx, SCLx	Vss	_	0.3 Vdd	V	SMBus disabled (Note 4)
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)
	Vih	Input High Voltage					
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	—	Vdd	V	(Note 4,6)
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	_	5.5	V	(Note 4,6)
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 Vdd	_	5.5	V	
DI28		SDAx, SCLx	0.65 Vdd	—	5.5	V	SMBus disabled (Note 4,6)
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)
DI30	ICNPU	Change Notification Pull-up Current	—	—	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	—	50	_	μA	VDD = 3.3V, VPIN = VDD

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

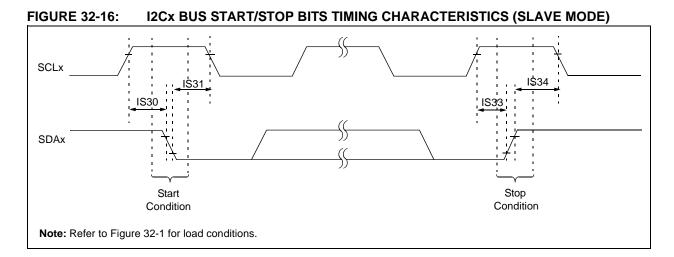
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).</p>
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

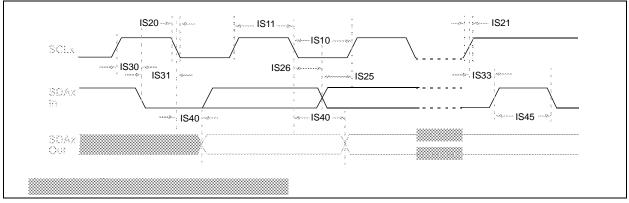
PIC32MX5XX/6XX/7XX

FIGURE 32-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

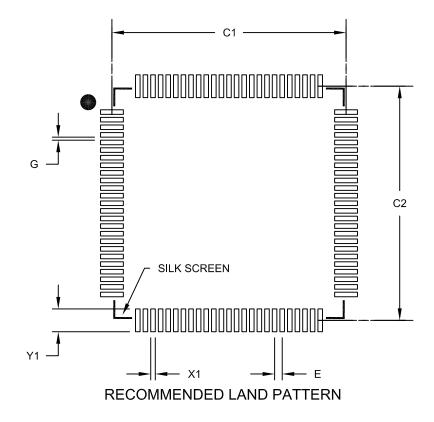

АС СНА	ARACTERIS	Standard (unless o Operating	therwise	e stated) 40°C ≤ T	2.3V to 3.6V $\overline{A} \le +85^{\circ}C$ for Industrial $\overline{A} \le +105^{\circ}C$ for V-Temp	
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2	_		ns	—
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	_		ns	—
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	_	_	ns	See parameter DO32
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	_	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—	_	20	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	5	—	25	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_		ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

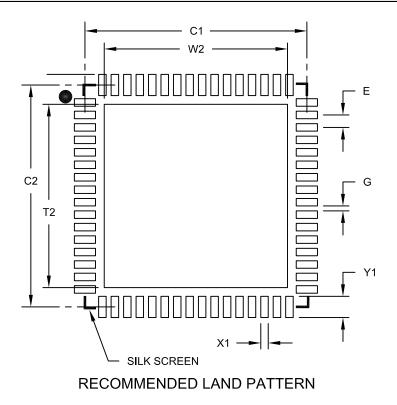


100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimensior	l Limits	MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

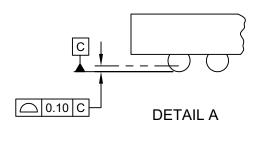
Microchip Technology Drawing No. C04-2110B

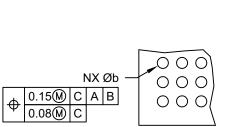
64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

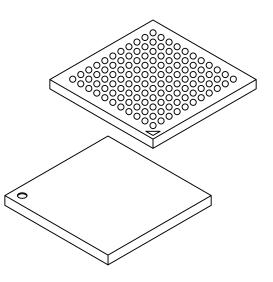
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S		
Dimensior	Dimension Limits			MAX	
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64) Y1				0.85	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

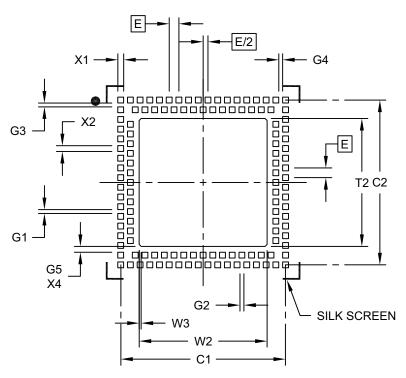

Microchip Technology Drawing No. C04-2149A

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	Units	MILLIMETERS		
Dimensior	l Limits	MIN	NOM	MAX
Number of Contacts	N		121	
Contact Pitch	е		0.80 BSC	
Overall Height	Α	1.00 1.10 1.20		
Ball Height	A1	0.25 0.30 0.35		
Overall Width	E		10.00 BSC	
Array Width	E1		8.00 BSC	
Overall Length	D	10.00 BSC		
Array Length	D1	8.00 BSC		
Contact Diameter	b	0.35 0.40 0.45		


Notes:

- 1. Ball A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.
- 4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	I	MILLIMETER	S
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.50 BSC	
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)	X2			0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A