

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f512l-80i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					USB	, Ethe	ernet, a	nd CA	N								
Device	Pins	Program Memory (KB)	Data Memory (KB)	USB	Ethernet	CAN	Timers/Capture/Compare	DMA Channels (Programmable/Dedicated)	UART ^(2,3)	SPI ⁽³⁾	I ² C ⁽³⁾	10-bit 1 Msps ADC (Channels)	Comparators	dSd/dMd	JTAG	Trace	Packages ⁽⁴⁾
PIC32MX764F128H	64	128 + 12 ⁽¹⁾	32	1	1	1	5/5/5	4/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX775F256H	64	256 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX775F512H	64	512 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX795F512H	64	512 + 12 ⁽¹⁾	128	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX764F128L	100	128 + 12 ⁽¹⁾	32	1	1	1	5/5/5	4/6	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX775F256L	100	256 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX775F512L	100	512 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX795F512L	100	512 + 12 ⁽¹⁾	128	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG, TL
Legend: PF, PT =	end: PF, PT = TQFP MR = QFN BG = TFBGA TL = VTLA ⁽⁵⁾																

TABLE 3: PIC32MX7XX USB, ETHERNET, AND CAN FEATURES

Note 1: This device features 12 KB boot Flash memory.

2: CTS and RTS pins may not be available for all UART modules. Refer to the "Device Pin Tables" section for more information.

3: Some pins between the UART, SPI and I²C modules may be shared. Refer to the "Device Pin Tables" section for more information.

4: Refer to Section 34.0 "Packaging Information" for more information.

5: 100-pin devices other than those listed here are available in the VTLA package upon request. Please contact your local Microchip Sales Office for details.

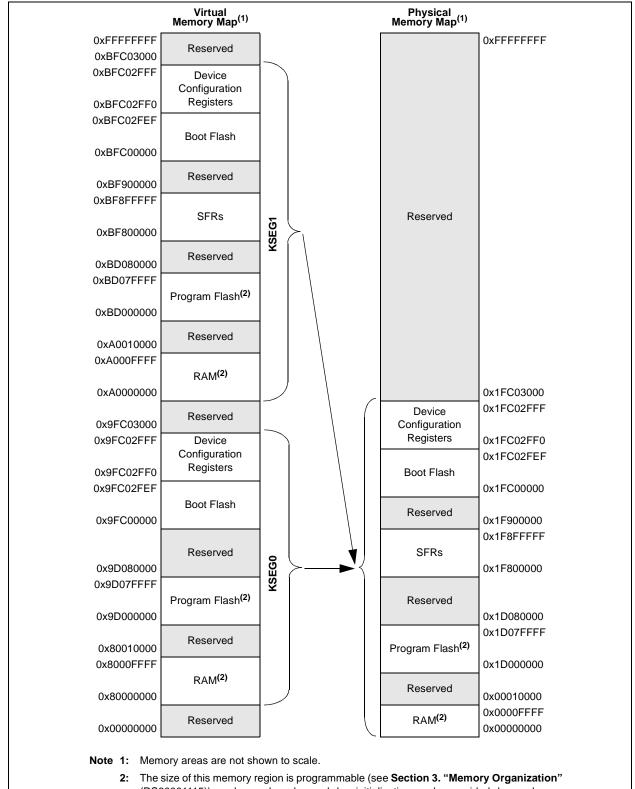

TABLE 1-	<u>I: PINOU</u>	T I/O DES	CRIPTION	NS (CONT	INUED)			
		Pin Nur	nber ⁽¹⁾		Pin	Buffer			
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Туре	Туре	Description		
SDI1	—	9	E1	B5	I	ST	SPI1 data in		
SDO1	—	72	D9	B39	0	_	SPI1 data out		
SS1	_	69	E10	A45	I/O	ST	SPI1 slave synchronization or frame pulse I/O		
SCK3	49	48	K9	A31	I/O	ST	Synchronous serial clock input/output for SPI3		
SDI3	50	52	K11	A36	I	ST	SPI3 data in		
SDO3	51	53	J10	B29	0		SPI3 data out		
SS3	43	47	L9	B26	I/O	ST	SPI3 slave synchronization or frame pulse I/O		
SCK2	4	10	E3	A7	I/O	ST	Synchronous serial clock input/output for SPI2		
SDI2	5	11	F4	B6	I	ST	SPI2 data in		
SDO2	6	12	F2	A8	0		SPI2 data out		
SS2	8	14	F3	A9	I/O	ST	SPI2 slave synchronization or frame pulse I/O		
SCK4	29	39	L6	B22	I/O	ST	Synchronous serial clock input/ou for SPI4		
SDI4	31	49	L10	B27	I	ST	SPI4 data in		
SDO4	32	50	L11	A32	0		SPI4 data out		
SS4	21	40	K6	A27	I/O	ST	SPI4 slave synchronization or frame pulse I/O		
SCL1	44	66	E11	B36	I/O	ST	Synchronous serial clock input/output for I2C1		
SDA1	43	67	E8	A44	I/O	ST	Synchronous serial data input/output for I2C1		
SCL3	51	53	J10	B29	I/O	ST	Synchronous serial clock input/output for I2C3		
SDA3	50	52	K11	A36	I/O	ST	Synchronous serial data input/output for I2C3		
SCL2	_	58	H11	A39	I/O	ST	Synchronous serial clock input/output for I2C2		
SDA2	_	59	G10	B32	I/O	ST	Synchronous serial data input/output for I2C2		
SCL4	6	12	F2	A8	I/O	ST	Synchronous serial clock input/outpu for I2C4		
SDA4	5	11	F4	B6	I/O	ST	Synchronous serial data input/output for I2C4		
SCL5	32	50	L11	A32	I/O	ST	Synchronous serial clock input/outpu for I2C5		
SDA5	31	49	L10	B27	I/O	ST	Synchronous serial data input/output for I2C5		
-	CMOS = CMO ST = Schmitt 1 TTL = TTL inp	Frigger input				nalog = A = Outpu	Analog input P = Power t I = Input		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX575F512H, PIC32MX575F512L, PIC32MX675F512H, PIC32MX675F512L, PIC32MX775F512H AND PIC32MX775F512L DEVICES

(DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

4.2 Control Registers

Register 4-1 through Register 4-8 are used for setting the RAM and Flash memory partitions for data and code.

TABLE 4-2:BUS MATRIX REGISTER MAP

ress	L	e										Bits							
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	—		—	—		BMXCHEDMA	—	_		—	—	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	001F
2000	BINIXCON	15:0	—	-	_	_		_	_	_	_	BMXWSDRM	_	_	_	В	MXARB<2:0>		0041
2010	BMXDKPBA ⁽¹⁾	31:16	—	-	-	_	_	_	—	-	_	—	—	—	_	—	_	—	0000
2010	DIVINDINF DAV /	15:0		BMXDKPBA<15:0> 0000															
2020	BMXDUDBA ⁽¹⁾	31:16	—	—	—	—	—		—	—	—	_	—	-	—	—	—	—	0000
2020	DWIXDODDI	15:0									BMXDL	JDBA<15:0>		•				T	0000
2030	BMXDUPBA ⁽¹⁾	31:16	_	—	—		_	—	_	_	_	—	_	—	—	—	—	—	0000
2000		15:0									BMXDL	JPBA<15:0>							0000
2040	BMXDRMSZ	31:16									BMXDF	RMSZ<31:0>							xxxx
		15:0																	xxxx
2050	BMXPUPBA ⁽¹⁾	31:16	—	—	-		—	—	_		—	_	—	—		BMXPUPB	A<19:16>		0000
		15:0									BMXPL	JPBA<15:0>							0000
2060	BMXPFMSZ	31:16									BMXPF	MSZ<31:0>							xxxx
		15:0																	xxxx
2070	BMXBOOTSZ	31:16									вмхво	OTSZ<31:0>							0000
		15:0																	3000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1
31:24	—	—	Р	LLODIV<2:0:	>	F	RCDIV<2:0>	
00.40	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y
23:16	—	SOSCRDY	PBDIVRDY	PBDIV	/<1:0>	Р	LLMULT<2:0>	•
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		—		NOSC<2:0>	
7.0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0
7:0	CLKLOCK	ULOCK	SLOCK	SLPEN	CF	UFRCEN	SOSCEN	OSWEN

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:

y = Value set from Configuration bits on POR

- R = Readable bit -n = Value at POR
- W = Writable bit U = Unimplemented bit, read as '0'
- '1' = Bit is set
- 0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-27 PLLODIV<2:0>: Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 5 **CHDDIF:** Channel Destination Done Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
 - 0 = No interrupt is pending
- bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
 0 = No interrupt is pending

bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit

- 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
- 0 = No interrupt is pending

bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit

- 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
- 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending

bit 0 CHERIF: Channel Address Error Interrupt Flag bit

- 1 = A channel address error has been detected (either the source or the destination address is invalid)
- 0 = No interrupt is pending

TABLE 12-9: PORTF REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX795F512H, DEVICES

ess		e								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TRISF	31:16	_	—	_	—	-	—	—	—	_	—	_	—	—	_	-	—	0000
6140	IRIOF	15:0		_	_	_	_	_	_	_	_	_	TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
6150	PORTF	31:16	_	_		_		_					-	_	_	_			0000
6150	PURIF	15:0		-	-	—	—	—	-	-	-	-	RF5	RF4	RF3		RF1	RF0	xxxx
6160	LATF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
6160	LAIF	15:0	-	_	—	_	_	_	_	_	_	_	LATF5	LATF4	LATF3	—	LATF1	LATF0	xxxx
6170	ODCF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
0170	ODCF	15:0	_	_	_		-						ODCF5	ODCF4	ODCF3		ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-10: PORTF REGISTER MAP PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX775F512L, PIC32MX7

ess		Ċ,								Bi	ts								- y
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
	TDIOF	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6140	TRISF	15:0	_	_	TRISF13	TRISF12	_	_	_	TRISF8	_	_	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6150	PORTF	31:16	-	_	_	_	_	-	_	_	-		-		_		_	_	0000
0150	FUNIF	15:0	-	—	RF13	RF12	_		_	RF8			RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160	LATF	31:16	—	—	_		—	_	_		-	_	_	_	_	_	—	—	0000
0100	LAIF	15:0		—	LATF13	LATF12		-		LATF8		-	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCF	31:16	—	_	_	—	_		_				_		—				0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	_	-	—	ODCF8	_	-	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

16.1 Control Registers

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	IC1CON ⁽¹⁾	31:16		—	—	—	_	—	_	_	_	—	—	_	—	—	_	_	0000
2000	IC ICON.	15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2010	IC1BUF	31:16								IC1BUF	~31.0>								xxxx
2010		15:0													xxxx				
2200	IC2CON ⁽¹⁾	31:16		_	—	—	_	_	—	_	_	_	_	—	—		—	—	0000
2200	.0200.1	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2210	IC2BUF	31:16								IC2BUF	<31:0>								xxxx
		15:0			-										-				xxxx
2400	IC3CON ⁽¹⁾	31:16	-	_	—	_	_	—	_	_	-	-	—	—	—		-		0000
		15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2410	IC3BUF	31:16								IC3BUF	<31:0>								XXXX
		15:0			1										1				XXXX
2600	IC4CON ⁽¹⁾	31:16	-		-	_			-	-	-	-		-		—	-	_	0000
		15:0	ON	_	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2610	IC4BUF	31:16 15:0								IC4BUF	<31:0>								XXXX
		31:16		_	_	_	_		_	_	_	_			_		_	_	xxxx 0000
2800	IC5CON ⁽¹⁾	15:0	ON	_		_			FEDGE	 C32	ICTMR	ICI<		ICOV	ICBNE		ICM<2:0>		
		31:16	UN		SIDL	—	_		FEDGE	632	ICTIVIK		1.0>	1000	ICDINE	l	10101<2.0>		0000
2810	IC5BUF	15:0								IC5BUF	<31:0>								XXXX
		15.0																	XXXX

TABLE 16-1: INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 20-1: UART1 THROUGH UART6 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6620	U6TXREG	31:16	_	_	—	—			—	—		—	_		—	—	—	—	0000
0020	UUTAREG	15:0	_	_	_	—	_	_	_	TX8				Transmit	Register	-		-	0000
6630	U6RXREG	31:16	_	_	_	—	_	—	_		_	—	_		_	_	—	_	0000
0030	UUKAREG	15:0	_	_	—	—	—	—	_	RX8				Receive	Register				0000
6640	U6BRG ⁽¹⁾	31:16	_	_	—	—	—	—	—	—	_	—	—	—	—	_	—	_	0000
0040	OODING	15:0			-					BRG<	15:0>				-	-		-	0000
6800	U2MODE ⁽¹⁾	31:16	_	_	_	—	_	_	_	—	_	-	—	_	_	—	-	_	0000
0000	OZIVIODE	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810) U2STA ⁽¹⁾ 31:16	31:16	-	_		_	—	—	_	ADM_EN				ADDR	R<7:0>	-		-	0000
0010	02017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6820	U2TXREG	31:16	_	_	_	—	_	_	_	—	_	-	—	_	—	—	-	—	0000
0020	OZTARLO	15:0	-	_		_	_	—	_	TX8				Transmit	Register	-		-	0000
6830	U2RXREG	31:16	-	_		—	_	—	_	—	_	-	—	_	_	_	-	-	0000
0000	OZIVAREO	15:0	-	_		—	_	—	_	RX8				Receive	Register	-		-	0000
6840	U2BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010		15:0								BRG<	15:0>								0000
6A00	U5MODE ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0/100		15:0	ON	_	SIDL	IREN	_	—	_	—	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6A10	U5STA ⁽¹⁾	31:16	—	—	—	—	_	—	—	ADM_EN				ADDR		-		-	0000
0,110		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6A20	U5TXREG	31:16	-	_	_	_	_	_		—	_	-	—	_			-		0000
		15:0	—	_	_	_	_	_		TX8			1	Transmit	Register	1		1	0000
6A30	U5RXREG	31:16	-	_	_	_	_	_		—	_	-	—	_			-		0000
		15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6A40	U5BRG ⁽¹⁾	31:16	—	—		—	—	—	—	—	—	—	—	_			—		0000
Legen		15:0				d, read as '0				BRG<	15:0>								0000

DS60001156J-page 206

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)

```
bit 10-8 PRSEG<2:0>: Propagation Time Segment bits<sup>(4)</sup>
           111 = \text{Length is 8 x Tq}
           000 = \text{Length is } 1 \times TQ
           SJW<1:0>: Synchronization Jump Width bits<sup>(3)</sup>
bit 7-6
           11 = \text{Length is } 4 \times \text{Tq}
           10 = Length is 3 x TQ
           01 = Length is 2 x TQ
           00 = \text{Length is } 1 \times TQ
           BRP<5:0>: Baud Rate Prescaler bits
bit 5-0
           111111 = TQ = (2 x 64)/FSYS
           111110 = TQ = (2 x 63)/FSYS
           000001 = TQ = (2 \times 2)/FSYS
           000000 = TQ = (2 \times 1)/FSYS
Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
       2: 3 Time bit sampling is not allowed for BRP < 2.
```

- $\textbf{3:} \quad SJW \leq SEG2PH.$
- **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN7	MSEL	7<1:0>		F	SEL7<4:0>		
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN5	MSEL	5<1:0>		F	SEL5<4:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>		

REGISTER 24-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
hit 20 24	FSEL7<4:0>: FIFO Selection bits
DIL 20-24	
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL6<1:0>: Filter 6 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL6<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 - Massage matching filter is stored in EIEO buffer 20

11110 = Message matching filter is stored in FIFO buffer 30

•

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

•

REGISTER 24-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED)

bit 15	FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	<pre>FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN23	MSEL2	3<1:0>		FSEL23<4:0>					
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN22	MSEL22<1:0>		FSEL22<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN21	MSEL2	21<1:0>		F	SEL21<4:0>	•			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN20	MSEL20<1:0>		FSEL20<4:0>						

REGISTER 24-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit (31	FLTEN23: Filter 23 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit (30-29	MSEL23<1:0>: Filter 23 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	28-24	<pre>FSEL23<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1</pre>
bit 2	23	00000 = Message matching filter is stored in FIFO buffer 0 FLTEN22: Filter 22 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 2	22-21	MSEL22<1:0>: Filter 22 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	20-16	FSEL22<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
	otor	The hite in this register can only be madified if the correspond

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 24-21: CIFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' (n = 0 THROUGH 31)										
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit		
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0		

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	_				TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—			_	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO full 0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO not empty0 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is not full 0 = FIFO is full
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24				—		-		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10				—		-		_
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	_	_	_	—	_	R	XBUFSZ<6:	4>
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7.0		RXBUFS	SZ<3:0>			_		

REGISTER 25-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Legend:

Logona.					
R = Readable bit	ble bit W = Writable bit U		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-11 Unimplemented: Read as '0'

bit 10-4 RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits
111111 = RX data Buffer size for descriptors is 2032 bytes
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

28.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MX5XX/6XX/7XX family of devices. These devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

28.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the Peripheral Bus Clock (PBCLK) and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

28.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- **Posc Idle mode:** the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.

- **Sosc Idle mode:** the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

28.3 Power-Saving Operation

Peripherals and the CPU can be halted or disabled to further reduce power consumption.

28.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 28.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit, if enabled, remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$						
Param. No.	Sympoli Characteristics Mun (Vnical)// Max		Units	Conditions					
	VIL	Input Low Voltage							
DI10		I/O Pins:							
		with TTL Buffer	Vss	—	0.15 Vdd	V			
		with Schmitt Trigger Buffer	Vss	—	0.2 Vdd	V			
DI15		MCLR ⁽²⁾	Vss	—	0.2 Vdd	V			
DI16		OSC1 (XT mode)	Vss	—	0.2 Vdd	V	(Note 4)		
DI17		OSC1 (HS mode)	Vss	—	0.2 Vdd	V	(Note 4)		
DI18		SDAx, SCLx	Vss	_	0.3 Vdd	V	SMBus disabled (Note 4)		
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)		
	Vih	Input High Voltage							
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	—	Vdd	V	(Note 4,6)		
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	_	5.5	V	(Note 4,6)		
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 Vdd	_	5.5	V			
DI28		SDAx, SCLx	0.65 Vdd	—	5.5	V	SMBus disabled (Note 4,6)		
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)		
DI30	ICNPU	Change Notification Pull-up Current	—	—	-50	μΑ	VDD = 3.3V, VPIN = VSS (Note 3,6)		
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	—	50	_	μA	VDD = 3.3V, VPIN = VDD		

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).</p>
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

TABLE 32-36: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions (see Note 5): 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
Device	Supply	•			•	•	·		
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	_	Lesser of VDD + 0.3 or 3.6	V	_		
AD02	AVss	Module Vss Supply	Vss	—	Vss + 0.3	V	—		
Referen	nce Inputs		•						
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5		AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)		
AD06	Vrefl	Reference Voltage Low	AVss	—	Vrefh – 2.0	V	(Note 1)		
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	—	AVdd	V	(Note 3)		
AD08 AD08a	IREF	Current Drain	_	250 —	400 3	μΑ μΑ	ADC operating ADC off		
Analog	Input								
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	Vrefh	V	—		
AD13	Vinl	Absolute VINL Input Voltage	AVss - 0.3	—	AVDD/2	V	_		
AD14	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	—		
AD15		Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ \textbf{Source Impedance} = 10\ k\Omega \end{array}$		
AD17	RIN	Recommended Impedance of Analog Voltage Source	—	—	5K	Ω	(Note 1)		
ADC Ac	curacy – N	leasurements with Exter	rnal VREF+/VR	EF-			•		
AD20c	Nr	Resolution	1	0 data bits	6	bits	—		
AD21c	INL	Integral Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V		
AD22c	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)		
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V		
AD24c	EOFF	Offset Error	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.3V		
AD25c	_	Monotonicity			_	—	Guaranteed		

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

Revision E (July 2010)

Minor corrections were incorporated throughout the document.

Revision F (December 2010)

The revision includes the following global update:

VCAP/VDDCORE has been changed to: VCAP/VCORE

Other major changes are referenced by their respective chapter/section in Table B-4:

TABLE B-4: SECTION UPDATES

Section Name	Update Description
High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers	Removed the following Analog Feature: FV tolerant input pins (digital pins only)
	Updated the term LIN 1.2 support as LIN support for the peripheral feature: Six UART modules with: RS-232, RS-485, and LIN support
1.0 "Device Overview"	Updated the value of 64-pin QFN/TQFP pin number for the following pin names: PMA0, PMA1 and ECRSDV
4.0 "Memory Organization"	The following register map tables were updated:
	• Table 4-2:
	- Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT
	 Changed bits 25/9/-24/8 to U5IS<1:0> in IPC12
	- Added note 2
	Table 4-3 through Table 4-7:
	 Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT
	 Changed bits 25/9-24/8 to U5IS<1:0> in IPC12
	• Table 4-3:
	 Changed bits 24/8 to I2C5BIF in IFS1
	- Added note 2
	• Table 4-4:
	 Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8 to I2C5BIE in IEC1
	 Added note 2 references
	• Table 4-5:
	 Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8 to I2C5BIE in IEC1
	- Added note 2 references
	• Table 4-6:
	 Changed bit 24/8 to I2C5BIF in IFS1
	 Updated the bit value of bit 24/8 as I2C5BIE for the IEC1 register.
	- Added note 2
	• Table 4-7:
	- Changed bit 25/9 to I2C5SIF in IFS1
	- Changed bit 24/8 as I2C5BIF in IFS1
	- Changed bit 25/9 as I2C5SIE in IEC1
	- Changed bit 24/8 as I2C5BIE in IEC1
	- Added note 2 references
	Added note 2 to Table 4-8
	Updated the All Resets values for the following registers in Table 4-11: I2C3CON, I2C4CON, I2C5CON and I2C1CON.
	Updated the All Resets values for the I2C2CON register in Table 4-12

TABLE B-7: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
32.0 "Electrical Characteristics"	Note 4 in the Operating Current specification was updated (see Table 32-5).
	Note 3 in the Idle Current specification was updated (see Table 32-6).
	Note 6 references in the Power-Down Current specification were updated (see Table 32-7).
	The Program Memory parameters, D135, D136, and D137, and Note 4 were updated (see Table 32-11).
	The Voltage Reference Specifications were updated (see Table 32-14).
	Parameter DO50 (Cosco) was added to the Capacitive Loading Requirements on Output Pins (see Table 32-16).
	The EJTAG Timing Characteristics were updated (see Figure 32-28).
	The maximum value for parameters ET13 and ET14 were updated in the Ethernet Module Specifications (see Table 32-35).
	Parameter PM7 (TDHOLD) was updated (see Table 32-40).
34.0 "Packaging Information"	Packaging diagrams were updated.
Product Identification System	The Speed and Program Memory Size were updated and Note 1 was added.