

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I²C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f512l-80i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX5XX/6XX/7XX

	USB, Ethernet, and CAN																
Device	Pins	Program Memory (KB)	Data Memory (KB)	USB	Ethernet	CAN	Timers/Capture/Compare	DMA Channels (Programmable/Dedicated)	UART ^(2,3)	SPI ⁽³⁾	I ² C ⁽³⁾	10-bit 1 Msps ADC (Channels)	Comparators	dSd/dMd	JTAG	Trace	Packages ⁽⁴⁾
PIC32MX764F128H	64	128 + 12 ⁽¹⁾	32	1	1	1	5/5/5	4/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX775F256H	64	256 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX775F512H	64	512 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX795F512H	64	512 + 12 ⁽¹⁾	128	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX764F128L	100	128 + 12 ⁽¹⁾	32	1	1	1	5/5/5	4/6	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX775F256L	100	256 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX775F512L	100	512 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX795F512L	100	512 + 12 ⁽¹⁾	128	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG, TL
Legend: PF. PT =	TQFF	P MR = G	QFN		BG	3 = TF	BGA		TL =	/TLA	5)						

TABLE 3: PIC32MX7XX USB, ETHERNET, AND CAN FEATURES

Note 1: This device features 12 KB boot Flash memory.

2: CTS and RTS pins may not be available for all UART modules. Refer to the "Device Pin Tables" section for more information.

3: Some pins between the UART, SPI and I²C modules may be shared. Refer to the "Device Pin Tables" section for more information.

4: Refer to Section 34.0 "Packaging Information" for more information.

5: 100-pin devices other than those listed here are available in the VTLA package upon request. Please contact your local Microchip Sales Office for details.

FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX534F064H AND PIC32MX534F064L DEVICES

FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX695F512H, PIC32MX695F512L, PIC32MX795F512H AND PIC32MX795F512L DEVICES

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

TABLE 4-1: SFR MEMORY MAP

	Virtual Address						
Peripheral	Base	Offset Start					
Watchdog Timer		0x0000					
RTCC		0x0200					
Timer1-Timer5		0x0600					
Input Capture 1-5		0x2000					
Output Compare 1-5		0x3000					
I2C1-I2C5		0x5000					
SPI1-SPI4		0x5800					
UART1-UART6		0x6000					
PMP	UXDFOU	0x7000					
ADC		0x9000					
CVREF		0x9800					
Comparator		0xA000					
Oscillator		0xF000					
Device and Revision ID		0xF200					
Flash Controller		0xF400					
Reset		0xF600					
Interrupts		0x1000					
Bus Matrix		0x2000					
DMA		0x3000					
Prefetch	0xBF88	0x4000					
USB		0x5040					
PORTA-PORTG		0x6000					
Ethernet		0x9000					
Configuration	0xBFC0	0x2FF0					

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0							
31.24	NVMKEY<31:24>														
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0							
23:16		NVMKEY<23:16>													
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0							
15:8	NVMKEY<15:8>														
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0							
7:0				NVMK	EY<7:0>										

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read.

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	NVMADDR<31:24>														
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:16	NVMADDR<23:16>														
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
10.0	NVMADDR<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				NVMA	DDR<7:0>										

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15.9	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS09	IFS08
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS07	IFS06	IFS05	IFS04	IFS03	IFS02	IFS01	IFS00

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IEC31	IEC30 IEC29		IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC09	IEC08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC07	IEC06	IEC05	IEC04	IEC03	IEC02	IEC01	IEC00

Legend:

0								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-0 IEC31-IEC00: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess							-	-		Bi	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2190		31:16	_		—	-	_	_	_	—	_	-	_	_	—	—	—	—	0000
3100	DCHTD3IZ	15:0								CHDSIZ	2<15:0>								0000
3190	DCH1SPTR	31:16	—	—	—	—	_	_	—	—	—	—	_	_	—	—	—	_	0000
5150	Donnor IIX	15:0				•				CHSPT	R<15:0>								0000
31A0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0.7.0		15:0								CHDPT	R<15:0>								0000
31B0	DCH1CSIZ	31:16												0000					
		15:0	5:0 CHCSIZ<15:0> (0000					
31C0	DCH1CPTR	31:16	_	—	-	—	—	—	_	_	—	—	-	—	—	—	—	—	0000
		15:0				1				CHCPT	≺<15:0>								0000
31D0	DCH1DAT	31:16	_							_	—	_	_	-					0000
-		15:0	_	_		_	_	_	_	_				CHPDA	AT<7:0>				0000
31E0	DCH2CON	31:16		_		_	_	_	_						_		-	-	0000
		15:0	CHBUST							CHCHINS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	1<1:0>	0000
31F0	DCH2ECON	15.0	_	_			0 <7:0	_	_	_	CEORCE	CAROPT							TEROO
		31.16					Q<1.0>	_	_			CHSHIE				CHCCIE	CHTAIE	CHERIE	0000
3200	DCH2INT	15.0									CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
-		31.16									ONODI	onorm	ONDEN	OLIDIU	OLIDOI	onoon	OT IT AI	OTIET	0000
3210	DCH2SSA	15.0								CHSSA	<31:0>								0000
		31:16																	0000
3220	DCH2DSA	15:0								CHDSA	<31:0>								0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
3230	DCH2SSIZ	15:0								CHSSIZ	2<15:0>								0000
0040	DOLIODOI7	31:16	_	_		_	_	_	_	—	_	_	_	_	_	_	_		0000
3240	DCH2DSIZ	15:0								CHDSIZ	2<15:0>								0000
2050		31:16	—	—	_	—	_	_	—	—	—	—	_	_	_			_	0000
3250	DCH25PTR	15:0								CHSPT	R<15:0>								0000
3260		31:16	—	_	_	—	_	_	_	—	—	_	_	_	—	_	_	_	0000
3200		15:0								CHDPT	R<15:0>								0000
3270	DCH2CSI7	31:16	_	_	-	-	_	_	_	_	_	—	_	_	—	_	—	_	0000
5210	201120012	15:0								CHCSIZ	2<15:0>								0000
2000	DOLIDODTO	31:16	—	_	—	-	_	—	—	—	—	_	_	—	—	—	—	—	0000
3280		15:0								CHCPT	R<15:0>								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
35E0		31:16	-	-	—	—	—	—	-	—	-	—	—	—	—	—	-	—	0000
001.0	DOINOOIZ	15:0								CHSSIZ	Z<15:0>								0000
2000		31:16	—	—	_	_	_	- 1	—	—	_	_	_	_	-	_	_	_	0000
3600	DCH/DSIZ	15:0								CHDSIZ	Z<15:0>								0000
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	—	-	_	_	0000
3610	DCH7SPTR	15:0	CHSPTR<15:0> 0													0000			
2620		31:16	_	_	—	-	-	-	_	_	_	—	-	_	—	_	_	_	0000
3020	DCHIDPIK	15:0								CHDPT	R<15:0>								0000
2020		31:16	_	_	—	_	-	—	_	-	_	—	_	_	—	_	—	_	0000
3630	DCH/CSIZ	15:0	5:0 CHCSIZ<15:0> 0c									0000							
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	—	-	_	_	0000
3640	DCH/CPIR	15:0								CHCPT	R<15:0>								0000
2650		31:16	_	—	—	—	_	_	—	—	—	—	_	—	—	_	_	_	0000
3050		15:0		_	_	_	_	_	_	—				CHPD/	AT<7:0>				0000

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.6	—	—	—	—	—	—	—	—	
7.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	
7:0						FRMH<2:0>			

REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** Upper 3 bits of the Frame Numbers bits These register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	—	—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	—	—	—	—	—	—	—	—	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0		PID<	<3:0>		EP<3:0>				

REGISTER 11-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 PID<3:0>: Token Type Indicator bits⁽¹⁾ 1101 = SETUP (TX) token type transaction 1001 = IN (RX) token type transaction 0001 = OUT (TX) token type transaction Note: All other values not listed, are Reserved and must not be used.

bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

bit 0

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	ON ⁽¹⁾	—	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	CSF<1:0> ⁽²⁾		ALP ⁽²⁾	_	CS1P ⁽²⁾	_	WRSP	RDSP

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP is enabled
 - 0 = PMP is disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation when device enters Idle mode

bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits

- 11 = All 16 bits of address are multiplexed on PMD<15:0> pins
- 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
- 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
- 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port is enabled
 - 0 = PMWR/PMENB port is disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port is enabled
 - 0 = PMRD/PMWR port is disabled
- bit 7-6 CSF<1:0>: Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS2 and PMCS1 function as Chip Select
 - 01 = PMCS2 functions as Chip Select, PMCS1 functions as address bit 14
 - 00 = PMCS2 and PMCS1 function as address bits 15 and $14^{(2)}$
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
- bit 4 Unimplemented: Read as '0'
 - **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

			Bits											6				
Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	31:16		ADC Descript Word P (ADC1PUEP -24-0)											0000				
CIBUFB	15:0							ADC RE			5<31.0>)							0000
	31:16										2.04.0.)							0000
CIBUFC	15:0							ADC Re	suit word C	(ADC1BUFC	><31:0>)							0000
	31:16								sult Word D		1-21.0-1							0000
CIBUFD	15:0							ADC RE		(ADC IBUFL)<31.0>)							0000
	31:16								cult Word E		-21.0-)							0000
ADC RESult Wold E (ADC IBUPE 15:0)									0000									
	31:16										-21.0>)							0000
9160 ADC180FF 15:0 ADC Result Word F (ADC180FF											0000							
	C1BUFB C1BUFC C1BUFC C1BUFC C1BUFE C1BUFF	Burge Burge <th< td=""><td>Big Big Big</td></th<> <td>Bit Spectrum Spectrum 31/15 30/14 C1BUFB 31:16 31/15 30/14 C1BUFC 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFF 31:16 15:0 16</td> <td>B B 31/15 30/14 29/13 C1BUFB 31:16 15:0 1000000000000000000000000000000000000</td> <td>Big Big 31/15 30/14 29/13 28/12 C1BUFB 31:16 </td> <td>Big Big Big Big Big Big Big Big Big Big</td> <td>Big Big 31/15 30/14 29/13 28/12 27/11 26/10 C1BUFB 31:16 15:0 1</td> <th>Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 C1BUFB 31:16 </th> <th>Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 C1BUFB 31:16 </th> <th>Big Single Single<td>Big Sin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 C1BUFB 31:16 </td><td>Big Sin Sin<th>Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16 </th><th>we be be</th><td>see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0 </td><td>BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0 </td><td>BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16 </td></td></th>	Big Big	Bit Spectrum Spectrum 31/15 30/14 C1BUFB 31:16 31/15 30/14 C1BUFC 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFF 31:16 15:0 16	B B 31/15 30/14 29/13 C1BUFB 31:16 15:0 1000000000000000000000000000000000000	Big Big 31/15 30/14 29/13 28/12 C1BUFB 31:16	Big	Big Big 31/15 30/14 29/13 28/12 27/11 26/10 C1BUFB 31:16 15:0 1	Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 C1BUFB 31:16	Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 C1BUFB 31:16	Big Single Single <td>Big Sin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 C1BUFB 31:16 </td> <td>Big Sin Sin<th>Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16 </th><th>we be be</th><td>see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0 </td><td>BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0 </td><td>BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16 </td></td>	Big Sin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 C1BUFB 31:16	Big Sin Sin <th>Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16 </th> <th>we be be</th> <td>see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0 </td> <td>BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0 </td> <td>BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16 </td>	Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16	we be	see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0	BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0	BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16

= unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend: x = unknown value on Reset

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

REGISTER 23-2:	AD1CON2: ADC CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
15:8		VCFG<2:0>			—	CSCNA	—	—
7.0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	BUFS	—		SMP	BUFM	ALTS		

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

Bit Value	VREFH	VREFL
1xx	AVdd	AVss
011	External VREF+ pin	External VREF- pin
010	AVdd	External VREF- pin
001	External VREF+ pin	AVss
000	AVdd	AVss

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the S&H circuit are connected to VREFL.

0 = Disable Offset Calibration mode

The inputs to the S&H circuit are controlled by AD1CHS or AD1CSSL.

bit 11 Unimplemented: Read as '0'

- bit 10 **CSCNA:** Input Scan Select bit
 - 1 = Scan inputs

0 = Do not scan inputs

- bit 9-8 Unimplemented: Read as '0'
- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
- 1110 = Interrupts at the completion of conversion for each 15" sample/convert sequence
- •

0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, and then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

REGISTER 24-1: CICON: CAN MODULE CONTROL REGISTER (CONTINUED)

bit 13 **SIDLE:** CAN Stop in Idle bit 1 = CAN Stops operation when system enters Idle mode 0 = CAN continues operation when system enters Idle mode

bit 12 Unimplemented: Read as '0'

- bit 11 CANBUSY: CAN Module is Busy bit
 - 1 = The CAN module is active
 - 0 = The CAN module is completely disabled
- bit 10-5 Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)

- 10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>)
- •
- •
- •

00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>) 00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0								
	CiFIFOBA<31:24>									
00.40	R/W-0	R/W-0								
23.10	CiFIFOBA<23:16>									
15.0	R/W-0	R/W-0								
10.0	CiFIFOBA<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾		
		CiFIFOBA<7:0>								

REGISTER 24-19: CIFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Bits <1:0> are read-only and read as '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

TABLE 25-5: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128H, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED)

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0050	ETURTAT	31:16	_		_	_	_		_					BUFCN	IT<7:0>				0000
90E0	EIHSIAI	15:0	_	-	—	_	-	1	_	1	BUSY	TXBUSY	RXBUSY	—	-	_	-	—	0000
9100	ETH	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0.00	RXOVFLOW	15:0								RXOVFLW	CNT<15:0>								0000
9110	ETH	31:16		—	—		—	_	—	—			—		—		_	—	0000
	FRMIXOK	15:0								FRMTXOK	CNT<15:0>								0000
9120	ETH SCOLERM	31:16		_	—		—		—	-							_	—	0000
		15:0								SCOLFRM	CN1<15:0>								0000
9130	ETH MCOLFRM	15:0	_	—		_	—		_			_		_	—	_	—	_	0000
	сты	31.16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
9140	FRMRXOK	15:0								FRMRXOK	CNT<15:0>								0000
	FTH	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
9150	FCSERR	15:0								FCSERR	CNT<15:0>								0000
0160	ETH	31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	0000
9160	ALGNERR	15:0								ALGNERR	CNT<15:0>								0000
	EMAC1	31:16	_	-	—	_	-	1	_	1	—	—	1	_	-	_	-	—	0000
9200	CFG1	15:0	SOFT RESET	SIM RESET		—	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	—	_	_	LOOPBACK	TXPAUSE	RXPAUSE	PASSALL	RXENABLE	800D
	EMAC1	31:16	—		—	_	-		_		_	_		_		_		—	0000
9210	CFG2	15:0	—	EXCESS DFR	BP NOBKOFF	NOBKOFF	-	_	LONGPRE	PUREPRE	AUTOPAD	VLANPAD	PAD ENABLE	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX	4082
0220	EMAC1	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	0000
9220	IPGT	15:0	_	_	_	_	_	_	_	_	_			Bź	2BIPKTGP<6	:0>			0012
0230	EMAC1	31:16	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3230	IPGR	15:0	_			NB2	BIPKTGP1<	6:0>			_			NB	2BIPKTGP2<	6:0>			0C12
9240	EMAC1	31:16	_	_	—	—	—	—	—	—	_	_		_	—	—	—	—	0000
02.0	CLRT	15:0	-	_			CWINDO	0W<5:0>			—	—		—		RETX	<3:0>		370F
9250	EMAC1	31:16	—	—	—	—	—	_	—	_	—	—	_	—	—	—	—	—	0000
MAXF	15:0								MACMA	XF<15:0>								05EE	

PIC32MX5XX/6XX/7XX

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Reset values default to the factory programmed value. 2:

DS60001156J-page 282

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
	—	—	—	—	RESETRMII ⁽¹⁾	—	—	SPEEDRMII ⁽¹⁾
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	—	—	—	—

REGISTER 25-29: EMAC1SUPP: ETHERNET CONTROLLER MAC PHY SUPPORT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-12 Unimplemented: Read as '0'
- bit 11 **RESETRMII:** Reset RMII Logic bit⁽¹⁾
 - 1 = Reset the MAC RMII module
 - 0 = Normal operation.
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPEEDRMII: RMII Speed bit⁽¹⁾
 - This bit configures the Reduced MII logic for the current operating speed.
 - 1 = RMII is running at 100 Mbps
 - 0 = RMII is running at 10 Mbps
- bit 7-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for the RMII module.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le T_A \le +105^{\circ}C$ for V-Temp								
Param. No.	Typical ⁽²⁾	Max.	Units	Units Conditions							
Power-Down Current (IPD) ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices											
DC40g	12	40		-40°C							
DC40h	20	120		+25°C	2 21/	Rasa Rower Down Current (Note 6)					
DC40i	210	600		+85°C	2.3V	Base Fower-Down Current (Note 6)					
DC40o	400	1000		+105°C							
DC40j	20	120	μΑ	+25°C	3.3V	Base Power-Down Current					
DC40k	15	80		-40°C	3.6V						
DC40I	20	120		+25°C							
DC40m	113	350 ⁽⁵⁾		+70°C		Base Power-Down Current					
DC40n	220	650		+85°C							
DC40p	500	1000		+105°C							
Module	Differentia	Current fo	or PIC32N	IX534/564/0	664/764	Family Devices					
DC41c	—	10			2.5V	Watchdog Timer Current: AIWDT (Notes 3,6)					
DC41d	5		μΑ	—	3.3V	Watchdog Timer Current: AIWDT (Note 3)					
DC41e		20			3.6V	Watchdog Timer Current: AIWDT (Note 3)					
DC42c	—	40			2.5V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6)					
DC42d	23		μΑ	—	3.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)					
DC42e		50			3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)					
DC43c	—	1300			2.5V	ADC: ΔΙΑDC (Notes 3,4,6)					
DC43d	1100	—	μΑ	—	3.3V	ADC: ΔIADC (Notes 3,4)					
DC43e	_	1300			3.6V	ADC: △IADC (Notes 3,4)					

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}} = \text{VDD}$
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

PIC32MX5XX/6XX/7XX

FIGURE 32-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIST	rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	—		ns	—	
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2	—	_	ns	—	
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—	—		ns	See parameter DO31	
SP35 TscH2doV,		SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V	
	TSCL2DOV	SCKx Edge	_	—	20	ns	VDD < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—		ns	_	
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PIC32 MX 5XX F 512 H T - 80 I/PT - XXX Example: Microchip Brand							
Flash Memory Fan	nily						
Architecture	MX = 32-bit RISC MCU core						
Product Groups	5XX = General purpose microcontroller family 6XX = General purpose microcontroller family 7XX = General purpose microcontroller family						
Flash Memory Family	F = Flash program memory						
Program Memory Size	64 = 64K 128 = 128K 256 = 256K 512 = 512K						
Pin Count	H = 64-pin L = 100-pin, 121-pin, 124-pin						
Speed (see Note 1)	Blank or 80 = 80 MHz						
Temperature Range	I = -40°C to +85°C (Industrial) V = -40°C to +105°C (V-Temp)						
Package	PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) BG = 121-Lead (10x10x1.1 mm) TFBGA (Plastic Thin Profile Ball Grid Array) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array)						
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample						
Note 1: This opt	ion is not available for PIC32MX534/564/664/764 devices.						