

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f512l-80v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

- Note 1: To access the documents listed below, browse to the documentation section of the PIC32MX795F512L product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features, and other documentation, the resulting page provides links to the related family
- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 4. "Prefetch Cache" (DS60001119)
- Section 3. "Memory Organization" (DS60001115)

reference manual sections.

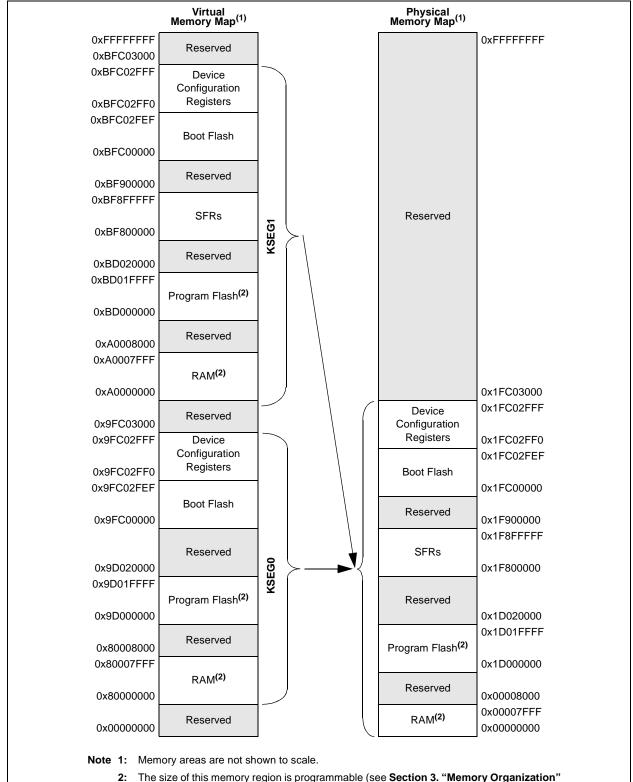
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Capture" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I2C)" (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)

Pin Name		Pin Nur	nber ⁽¹⁾		D:	D ((
	e 64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description	
RA0	_	17	G3	B9	I/O	ST	PORTA is a bidirectional I/O port	
RA1	—	38	J6	A26	I/O	ST		
RA2	—	58	H11	A39	I/O	ST		
RA3	—	59	G10	B32	I/O	ST		
RA4	—	60	G11	A40	I/O	ST		
RA5	—	61	G9	B33	I/O	ST		
RA6	—	91	C5	B51	I/O	ST		
RA7	—	92	B5	A62	I/O	ST		
RA9	—	28	L2	A21	I/O	ST		
RA10		29	K3	B17	I/O	ST]	
RA14		66	E11	B36	I/O	ST]	
RA15	—	67	E8	A44	I/O	ST		
RB0	16	25	K2	B14	I/O	ST	PORTB is a bidirectional I/O port	
RB1	15	24	K1	A15	I/O	ST		
RB2	14	23	J2	B13	I/O	ST		
RB3	13	22	J1	A13	I/O	ST		
RB4	12	21	H2	B11	I/O	ST		
RB5	11	20	H1	A12	I/O	ST		
RB6	17	26	L1	A20	I/O	ST		
RB7	18	27	J3	B16	I/O	ST		
RB8	21	32	K4	A23	I/O	ST		
RB9	22	33	L4	B19	I/O	ST		
RB10	23	34	L5	A24	I/O	ST	1	
RB11	24	35	J5	B20	I/O	ST]	
RB12	27	41	J7	B23	I/O	ST]	
RB13	28	42	L7	A28	I/O	ST]	
RB14	29	43	K7	B24	I/O	ST		
RB15	30	44	L8	A29	I/O	ST		
RC1	—	6	D1	A5	I/O	ST	PORTC is a bidirectional I/O port	
RC2	—	7	E4	B4	I/O	ST		
RC3	—	8	E2	A6	I/O	ST		
RC4		9	E1	B5	I/O	ST]	
RC12	39	63	F9	B34	I/O	ST]	
RC13	47	73	C10	A47	I/O	ST]	
RC14	48	74	B11	B40	I/O	ST]	
	-	64	F11	A42	I/O	ST	1	

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.


TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		nber ⁽¹⁾		Pin	Duffer			
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Ріп Туре	Buffer Type	Description	
TMS	23	17	G3	B9	I	ST	JTAG Test mode select pin	
ТСК	27	38	J6	A26	I	ST	JTAG test clock input pin	
TDI	28	60	G11	A40	I	ST	JTAG test data input pin	
TDO	24	61	G9	B33	0		JTAG test data output pin	
RTCC	42	68	E9	B37	0		Real-Time Clock alarm output	
CVREF-	15	28	L2	A21	I	Analog	Comparator Voltage Reference (low)	
CVREF+	16	29	K3	B17	I	Analog	Comparator Voltage Reference (high)	
CVREFOUT	23	34	L5	A24	0	Analog	Comparator Voltage Reference output	
C1IN-	12	21	H2	B11	I	Analog	Comparator 1 negative input	
C1IN+	11	20	H1	A12	I	Analog	Comparator 1 positive input	
C1OUT	21	32	K4	A23	0		Comparator 1 output	
C2IN-	14	23	J2	B13	I	Analog	Comparator 2 negative input	
C2IN+	13	22	J1	A13	I	Analog	Comparator 2 positive input	
C2OUT	22	33	L4	B19	0		Comparator 2 output	
PMA0	30	44	L8	A29	I/O	TTL/ST	Parallel Master Port Address bit 0 inpu (Buffered Slave modes) and output (Master modes)	
PMA1	29	43	K7	B24	I/O	TTL/ST	Parallel Master Port Address bit 1 in (Buffered Slave modes) and output (Master modes)	
PMA2	8	14	F3	A9	0	_	Parallel Master Port address	
PMA3	6	12	F2	A8	0		(Demultiplexed Master modes)	
PMA4	5	11	F4	B6	0	_		
PMA5	4	10	E3	A7	0	_		
PMA6	16	29	K3	B17	0	—		
PMA7	22	28	L2	A21	0	—		
PMA8	32	50	L11	A32	0	_		
PMA9	31	49	L10	B27	0	_		
PMA10	28	42	L7	A28	0	_		
PMA11	27	41	J7	B23	0			
PMA12	24	35	J5	B20	0			
PMA13	23	34	L5	A24	0	_	1	
PMA14	45	71	C11	A46	0	_	1	
PMA15	44	70	D11	B38	0	_	1	
PMCS1	45	71	C11	A46	0		Parallel Master Port Chip Select 1 strobe	
PMCS2	44	70	D11	B38	0	_	Parallel Master Port Chip Select 2 strobe	
5	CMOS = CMO ST = Schmitt 1 TL = TTL inp	rigger input				nalog = A = Outpu	Analog input P = Power t I = Input	

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

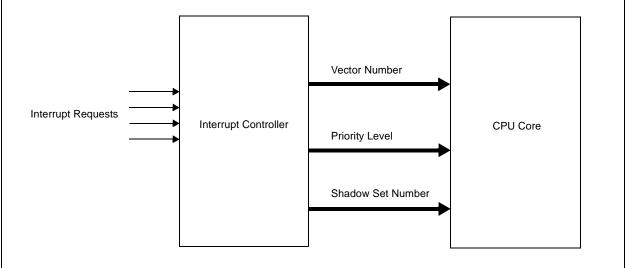
2: See 25.0 "Ethernet Controller" for more information.

FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX564F128H, PIC32MX564F128L, PIC32MX664F128H, PIC32MX664F128L, PIC32MX764F128H AND PIC32MX764F128L DEVICES

(DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8. "Interrupts"** (DS60001108) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).


PIC32MX5XX/6XX/7XX devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The Interrupt Controller module includes the following features:

- Up to 96 interrupt sources
- Up to 64 interrupt vectors
- Single and multi-vector mode operations
- · Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable sub-priority levels within each priority
- Dedicated shadow set for user-selectable priority level
- Software can generate any interrupt
- User-configurable interrupt vector table location
- · User-configurable interrupt vector spacing

A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—		_		_	_	_	—	
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
23:16	CHAIRQ<7:0> ⁽¹⁾								
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
15:8	CHSIRQ<7:0> ⁽¹⁾								
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	—	

REGISTER 10-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit
	 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0	Unimplemented: Read as '0'

Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	—	_	_
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	_	—	—	_	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

0				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
	0 = No interrupt is pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_		—				—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_		—				—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	_	—	—	—	-	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BDTPTR	H<23:16>			

REGISTER 11-18: U1BDTP2: USB BUFFER DESCRIPTOR TABLE PAGE 2 REGISTER

Legend:

0			
R = Readable bit	= Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

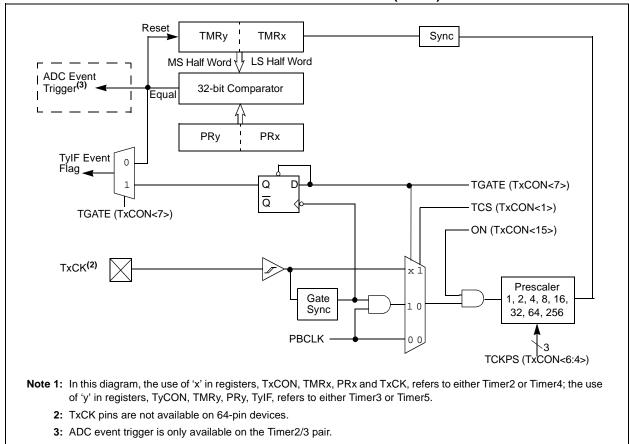
bit 7-0 BDTPTRH<23:16>: BDT Base Address bits

This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

REGISTER 11-19: U1BDTP3: USB BUFFER DESCRIPTOR TABLE PAGE 3 REGISTER

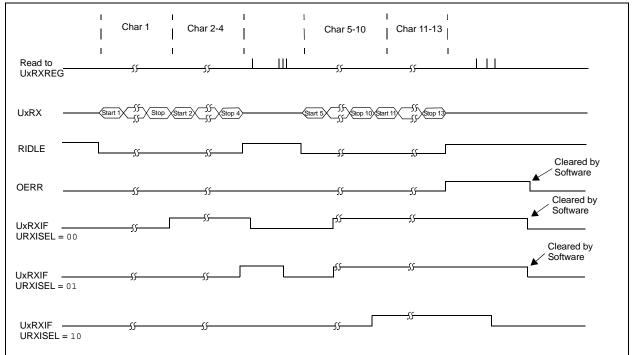
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—			—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—		—			—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0		—		—			—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BDTPTR	U<31:24>			


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: BDT Base Address bits

This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.


The 32-bit BDT base address is 512-byte aligned.

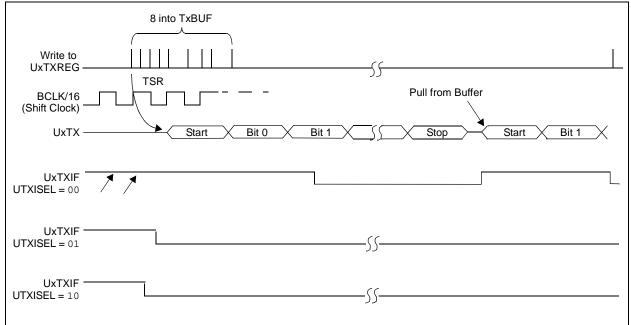

FIGURE 14-2: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (32-BIT)

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 5 **ABAUD:** Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55);
 - cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode 4x baud clock enabled
 - 0 = Standard Speed mode 16x baud clock enabled
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Selection bit
 - 1 = 2 Stop bits
 - 0 = 1 Stop bit
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

23.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104) in the "PIC32 Family Reference Manual", which is available from Microchip web the site (www.microchip.com/PIC32).

The PIC32MX5XX/6XX/7XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1 Msps conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold (S&H) circuit
- Automatic Channel Scan mode
- Selectable conversion trigger source


- 16-word conversion result buffer
- · Selectable buffer fill modes
- Eight conversion result format options
- · Operation during Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 23-1. The 10-bit ADC has up to 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers to one S&H. The analog input multiplexers can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 23-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight 32-bit output formats when it is read from the result buffer.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN27	MSEL2	27<1:0>			FSEL27<4:0>			
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN26	MSEL2	26<1:0>	FSEL26<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	FLTEN25	MSEL2	25<1:0>			FSEL25<4:0>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN24	MSEL24<1:0>		FSEL24<4:0>					

REGISTER 24-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN27: Filter 27 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL27<1:0>: Filter 27 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL27<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN26: Filter 26 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL26<1:0>: Filter 26 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	<pre>FSEL26<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 24-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' (n = 0 THROUGH 31)

- bit 9 TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is \leq half full 0 = FIFO is > half full TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 8 **TXEMPTYIF:** Transmit FIFO Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is empty 0 = FIFO is not empty, at least 1 message queued to be transmitted TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 7-4 Unimplemented: Read as '0' bit 3 **RXOVFLIF:** Receive FIFO Overflow Interrupt Flag bit TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = Overflow event has occurred 0 = No overflow event occured bit 2 **RXFULLIF:** Receive FIFO Full Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is full 0 = FIFO is not full RXHALFIF: Receive FIFO Half Full Interrupt Flag bit⁽¹⁾ bit 1 TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is \geq half full 0 = FIFO is < half full bit 0 **RXNEMPTYIF:** Receive Buffer Not Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty
- Note 1: This bit is read-only and reflects the status of the FIFO.

27.1 Control Register

TABLE 27-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

lress ¢)		e								Bits									
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	CVRCON	31:16			—	—	—	-	—	_	_	_		_		—		—	0000
9800	CVRCON	15:0	ON	-	_	—	_	VREFSEL ⁽²⁾	BGSEL	<1:0> ⁽²⁾	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0100

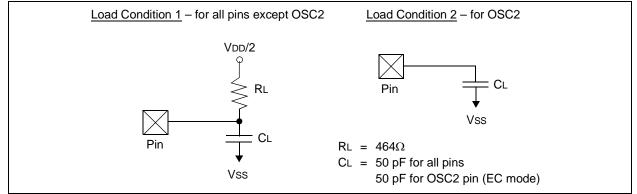
Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX575/675/695/775/795 devices. On these devices, reset value for CVRCON is '0000'.

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp						
Parameter No.	Typical ⁽²⁾	Max.	Units		Conditions				
Idle Current (I	IDLE) ^(1,3) for P	PIC32MX575	/675/695/775	795 Family Devices					
DC30	4.5	6.5	mA	-40°C, +25°C, +85°C		4 MHz			
DC30b	5	7	mA	+105°C	—	4 MHZ			
DC31	13	15	mA	-40°C, +25°C, +85°C	—	25 MHz			
DC32	28	30	mA	-40°C, +25°C, +85°C	—	60 MHz			
DC33	36	42	mA	-40°C, +25°C, +85°C		80 MHz			
DC33b	39	45	mA	+105°C	—				
DC34		40		-40°C					
DC34a		75		+25°C	2.3V				
DC34b		800	μA	+85°C	2.3V				
DC34c		1000		+105°C					
DC35	35			-40°C					
DC35a	65			+25°C	3.3V				
DC35b	600	_	μΑ	+85°C	3.3V	LPRC (31 kHz)			
DC35c	800			+105°C					
DC36		43		-40°C					
DC36a		106		+25°C	3.6V				
DC36b		800	μA	+85°C	3.0V				
DC36c		1000		+105°C					

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)


Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

32.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters.

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

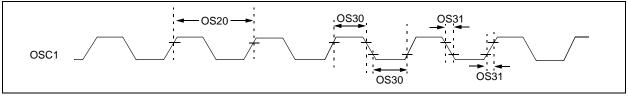


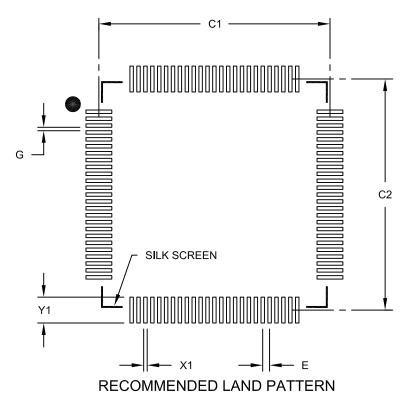
TABLE 32-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics	Min.	Min. Typical ⁽¹⁾ Max. Units Conditions							
DO50	Cosco	OSC2 pin		_	15	pF	In XT and HS modes when an external crystal is used to drive OSC1				
DO56	Сю	All I/O pins and OSC2		—	50	pF	oF In EC mode				
DO58 CB SCLx, SDAx				—	400	pF	In I ² C mode				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-2: EXTERNAL CLOCK TIMING

TABLE 32-22: RESETS TIMING


AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions				
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS	-40°C to +85°C				
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	-40°C to +85°C				
SY20	TMCLR	MCLR Pulse Width (low)	—	2	_	μS	-40°C to +85°C				
SY30	TBOR	BOR Pulse Width (low)	—	1		μS	-40°C to +85°C				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units					
Dimensior	n Limits	MIN	NOM	MAX		
Contact Pitch	E		0.40 BSC			
Contact Pad Spacing	C1		13.40			
Contact Pad Spacing	C2		13.40			
Contact Pad Width (X100)	X1			0.20		
Contact Pad Length (X100)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820