

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 014110	
Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx675f512lt-80i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES

1	21-PIN TFBGA (BOTTOM VIEW)		L11
	PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L		L1 A11
	te: The TFBGA package skips from row "H		
Pin #	Full Pin Name	Pin #	Full Pin Name
A1	PMD4/RE4	E2	T4CK/RC3
A2	PMD3/RE3	E3	ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6
A3	TRD0/RG13	E4	T3CK/RC2
A4	PMD0/RE0	E5	VDD
A5	PMD8/RG0	E6	ETXERR/PMD9/RG1
A6	ETXD0/PMD10/RF1	E7	Vss
A7	Vdd	E8	AETXEN/SDA1/INT4/RA15
A8	Vss	E9	RTCC/EMDIO/AEMDIO/IC1/RD8
A9	ETXD2/IC5/PMD12/RD12	E10	SS1/IC2/RD9
A10	OC3/RD2	E11	AETXCLK/SCL1/INT3/RA14
A11	OC2/RD1	F1	MCLR
B1	No Connect (NC)	F2	ERXDV/AERXDV/ECRSDV/AECRSDV//SCL4/SDO2/U3TX/PMA3/CN10/RG8
B2	AERXERR/RG15	F3	ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9
B3	PMD2/RE2	F4	ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7
B4	PMD1/RE1	F5	Vss
B5	TRD3/RA7	F6	No Connect (NC)
B6	ETXD1/PMD11/RF0	F7	No Connect (NC)
B7	VCAP	F8	VDD
B8	PMRD/CN14/RD5	F9	OSC1/CLKI/RC12
B9	OC4/RD3	F10	Vss
B10	Vss	F11	OSC2/CLKO/RC15
B11	SOSCO/T1CK/CN0/RC14	G1	AERXD0/INT1/RE8
C1	PMD6/RE6	G2	AERXD1/INT2/RE9
C2	VDD	G3	TMS/RA0
C3 C4	TRD1/RG12 TRD2/RG14	G4 G5	No Connect (NC) VDD
C4	TRCLK/RA6	G5 G6	Vss
	No Connect (NC)	G0 G7	Vss
C0 C7	ETXCLK/PMD15/CN16/RD7	G7 G8	No Connect (NC)
C8	OC5/PMWR/CN13/RD4	G9	TDO/RA5
C9	VDD	G10	SDA2/RA3
C10	SOSCI/CN1/RC13	G11	TDI/RA4
C11	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	H1	AN5/C1IN+/VBUSON/CN7/RB5
D1	T2CK/RC1	H2	AN4/C1IN-/CN6/RB4
D2	PMD7/RE7	H3	Vss
D3	PMD5/RE5	H4	VDD
D4	Vss	H5	No Connect (NC)
D5	Vss	H6	VDD
D6	No Connect (NC)	H7	No Connect (NC)
D7	ETXEN/PMD14/CN15/RD6	H8	VBUS
D8	ETXD3/PMD13/CN19/RD13	H9	VUSB3V3
D9	SDO1/OC1/INT0/RD0	H10	D+/RG2
D10	No Connect (NC)	H11	SCL2/RA2
D11	SCK1/IC3/PMCS2/PMA15/RD10	J1	AN3/C2IN+/CN5/RB3
E1 Note	T5CK/SDI1/RC4 1: Shaded pins are 5V tolerant.	J2	AN2/C2IN-/CN4/RB2

PIC32MX5XX/6XX/7XX

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Nun	nber ⁽¹⁾		Pin	Buffer	
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Ріп Туре	Type	Description
TMS	23	17	G3	B9	I	ST	JTAG Test mode select pin
ТСК	27	38	J6	A26	I	ST	JTAG test clock input pin
TDI	28	60	G11	A40	I	ST	JTAG test data input pin
TDO	24	61	G9	B33	0		JTAG test data output pin
RTCC	42	68	E9	B37	0		Real-Time Clock alarm output
CVREF-	15	28	L2	A21	I	Analog	Comparator Voltage Reference (low)
CVREF+	16	29	K3	B17	I	Analog	Comparator Voltage Reference (high)
CVREFOUT	23	34	L5	A24	0	Analog	Comparator Voltage Reference output
C1IN-	12	21	H2	B11	I	Analog	Comparator 1 negative input
C1IN+	11	20	H1	A12	I	Analog	Comparator 1 positive input
C1OUT	21	32	K4	A23	0		Comparator 1 output
C2IN-	14	23	J2	B13	I	Analog	Comparator 2 negative input
C2IN+	13	22	J1	A13	I	Analog	Comparator 2 positive input
C2OUT	22	33	L4	B19	0		Comparator 2 output
PMA0	30	44	L8	A29	I/O	TTL/ST	Parallel Master Port Address bit 0 inpu (Buffered Slave modes) and output (Master modes)
PMA1	29	43	K7	B24	I/O	TTL/ST	Parallel Master Port Address bit 1 inpu (Buffered Slave modes) and output (Master modes)
PMA2	8	14	F3	A9	0	_	Parallel Master Port address
PMA3	6	12	F2	A8	0		(Demultiplexed Master modes)
PMA4	5	11	F4	B6	0	_	
PMA5	4	10	E3	A7	0	_	
PMA6	16	29	K3	B17	0	—	
PMA7	22	28	L2	A21	0	—	
PMA8	32	50	L11	A32	0	_	
PMA9	31	49	L10	B27	0	_	
PMA10	28	42	L7	A28	0	_	
PMA11	27	41	J7	B23	0		
PMA12	24	35	J5	B20	0		
PMA13	23	34	L5	A24	0	_	1
PMA14	45	71	C11	A46	0	_	1
PMA15	44	70	D11	B38	0	_	1
PMCS1	45	71	C11	A46	0		Parallel Master Port Chip Select 1 strobe
PMCS2	44	70	D11	B38	0	_	Parallel Master Port Chip Select 2 strobe
5	CMOS = CMO ST = Schmitt 1 TL = TTL inp	rigger input				nalog = A = Outpu	Analog input P = Power t I = Input

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

2.9 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins by setting all bits in the AD1PCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.11 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-4. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-4: EMI/EMC/EFT SUPPRESSION CIRCUIT

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX5XX/6XX/7XX devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the "*PIC32 Flash Programming Specification*" (DS60001145), which can be downloaded from the Microchip web site.

Note: For PIC32MX5XX/6XX/7XX devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

6.1 Control Registers

TABLE 6-1: RESETS REGISTER MAP

ess		e		Bits													(2)		
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
Fc00	DCON	31:16	_	—	—	—	_	_	—	_	_	—	—	—	—	—	—	—	0000
F600	RCON	15:0		_	_	_	_	_	CMR	VREGS	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR	POR	0000
5040	RSWRST	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
F610	RSWRSI	15:0	—	_	_	_	_	—	_	—	—	_	_	_	_	_	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	—	_	_	_	—	_
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	-	SUSPEND	DMABUSY	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_	_	_	_	_	_	_

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- ON: DMA On bit⁽¹⁾ bit 15
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24					_	_		
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16					_	_		-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0					_	_		-
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7.0		_	_	_	_		FRMH<2:0>	

REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** Upper 3 bits of the Frame Numbers bits These register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24		_		—		_		—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	_	—	—	—	_	—	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
10.0	—	_	—	—	—	_	—	—		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		PID<	:3:0>		EP<3:0>					

REGISTER 11-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 PID<3:0>: Token Type Indicator bits⁽¹⁾ 1101 = SETUP (TX) token type transaction 1001 = IN (RX) token type transaction 0001 = OUT (TX) token type transaction Note: All other values not listed, are Reserved and must not be used.

bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER (CONTINUED)

- bit 2-0 ICM<2:0>: Input Capture Mode Select bits
 - 111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
 - 110 = Simple Capture Event mode every edge, specified edge first and every edge thereafter
 - 101 = Prescaled Capture Event mode every sixteenth rising edge
 - 100 = Prescaled Capture Event mode every fourth rising edge
 - 011 = Simple Capture Event mode every rising edge
 - 010 = Simple Capture Event mode every falling edge
 - 001 = Edge Detect mode every edge (rising and falling)
 - 000 = Input Capture module is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP (CONTINUED)

ess							•		-	Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5230	I2C5MSK	31:16	-	—	—	_		_	—	-	_	_		_	—	—	_		0000
5230	IZCONISK	15:0	-	—	—	-		_					MSK	<9:0>				-	0000
5240	I2C5BRG	31:16	_	_	_	—	_	—	—	—	_	—	_	—	_		-	_	0000
5240		15:0	—	—	—	—	Baud Rate Generator Register						•		0000				
5250	I2C5TRN	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—		—	—	0000
0200		15:0	—	_	_	—	_	—	_	_		-		Transmit	Register		•		0000
5260	I2C5RCV	31:16	-			—	_	—		_	_	—	—	—		_	—	_	0000
		15:0	-		—	—		—		_				Receive	Register				0000
5300	I2C1CON	31:16	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5310	I2C1STAT	31:16	—	_	_	_	_	_	—	—	_	—	—	_	_		—	_	0000
			ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5320	I2C1ADD	31:16	_	_	—	—	_		—		_	—		_	—		—	—	0000
	15:0 — — — — — — ADD<9:0>							0000											
5330 I2C1MSK 31:16						—	0000												
		15:0	_		_	_		_					MSK	<9:0>					0000
5340	I2C1BRG	31:16	_			—	_	—		_	-	-		_	—		-	_	0000
-		15:0	_			—					Ва	ud Rate Ger	Ū.	ster			1		0000
5350	I2C1TRN	31:16	_	—	—	_	_	_	_	_	_	_	—		—	—	—	—	0000
		15:0	_	_	_	_	_	_		_				Transmit	Register				0000
5360	I2C1RCV	31:16 15:0	_	_				—			—	—	—	- Deseive		—	—	—	0000
								_						Receive					
5400	12C2CON(2)	31:16 15:0	ON		-	-		-	— DI001144	-	-	— STREN	— ACKDT			-		-	0000
				_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN					PEN	RSEN	SEN	1000
5410	12C2STAT ⁽²⁾	31:16			_	_	_	— DCI	— 	-	-	-	— D/A	— P	-	— •	-	— TDF	0000
		15:0 31:16	ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5420	12C2ADD(2)	15:0				_	_		_	-	—	—		 <9:0>	—		_	—	0000
		31:16	_			_		_	_		_		ADD	<9.0>			_	_	0000
5430	12C2MSK ⁽²⁾	15:0							_	_	_	_	 MSK	<0.0>	_		_	_	0000
		31:16									_			< 3.02				_	0000
5440	I2C2BRG ⁽²⁾	15:0	_			_	_	_	_		Ra	ud Rate Ger	erator Regi	ster	_				0000
		31:16	_	_	_	_	_	_	_	_	Da				_		_	_	0000
5450	I2C2TRN ⁽²⁾	15:0	_	_	_		_		_					Transmit	Register				0000
		31:16	_	_	_	_		_	_	_	_	_	_				_	_	0000
5460	12C2RCV ⁽²⁾	15:0	_	_	_	_	_	_	_	_				Receive	Register				0000
Legen								L ues are show	l 	aire al				110001100					0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽²⁾
 - 1 = Active-high (PMCS1)
 - $0 = \text{Active-low}(\overline{\text{PMCS1}})$
- bit 2 Unimplemented: Read as '0'
- bit 1 WRSP: Write Strobe Polarity bit
 - For Slave Modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Write strobe active-high (PMWR)
 - $0 = Write strobe active-low (\overline{PMWR})$

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Enable strobe active-high (PMENB)
- 0 = Enable strobe active-low (PMENB)
- bit 0 RDSP: Read Strobe Polarity bit
 - For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Read Strobe active-high (PMRD)
 - 0 = Read Strobe active-low (PMRD)

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Read/write strobe active-high (PMRD/ \overline{PMWR})
- 0 = Read/write strobe active-low (PMRD/PMWR)
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MONTH	10<3:0>		MONTH01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		DAY10	<3:0>		DAY01<3:0>					
7.0	U-0	U-0	U-0	U-0	R/W-x R/W-x R/W-x R/W-					
7:0	—	—	_	_		WDAYC)1<3:0>			
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'					

0' = Bit is cleared

REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

'1' = Bit is set

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

-n = Value at POR

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

x = Bit is unknown

23.1 **Control Registers**

TABLE 23-1: ADC REGISTER MAP

ess										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	AD1CON1 ⁽¹⁾	31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	0000
9000	ADICONI	15:0	ON	-	SIDL	_	_		FORM<2:0>			SSRC<2:0>		CLRASAM		ASAM	SAMP	DONE	0000
9010	AD1CON2 ⁽¹⁾	31:16	_	_	_	_	—	_	—	_	_	_	_	—	—	_	—	—	0000
3010	ADICONZ	15:0	VCFG2	VCFG1	VCFG0	OFFCAL	—	CSCNA	—	_	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
9020	AD1CON3 ⁽¹⁾	31:16	—	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
5020	ABTOONS	15:0	ADRC	—	_			SAMC<4:0>						ADCS	<7:0>				0000
9040	AD1CHS ⁽¹⁾	31:16	CH0NB	_	_	—		CH0S	B<3:0>		CH0NA	—	_	—		CH0S	A<3:0>		0000
0010	710 TOTIO	15:0	_	_	_	—	_	_	—	_	_	—	_	—	_	_	—	—	0000
9060	AD1PCFG ⁽¹⁾	31:16	_	_	_	—	_	_	—	_	_	—	_	—	_	—	—	—	0000
0000		15:0	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
9050	AD1CSSL ⁽¹⁾	31:16	_	—	—	_	—	—	-	_	—	-	—	_	_	—	-	-	0000
		15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
9070	ADC1BUF0	31:16					ADC Result Word 0 (ADC1BUF0<31:0>)										0000		
00.0		15:0							7.501.0										0000
9080	ADC1BUF1	31:16							ADC Re	sult Word 1	(ADC1BUF	1<31:0>)							0000
		15:0									(, , ,							0000
9090	ADC1BUF2	31:16							ADC Re	sult Word 2	(ADC1BUE	2<31:0>)							0000
		15:0									(0000
90A0	ADC1BUF3	31:16							ADC Re	sult Word 3	(ADC1BUF	3<31:0>)							0000
00/10		15:0							7.501.0										0000
90B0	ADC1BUF4	31:16							ADC Re	sult Word 4	(ADC1BUE4	4<31.0>)							0000
0020		15:0							7.501.0	oun mora i									0000
90C0	ADC1BUF5	31:16							ADC Re	sult Word 5	(ADC1BUF	5<31:0>)							0000
		15:0									(0000
90D0	ADC1BUF6	31:16							ADC Re	sult Word 6	(ADC1BUF	6<31:0>)							0000
0020		15:0							7.501.0										0000
90E0	ADC1BUF7	31:16							ADC Re	sult Word 7	(ADC1BUE)	7<31.0>)							0000
									0000										
90F0	ADC1BUF8	31:16							ADC Re	sult Word 8	(ADC1BUF	8<31:0>)							0000
		15:0										,							0000
9100	ADC1BUF9	31:16							ADC Re	sult Word 9	(ADC1BUE	9<31:0>)							0000
5100		15:0								Salt Word 0									0000
9110	ADC1BUFA	31:16							ADC Re	sult Word A	(ADC1BUE	A<31.0>)							0000
5115	DOIDOIA	15:0																	0000

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

REGISTER 24-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)

- bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = A bus wake-up activity interrupt has occurred 0 = A bus wake-up activity interrupt has not occurred CERRIF: CAN Bus Error Interrupt Flag bit bit 13 1 = A CAN bus error has occurred 0 = A CAN bus error has not occurred bit 12 SERRIF: System Error Interrupt Flag bit 1 = A system error occurred (typically an illegal address was presented to the system bus) 0 = A system error has not occurred bit 11 **RBOVIF:** Receive Buffer Overflow Interrupt Flag bit 1 = A receive buffer overflow has occurred 0 = A receive buffer overflow has not occurred bit 10-4 Unimplemented: Read as '0' MODIF: CAN Mode Change Interrupt Flag bit bit 3 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) 0 = A CAN module mode change has not occurred bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit 1 = A CAN timer (CANTMR) overflow has occurred 0 = A CAN timer (CANTMR) overflow has not occurred bit 1 **RBIF:** Receive Buffer Interrupt Flag bit 1 = A receive buffer interrupt is pending 0 = A receive buffer interrupt is not pending bit 0 TBIF: Transmit Buffer Interrupt Flag bit 1 = A transmit buffer interrupt is pending
 - 1 = A transmit buffer interrupt is pending
 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

REGISTER 24-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4 (CONTINUED)

	(
bit 15	FLTEN17: Filter 13 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL17<1:0>: Filter 17 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL17<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN16: Filter 16 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL16<1:0>: Filter 16 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL16<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 24-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED)

bit 15	FLTEN29: Filter 29 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL29<1:0>: Filter 29 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL29<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN28: Filter 28 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 6-5	MSEL28<1:0>: Filter 28 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL28<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—		—	—	—		—		
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		-		—	—			—		
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
15.6	—	—	SIDL	—	—	—		—		
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0		
7:0	—	—	—	—		—	C2OUT	C1OUT		

REGISTER 26-2: CMSTAT: COMPARATOR STATUS REGISTER

-	-	
	and	
Leu	ena:	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in Idle Control bit
 - 1 = All Comparator modules are disabled while in Idle mode
 - 0 = All Comparator modules continue to operate while in Idle mode

bit 12-2 Unimplemented: Read as '0'

- bit 1 **C2OUT:** Comparator Output bit
 - 1 = Output of Comparator 2 is a '1'
 - 0 = Output of Comparator 2 is a '0'
- bit 0 C1OUT: Comparator Output bit
 - 1 = Output of Comparator 1 is a '1'
 - 0 = Output of Comparator 1 is a '0'

PIC32MX5XX/6XX/7XX

NOTES:

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param. No.	Typical ⁽³⁾	Max.	Units	nits Conditions							
Operatir	ng Current (I	DD) ^(1,2,4) f O I	PIC32MX5	575/675/695/775/795 Family D)evices						
DC20	0 6 9		mA	Code executing from Flash	-40ºC, +25ºC, +85ºC		4 MHz				
DC20b	7	10			+105⁰C						
DC20a	4			Code executing from SRAM	_						
DC21	37	40	mA	Code executing from Flash			25 MHz				
DC21a	25		IIIA	Code executing from SRAM	_	_	23 10112				
DC22	2 64 70			Code executing from Flash			60 MHz				
DC22a	61	_	mA	Code executing from SRAM							
DC23	8 85 98		mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	80 MHz				
DC23b	90	120]		+105⁰C						
DC23a	85]	Code executing from SRAM	—						
DC25a	125	150	μA	—	+25°C	3.3V	LPRC (31 kHz)				

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHA	RACTERIS	ΓΙCS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	5	_	25	ns	_		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тscк + 20	—	_	ns	_		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	25	ns	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX5XX/6XX/7X