

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx695f512ht-80i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	USB, Ethernet, and CAN																
Device	Pins	Program Memory (KB)	Data Memory (KB)	USB	Ethernet	CAN	Timers/Capture/Compare	DMA Channels (Programmable/Dedicated)	UART ^(2,3)	SPI ⁽³⁾	I ² C ⁽³⁾	10-bit 1 Msps ADC (Channels)	Comparators	dSd/dMd	JTAG	Trace	Packages ⁽⁴⁾
PIC32MX764F128H	64	128 + 12 ⁽¹⁾	32	1	1	1	5/5/5	4/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX775F256H	64	256 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX775F512H	64	512 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX795F512H	64	512 + 12 ⁽¹⁾	128	1	1	2	5/5/5	8/8	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX764F128L	100	128 + 12 ⁽¹⁾	32	1	1	1	5/5/5	4/6	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX775F256L	100	256 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX775F512L	100	512 + 12 ⁽¹⁾	64	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX795F512L	100	512 + 12 ⁽¹⁾	128	1	1	2	5/5/5	8/8	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG, TL
Legend: PF, PT =	TQFF	P MR = C	QFN		BG	G = TF	BGA		TL = \	/TLA	5)						

TABLE 3: PIC32MX7XX USB, ETHERNET, AND CAN FEATURES

Note 1: This device features 12 KB boot Flash memory.

2: CTS and RTS pins may not be available for all UART modules. Refer to the "Device Pin Tables" section for more information.

3: Some pins between the UART, SPI and I²C modules may be shared. Refer to the "Device Pin Tables" section for more information.

4: Refer to Section 34.0 "Packaging Information" for more information.

5: 100-pin devices other than those listed here are available in the VTLA package upon request. Please contact your local Microchip Sales Office for details.

		Pin Nur	nber ⁽¹⁾		D '	D ((
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
AN0	16	25	K2	B14	I	Analog	Analog input channels
AN1	15	24	K1	A15	I	Analog	
AN2	14	23	J2	B13	I	Analog	
AN3	13	22	J1	A13	I	Analog	
AN4	12	21	H2	B11	I	Analog	
AN5	11	20	H1	A12	I	Analog	
AN6	17	26	L1	A20	I	Analog	
AN7	18	27	J3	B16	I	Analog	
AN8	21	32	K4	A23	I	Analog	
AN9	22	33	L4	B19	I	Analog	
AN10	23	34	L5	A24	I	Analog	
AN11	24	35	J5	B20	I	Analog	
AN12	27	41	J7	B23	I	Analog	
AN13	28	42	L7	A28	I	Analog	
AN14	29	43	K7	B24	I	Analog	
AN15	30	44	L8	A29	I	Analog	
CLKI	39	63	F9	B34	I	ST/ CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	40	64	F11	A42	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	39	63	F9	B34	I	ST/ CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	40	64	F11	A42	I/O		Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	73	C10	A47	I	ST/ CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise
SOSCO	48	74	B11	B40	0	_	32.768 kHz low-power oscillator crystal output

TABLE 1-1: PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels O = Output I = Input I = Input I = Input I = TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

2.9 Configuration of Analog and Digital Pins During ICSP Operations

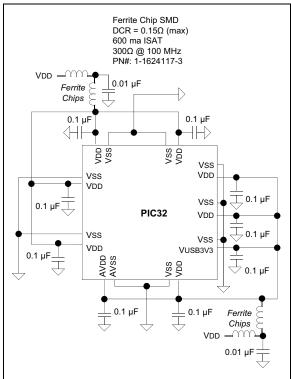
If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins by setting all bits in the AD1PCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

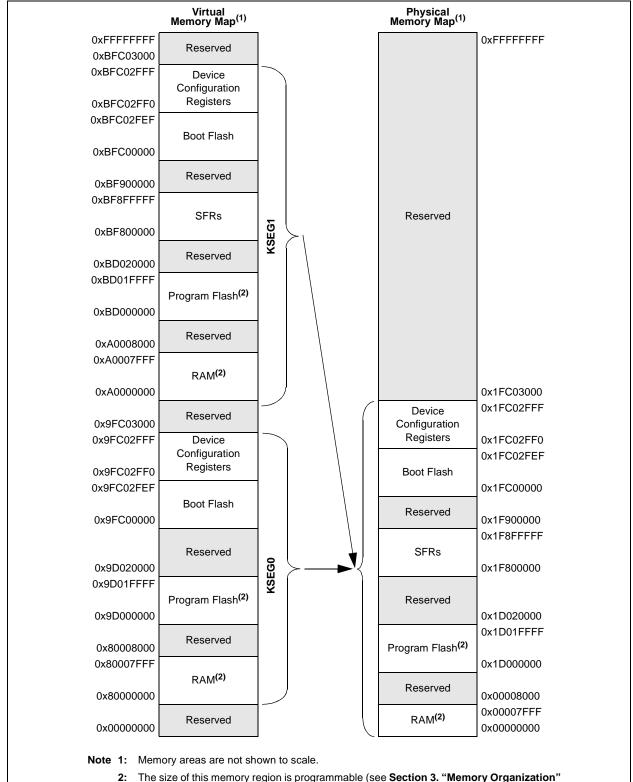
If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.


2.11 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-4. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-4: EMI/EMC/EFT SUPPRESSION CIRCUIT

FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX564F128H, PIC32MX564F128L, PIC32MX664F128H, PIC32MX664F128L, PIC32MX764F128H AND PIC32MX764F128L DEVICES

(DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	—	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	_	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0		_	_	—	—			SWRST ⁽¹⁾

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Le	gend:	HC = Cleared by hardwar	e	
R =	= Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n :	= Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾ 1 = Enable software Reset event 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

Interment Course(1)	IRQ	Vector		Interru	pt Bit Location	
Interrupt Source ⁽¹⁾	Number	Number	Flag	Enable	Priority	Sub-Priority
	Highe	est Natural	Order Priorit	y		
CT – Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>
CS0 – Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>
CS1 – Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>
INT0 – External Interrupt 0	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>
T1 – Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>
IC1 – Input Capture 1	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>
OC1 – Output Compare 1	6	6	IFS0<6>	IEC0<6>	IPC1<20:18>	IPC1<17:16>
INT1 – External Interrupt 1	7	7	IFS0<7>	IEC0<7>	IPC1<28:26>	IPC1<25:24>
T2 – Timer2	8	8	IFS0<8>	IEC0<8>	IPC2<4:2>	IPC2<1:0>
IC2 – Input Capture 2	9	9	IFS0<9>	IEC0<9>	IPC2<12:10>	IPC2<9:8>
OC2 – Output Compare 2	10	10	IFS0<10>	IEC0<10>	IPC2<20:18>	IPC2<17:16>
INT2 – External Interrupt 2	11	11	IFS0<11>	IEC0<11>	IPC2<28:26>	IPC2<25:24>
T3 – Timer3	12	12	IFS0<12>	IEC0<12>	IPC3<4:2>	IPC3<1:0>
IC3 – Input Capture 3	13	13	IFS0<13>	IEC0<13>	IPC3<12:10>	IPC3<9:8>
OC3 – Output Compare 3	14	14	IFS0<14>	IEC0<14>	IPC3<20:18>	IPC3<17:16>
INT3 – External Interrupt 3	15	15	IFS0<15>	IEC0<15>	IPC3<28:26>	IPC3<25:24>
T4 – Timer4	16	16	IFS0<16>	IEC0<16>	IPC4<4:2>	IPC4<1:0>
IC4 – Input Capture 4	17	17	IFS0<17>	IEC0<17>	IPC4<12:10>	IPC4<9:8>
OC4 – Output Compare 4	18	18	IFS0<18>	IEC0<18>	IPC4<20:18>	IPC4<17:16>
INT4 – External Interrupt 4	19	19	IFS0<19>	IEC0<19>	IPC4<28:26>	IPC4<25:24>
T5 – Timer5	20	20	IFS0<20>	IEC0<20>	IPC5<4:2>	IPC5<1:0>
IC5 – Input Capture 5	21	21	IFS0<21>	IEC0<21>	IPC5<12:10>	IPC5<9:8>
OC5 – Output Compare 5	22	22	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>
SPI1E – SPI1 Fault	23	23	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>
SPI1RX – SPI1 Receive Done	24	23	IFS0<24>	IEC0<24>	IPC5<28:26>	IPC5<25:24>
SPI1TX – SPI1 Transfer Done	25	23	IFS0<25>	IEC0<25>	IPC5<28:26>	IPC5<25:24>
U1E – UART1 Error						
SPI3E – SPI3 Fault	26	24	IFS0<26>	IEC0<26>	IPC6<4:2>	IPC6<1:0>
I2C3B – I2C3 Bus Collision Event						
U1RX – UART1 Receiver						
SPI3RX – SPI3 Receive Done	27	24	IFS0<27>	IEC0<27>	IPC6<4:2>	IPC6<1:0>
I2C3S - I2C3 Slave Event						
U1TX – UART1 Transmitter						
SPI3TX – SPI3 Transfer Done	28	24	IFS0<28>	IEC0<28>	IPC6<4:2>	IPC6<1:0>
I2C3M – I2C3 Master Event	1					
I2C1B – I2C1 Bus Collision Event	29	25	IFS0<29>	IEC0<29>	IPC6<12:10>	IPC6<9:8>
I2C1S – I2C1 Slave Event	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>
I2C1M – I2C1 Master Event	31	25	IFS0<31>	IEC0<31>	IPC6<12:10>	IPC6<9:8>
CN – Input Change Interrupt	32	26	IFS1<0>	IEC1<0>	IPC6<20:18>	IPC6<17:16>

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24				CHEW3<	:31:24>							
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16	CHEW3<23:16>											
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8				CHEW3	<15:8>							
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7:0	CHEW3<7:0>											

REGISTER 9-8: CHEW3: CACHE WORD 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW3<31:0>:** Word 3 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Note: This register is a window into the cache data array and is only readable if the device is not code-protected.

REGISTER 9-9: CHELRU: CACHE LRU REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0			
31.24	—	—	_	—	—	_	—	CHELRU<24>			
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16		CHELRU<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8				CHELR	U<15:8>						
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7.0	CHELRU<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Write '0'; ignore read

bit 24-0 **CHELRU<24:0>:** Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess		a								Bi	ts								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH4SSIZ	31:16	—		—	—	_	_	-	—	_	_	_	_	—	—	—	_	000
0000	DONIOOIZ	15:0								CHSSI	Z15:0>								000
300	DCH4DSIZ	31:16	—	_	—	_	_	—	—	—	_	—	—	—	—	_	_	—	00
	DOITIDOIL	15:0								CHDSIZ	2<15:0>								00
3D0	DCH4SPTR	31:16	—	_	—	_	_	—	_	—	_	—	—	—	—	—	—	—	00
000		15:0								CHSPTI	R<15:0>								00
3E0	DCH4DPTR	31:16	—	—		—	_	—	—	—	_	—	—	—	—			—	00
020		15:0								CHDPTI									00
3F0	DCH4CSIZ	31:16	—	_	—	—	—	—	_	—	—	—	—	—			—	—	00
01 0		15:0								CHCSIZ	2<15:0>								00
400	DCH4CPTR	31:16	_	—	—	—	—	-	—	—	—	—	-	—	—	_	_	—	00
-00	5011101 111	15:0								CHCPT	R<15:0>					1	1		00
8410	DCH4DAT	31:16	—	—	—	_	-	—	_	—	-	—	—	—	—	_	—	—	00
-10	501115/11	15:0	—		—	—	—	—	_	—				CHPDA	AT<7:0>				00
120	DCH5CON	31:16	—	_	—	_	_	_	_	—	_	_	_	_	—	_	_	—	00
420	Donocon	15:0	CHBUSY		—	—	—	—	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	00
120	DCH5ECON	31:16	—	_	_	—	_	—	_	—				CHAIR	Q<7:0>				00
430	DONOLOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FF
3440	DCH5INT	31:16	—	_		—	_	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	00
440	Donointi	15:0	—	_	_	—	_	—	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	00
450	DCH5SSA	31:16 15:0								CHSSA	<31:0>								00
3460	DCH5DSA	31:16								CHDSA	<31:0>								00
100		15:0			1	1										1	1		00
470	DCH5SSIZ	31:16	—	—		—	_	—	—	—	_	—	—	—	—			—	00
		15:0								CHSSIZ	<15:0>						1		00
8480	DCH5DSIZ	31:16	—	—	_	_	—	—	—	—	—	—	—	—	—	-		—	00
400	501105012	15:0								CHDSIZ	.<15:0>							-	00
100	DCH5SPTR	31:16	—		—	—	—	—	—	—	—	—	—	—	—	—	—	—	00
, 100	- 51.00. 110	15:0								CHSPTI	R<15:0>								00
110	DCH5DPTR	31:16	—	_	_	—	_	—	_	—	_	—	_	_	—	_		—	00
4 AU		15:0								CHDPTI	R<15:0>								00
400	DCH5CSIZ	31:16	_	_	_	_	_	—	_	_	_	_	—	1	-	_	_	—	00
4BU	DCH3C3IZ	15:0	0 CHCSIZ<15:0> 000																
400	DCH5CPTR	31:16	_	_	_	_	_	_	_	_	_	_	-		—	_	_	—	00
	IDCHOCKIK	15:0								CHCPTI									00

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. 2:

REGISTER 11-11: U1CON: USB CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	—	—	_	-	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6			—	—			—	—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	JSTATE	SE0	PKTDIS ⁽⁴⁾	USBRST	HOSTEN ⁽²⁾	RESUME ⁽³⁾	PPBRST	USBEN ⁽⁴⁾
	JUNE	320	TOKBUSY ^(1,5)	030631	TIOSTEIN'	KESUME"	FFDKOI	SOFEN ⁽⁵⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
 - 0 = JSTATE was not detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single-ended zero was detected on the USB
 0 = Single-ended zero was not detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled

TOKBUSY: Token Busy Indicator bit^(1,5)

- 1 = Token being executed by the USB module
- 0 = No token being executed
- bit 4 USBRST: Module Reset bit⁽⁵⁾
 - 1 = USB reset is generated
 - 0 = USB reset is terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability is enabled
- 0 = USB host capability is disabled
- bit 2 **RESUME:** RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

19.1 Control Registers

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP

ss										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	I2C3CON	31:16	_	_	—	_			_	_			—	_	—				0000
		15:0	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010	I2C3STAT	31:16 15:0	— ACKSTAT	— TRSTAT			_	BCL	— GCSTAT	— ADD10		– I2COV	— D/A	— P		— R/W	— RBF	— TBF	0000
	1000100	31:16	—	-	_	_	_	-		-	—	-		-	_	-	—	—	0000
5020	I2C3ADD	15:0	_	_	_	_	_	_					ADD	<9:0>					0000
5000	IOCOMOK	31:16	_	_	—	—	—	_	—	_	—	_	—	—	—	_	_	_	0000
5030	I2C3MSK	15:0	_	_	—	_	—						MSK	<9:0>					0000
5040	I2C3BRG	31:16	_	_	—	_	_	-	_	_	-	_	_	_	_	_	_	_	0000
5040	IZCODKG	15:0	_	_	—	—					Ba	ud Rate Ger	nerator Regi	ster					0000
5050	I2C3TRN	31:16	—	—			—			_		—	-	_	-	—	—	-	0000
5050	120311(1)	15:0	—	—			—			_			-	Transmit	Register				0000
5060	I2C3RCV	31:16	—	—	—	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
0000	12001101	15:0	_	_	—	_	—	_	_	—				Receive	Register	-	-		0000
5100	I2C4CON	31:16	_	_	—	_	_	_	_	_	_	—	_	_	_	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C4STAT	31:16	—	—	—		_	—	—	_	—	—		—		—	—	—	0000
L		15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5120	I2C4ADD	31:16	_	_	—	_	_	_	—		—	—	—	—	—	_	_	—	0000
		15:0	_	_	_	_	_						ADD	<9:0>					0000
5130	I2C4MSK	31:16	_	_						_	_	_					_	_	0000
┢────┼		15:0		_			_						MSK	<9:0>					0000
5140	I2C4BRG	31:16		_	_			—	—		-	—	—	—	—	_	_	—	0000
		15:0 31:16	_	_	_							ud Rate Ger	erator Regi	ster					0000
5150	I2C4TRN	15:0									_	_	_	 Transmit	— Register	—	—	—	0000
ł		31:16														_	_	_	0000
5160	I2C4RCV	15:0	_	_						_	_			Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5200	I2C5CON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5040	10050747	31:16	_	_	—	—	_	_	—		_	_	—	—	—	_	_	_	0000
5210	I2C5STAT	15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5000	1005405	31:16	_	_	—	—	_	—	—	_	—	_	—	—	—	_	_	_	0000
5220	I2C5ADD	15:0	_	_	_	_	_	_					ADD	<9:0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This register is not available on 64-pin devices.

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	-	—	—	—	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 19-2: I2CxSTAT: I²C STATUS REGISTER

Legend: HS = Set by hardware		HSC = Hardware set/cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit	

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ACKSTAT:** Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) This bit is set or cleared by hardware at the end of a slave Acknowledge.
 - 1 = NACK received from slave
 - 0 = ACK received from slave
- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) This bit is set by hardware at the beginning of a master transmission, and is cleared by hardware at the end of a slave Acknowledge.
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress
- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

This bit is set by hardware at the detection of a bus collision.

- 1 = A bus collision has been detected during a master operation
- 0 = No collision
- bit 9 GCSTAT: General Call Status bit

This bit is set by hardware when the address matches the general call address, and is cleared by hardware clear at a Stop detection.

- 1 = General call address was received
- 0 = General call address was not received

bit 8 ADD10: 10-bit Address Status bit

This bit is set by hardware upon a match of the 2nd byte of the matched 10-bit address, and is cleared by hardware at a Stop detection.

- 1 = 10-bit address was matched
- 0 = 10-bit address was not matched

bit 7 IWCOL: Write Collision Detect bit

- This bit is set by hardware at the occurrence of a write to I2CxTRN while busy (cleared by software).
- 1 = An attempt to write the I2CxTRN register failed because the I^2C module is busy
- 0 = No collision

bit 6 I2COV: Receive Overflow Flag bit

- This bit is set by hardware at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
- 1 = A byte was received while the I2CxRCV register is still holding the previous byte
- 0 = No overflow

REGISTER 22-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
- 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC clock output is enabled (clock presented onto an I/O)
 - 0 = RTCC clock output is disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **3:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can only be set when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is only reset on a Power-on Reset (POR).

REGISTER 24-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED)

bit 15	FLTEN29: Filter 29 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL29<1:0>: Filter 29 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL29<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN28: Filter 28 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 6-5	MSEL28<1:0>: Filter 28 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL28<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	PTV<15:8>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	PTV<7:0>										
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
15:8	ON	—	SIDL	_	_	_	TXRTS	RXEN ⁽¹⁾			
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0			
7:0	AUTOFC		_	MANFC	_			BUFCDEC			

REGISTER 25-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 PTV<15:0>: PAUSE Timer Value bits PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set. These bits are only used for Flow Control operations. bit 15 **ON:** Ethernet ON bit 1 = Ethernet module is enabled 0 = Ethernet module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Ethernet Stop in Idle Mode bit 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode bit 12-10 Unimplemented: Read as '0' bit 9 TXRTS: Transmit Request to Send bit 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)

After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.

This bit only affects TX operations.

bit 8 **RXEN:** Receive Enable bit⁽¹⁾

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- 0 = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	HT<31:24										
22.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	HT<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	HT<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	HT<7:0>										

REGISTER 25-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 25-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		HT<63:56>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	HT<55:48>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	HT<47:40>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				HT<3	9:32>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

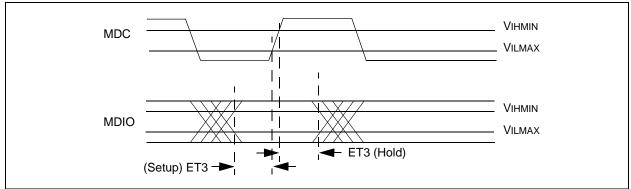
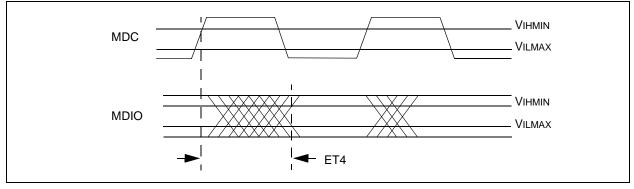

NOTES:

TABLE 32-35: ETHERNET MODULE SPECIFICATIONS


АС СНА	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions (see Note 1): 2.9V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$							
Param. No.	Characteristic	Min.	Typical	Max.	Units	Conditions			
MIIM Tin	ning Requirements								
ET1	MDC Duty Cycle	40		60	%	—			
ET2	MDC Period	400	—	_	ns	—			
ET3	MDIO Output Setup and Hold	10	—	10	ns	See Figure 32-19			
ET4	MDIO Input Setup and Hold	0	—	300	ns	See Figure 32-20			
MII Timi	ng Requirements								
ET5	TX Clock Frequency	—	25	_	MHz	—			
ET6	TX Clock Duty Cycle	35	—	65	%	—			
ET7	ETXDx, ETEN, ETXERR Output Delay	0	—	25	ns	See Figure 32-21			
ET8	RX Clock Frequency	—	25	_	MHz	—			
ET9	RX Clock Duty Cycle	35	—	65	%	—			
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	—	30	ns	See Figure 32-22			
RMII Tin	ning Requirements								
ET11	Reference Clock Frequency		50	—	MHz	—			
ET12	Reference Clock Duty Cycle	35		65	%	—			
ET13	ETXDx, ETEN, Setup and Hold	2	—	4	ns	—			
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	—	4	ns	—			

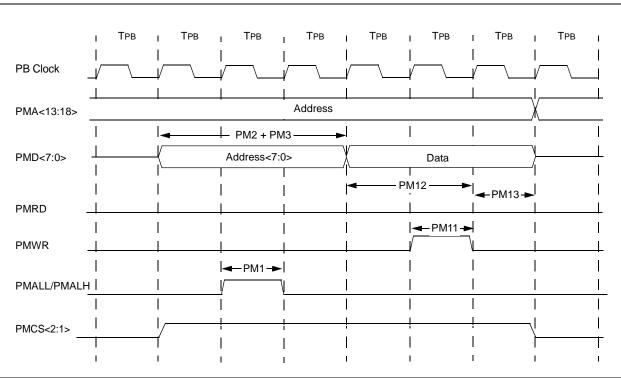
Note 1: The Ethernet module is functional at VBORMIN < VDD < 2.9V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 32-19: MDIO SOURCED BY THE PIC32 DEVICE

FIGURE 32-20: MDIO SOURCED BY THE PHY

TABLE 32-36: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHA		STICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-				
AD20d	Nr	Resolution		10 data bits			(Note 3)	
AD21d	INL	Integral Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD22d	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)	
AD23d	Gerr	Gain Error	> -4	-	< 4	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD24d	EOFF	Offset Error	> -2	-	< 2	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD25d	—	Monotonicity	—	—	_	—	Guaranteed	
Dynami	c Performa	ance						
AD31b	SINAD	Signal to Noise and Distortion	55	58.5		dB	(Notes 3,4)	
AD34b	ENOB	Effective Number of Bits	9.0	9.5		bits	(Notes 3,4)	


Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	—	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв		—	—

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE B-7: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
32.0 "Electrical Characteristics"	Note 4 in the Operating Current specification was updated (see Table 32-5).
	Note 3 in the Idle Current specification was updated (see Table 32-6).
	Note 6 references in the Power-Down Current specification were updated (see Table 32-7).
	The Program Memory parameters, D135, D136, and D137, and Note 4 were updated (see Table 32-11).
	The Voltage Reference Specifications were updated (see Table 32-14).
	Parameter DO50 (Cosco) was added to the Capacitive Loading Requirements on Output Pins (see Table 32-16).
	The EJTAG Timing Characteristics were updated (see Figure 32-28).
	The maximum value for parameters ET13 and ET14 were updated in the Ethernet Module Specifications (see Table 32-35).
	Parameter PM7 (TDHOLD) was updated (see Table 32-40).
34.0 "Packaging Information"	Packaging diagrams were updated.
Product Identification System	The Speed and Program Memory Size were updated and Note 1 was added.