

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx695f512ht-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R	R	R	R	R	R	R	R
31:24			BMXDRMSZ<31:24>					
00.40	R	R	R	R	R	R	R	R
23:16				BMXDRM	XDRMSZ<23:16>			
45.0	R	R	R	R	R	R	R	R
15:8				BMXDR	MSZ<15:8>		R F	
7.0	R	R	R	R	R	R	R	R
7:0				BMXDR	MSZ<7:0>			

REGISTER 4-5: BMXDRMSZ: DATA RAM SIZE REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BMXDRMSZ<31:0>:** Data RAM Memory (DRM) Size bits Static value that indicates the size of the Data RAM in bytes: 0x00004000 = device has 16 KB RAM 0x00008000 = device has 32 KB RAM 0x00010000 = device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER^(1,2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	-	_	_	—	_	—		_				
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	_	—	_	—	BMXPUPBA<19:16>							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0				
15:8		BMXPUPBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				BMXPU	PBA<7:0>							

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 **BMXPUPBA<10:0>:** Program Flash (PFM) User Program Base Address Read-Only bits Value is always '0', which forces 2 KB increments

- **Note 1:** At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.
 - **2:** The value in this register must be less than or equal to BMXPFMSZ.

TABLE 7-1: INTERRUPT IRQ	VECTOR	AND BIT	IT LOCATION (CONTINUED)						
Interrupt Source ⁽¹⁾	IRQ	Vector		Interru	pt Bit Location				
interrupt Source ?	Number	Number	Flag	Enable	Priority	Sub-Priority			
AD1 – ADC1 Convert Done	33	27	IFS1<1>	IEC1<1>	IPC6<28:26>	IPC6<25:24>			
PMP – Parallel Master Port	34	28	IFS1<2>	IEC1<2>	IPC7<4:2>	IPC7<1:0>			
CMP1 – Comparator Interrupt	35	29	IFS1<3>	IEC1<3>	IPC7<12:10>	IPC7<9:8>			
CMP2 – Comparator Interrupt	36	30	IFS1<4>	IEC1<4>	IPC7<20:18>	IPC7<17:16>			
U2E – UART2 Error SPI2E – SPI2 Fault I2C4B – I2C4 Bus Collision Event	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>			
U2RX – UART2 Receiver SPI2RX – SPI2 Receive Done I2C4S – I2C4 Slave Event	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>			
U2TX – UART2 Transmitter SPI2TX – SPI2 Transfer Done IC4M – I2C4 Master Event	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>			
U3E – UART3 Error SPI4E – SPI4 Fault I2C5B – I2C5 Bus Collision Event	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>			
U3RX – UART3 Receiver SPI4RX – SPI4 Receive Done I2C5S – I2C5 Slave Event	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>			
U3TX – UART3 Transmitter SPI4TX – SPI4 Transfer Done IC5M – I2C5 Master Event	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>			
I2C2B – I2C2 Bus Collision Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>			
I2C2S – I2C2 Slave Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>			
I2C2M – I2C2 Master Event	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>			
FSCM – Fail-Safe Clock Monitor	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>			
RTCC – Real-Time Clock and Calendar	47	35	IFS1<15>	IEC1<15>	IPC8<28:26>	IPC8<25:24>			
DMA0 – DMA Channel 0	48	36	IFS1<16>	IEC1<16>	IPC9<4:2>	IPC9<1:0>			
DMA1 – DMA Channel 1	49	37	IFS1<17>	IEC1<17>	IPC9<12:10>	IPC9<9:8>			
DMA2 – DMA Channel 2	50	38	IFS1<18>	IEC1<18>	IPC9<20:18>	IPC9<17:16>			
DMA3 – DMA Channel 3	51	39	IFS1<19>	IEC1<19>	IPC9<28:26>	IPC9<25:24>			
DMA4 – DMA Channel 4	52	40	IFS1<20>	IEC1<20>	IPC10<4:2>	IPC10<1:0>			
DMA5 – DMA Channel 5	53	41	IFS1<21>	IEC1<21>	IPC10<12:10>	IPC10<9:8>			
DMA6 – DMA Channel 6	54	42	IFS1<22>	IEC1<22>	IPC10<20:18>	IPC10<17:16>			
DMA7 – DMA Channel 7	55	43	IFS1<23>	IEC1<23>	IPC10<28:26>	IPC10<25:24>			
FCE – Flash Control Event	56	44	IFS1<24>	IEC1<24>	IPC11<4:2>	IPC11<1:0>			
USB – USB Interrupt	57	45	IFS1<25>	IEC1<25>	IPC11<12:10>	IPC11<9:8>			
CAN1 – Control Area Network 1	58	46	IFS1<26>	IEC1<26>	IPC11<20:18>	IPC11<17:16>			
CAN2 – Control Area Network 2	59	47	IFS1<27>	IEC1<27>	IPC11<28:26>	IPC11<25:24>			
ETH – Ethernet Interrupt	60	48	IFS1<28>	IEC1<28>	IPC12<4:2>	IPC12<1:0>			
IC1E – Input Capture 1 Error	61	5	IFS1<29>	IEC1<29>	IPC1<12:10>	IPC1<9:8>			
IC2E – Input Capture 2 Error	62	9	IFS1<30>	IEC1<30>	IPC2<12:10>	IPC2<9:8>			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_		_			—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	-	_	_		_	—	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	-	_	_		_	—	_
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7.0	UACTPND	_		USLPGRD	USBBUSY		USUSPEND	USBPWR

REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

Logona.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
 - 0 = An interrupt is not pending

bit 6-5 Unimplemented: Read as '0'

- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry

bit 3 USBBUSY: USB Module Busy bit

- 1 = USB module is active or disabled, but not ready to be enabled
- 0 = USB module is not active and is ready to be enabled
 - **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

bit 2 Unimplemented: Read as '0'

bit 1 USUSPEND: USB Suspend Mode bit

- 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
- 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit Bit Bit 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2		Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24			—		—	—	—	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10			—		—	—	—	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	_	_	—	_	_		—	_		
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS		
7:0	BTSEF	BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF		
	DIGLI	DIVIALI		DIOLIN		ONCIULI	EOFEF ^(3,5)	FIDEF		

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	pit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-8 Unimplemented: Read as '0'
 bit 7 BTSEF: Bit Stuff Error Flag bit 1 = Packet is rejected due to bit stuff error 0 = Packet is accepted
 bit 6 BMXEF: Bus Matrix Error Flag bit 1 = Invalid base address of the BDT, or the address of an individual buffer pointed to by a BDT entry 0 = No address error
 bit 5 DMAEF: DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾ 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out
- bit 3 DFN8EF: Data Field Size Error Flag bit
 1 = Data field received is not an integral number of bytes
 0 = Data field received is an integral number of bytes
- bit 2 CRC16EF: CRC16 Failure Flag bit
 - 1 = Data packet is rejected due to CRC16 error
 0 = Data packet is accepted
- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾ 1 = Token packet is rejected due to CRC5 error 0 = Token packet is accepted EOFEF: EOF Error Flag bit^(3,5) 1 = EOF error condition is detected
 - 0 = No EOF error condition
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check is failed
 - 0 = PID check is passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

bit 0

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

19.1 Control Registers

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP

ss										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	I2C3CON	31:16	_	_	—	_			_	_			_	_	_				0000
		15:0	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010	I2C3STAT	31:16 15:0	— ACKSTAT	— TRSTAT			_	BCL	— GCSTAT	— ADD10		– I2COV	— D/A	— P		— R/W	— RBF	— TBF	0000
	1000100	31:16	—	-	_	_	_	-		-	—	-		-	_	-	—	—	0000
5020	I2C3ADD	15:0	_	_	_	_	_	_					ADD	<9:0>					0000
5000	IOCOMOK	31:16	_	_	—	—	—	_	—	_	—	_	—	—	—	_	—	_	0000
5030	I2C3MSK	15:0	_	_	—	_	—						MSK	<9:0>					0000
5040	I2C3BRG	31:16	_	_	—	_	_	_	_	_	-	_	_	_	_	_	_	_	0000
5040	IZCODKG	15:0	_	_	—	—					Ba	ud Rate Ger	nerator Regi	ster					0000
5050	I2C3TRN	31:16	—	—			—			_		-	-	_	-	—	—	—	0000
5050	120311(1)	15:0	—	—			—			_			-	Transmit	Register				0000
5060	I2C3RCV	31:16	—	—	—	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
0000	12001101	15:0	_	_	—	_	Receive Register					-		0000					
5100	I2C4CON	31:16	_	_	—	_	_	_	_	—	_	—	_	_	_	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C4STAT	31:16	—	—	—		_	—	—	_	—	—		—		—	—	—	0000
L		15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5120	I2C4ADD	31:16	_	_	—	_	_	_	—		—	—	—	—	—	_	_	—	0000
		15:0	_	_	_	_	_						ADD	<9:0>					0000
5130	I2C4MSK	31:16	_	_						_	_	_					_	_	0000
┢────┼		15:0		_			_						MSK	<9:0>					0000
5140	I2C4BRG	31:16		_	_			—	—		-	—	—	—	—	_	_	—	0000
		15:0 31:16	_	_	_							ud Rate Ger	erator Regi	ster					0000
5150	I2C4TRN	15:0									_	_	_	 Transmit	— Register	—	—	—	0000
ł		31:16														_	_	_	0000
5160	I2C4RCV	15:0	_	_						_	_			Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5200	I2C5CON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5040	10050747	31:16	_	_	—	—	_	_	—		_	_	—	—	—	_	_	_	0000
5210	I2C5STAT	15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5000	1005405	31:16	_	_	—	—	_	—	—	_	—	_	—	—	—	_	_	_	0000
5220	I2C5ADD	15:0	_	_	_	_	_	_					ADD	<9:0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This register is not available on 64-pin devices.

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾ bit 5-2 1111 = Wait of 16 TPB 0001 = Wait of 2 ТРВ 0000 = Wait of 1 TPB (default) WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾ bit 1-0 11 = Wait of 4 Трв 10 = Wait of 3 TPB 01 = Wait of 2 TPB 00 = Wait of 1 TPB (default) For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB 00 = Wait of 0 TPB (default)
 - **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN15	MSEL1	5<1:0>		FSEL15<4:0>					
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN14	MSEL1	4<1:0>	FSEL14<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN13	MSEL1	3<1:0>		FSEL13<4:0>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN12	MSEL1	2<1:0>	FSEL12<4:0>						

REGISTER 24-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL14<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
Note:	The hits in this register can only be modified if the correspondir

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN23	MSEL2	3<1:0>		FSEL23<4:0>			
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN22	MSEL22<1:0>		FSEL22<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN21	MSEL21<1:0>		FSEL21<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN20	MSEL2	20<1:0>	FSEL20<4:0>				

REGISTER 24-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	FLTEN23: Filter 23 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL23<1:0>: Filter 23 Mask Select bits
511 00 25	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
bit 28-24	00 = Acceptance Mask 0 selected FSEL23<4:0>: FIFO Selection bits
DIL 20-24	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	:
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN22: Filter 22 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL22<1:0>: Filter 22 Mask Select bits
	11 = Acceptance Mask 3 selected10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL22<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	• 00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Nata	The bits in this register can only be medified if the server and

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	—	—		—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	—	—	_	—	_	—
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	_	—	—	—	_	RXBUFSZ<6:4>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		RXBUFSZ<3:0>				_		_

REGISTER 25-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Legend:

Logona.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-11 Unimplemented: Read as '0'

bit 10-4 RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits
1111111 = RX data Buffer size for descriptors is 2032 bytes
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.</li

Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				PMM<	31:24>			
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	PMM<23:16>							
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	PMM<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				PMM	<7:0>			

REGISTER 25-7: ETHPMM0: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER

Legend:

9					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-24	PMM<31:24>: Pattern Match Mask 3 bits
hit 23-16	PMM-23-16- Pattern Match Mask 2 hits

- bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits
- bit 15-8 **PMM<15:8>:** Pattern Match Mask 1 bits
- bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits
- Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	PMM<63:56>								
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	PMM<55:48>								
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	PMM<47:40>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				PMM<	39:32>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

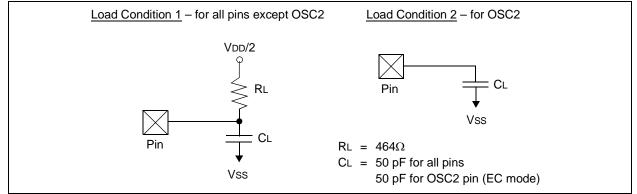
bit 31-24	PMM<63:56>: Pattern Match Mask 7 bits
bit 23-16	PMM<55:48>: Pattern Match Mask 6 bits
bit 15-8	PMM<47:40>: Pattern Match Mask 5 bits
bit 7-0	PMM<39:32>: Pattern Match Mask 4 bits

Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER (CONTINUED)

- VLANPAD: VLAN Pad Enable bit^(1,2) bit 6 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames PADENABLE: Pad/CRC Enable bit^(1,3) bit 5 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit LENGTHCK: Frame Length checking bit bit 1 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit 1 = The MAC operates in Full-Duplex mode 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 25-6 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - **3:** This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware


TABLE 25-6:PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	x	x	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	x	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC

32.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters.

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

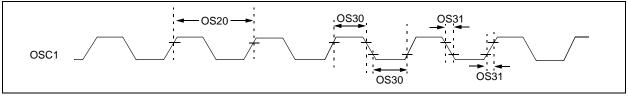
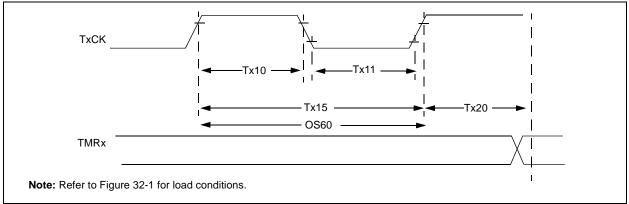


TABLE 32-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS


AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min. Typical ⁽¹⁾ Max. Units Conditions				Conditions
DO50	Cosco	OSC2 pin		_	15	pF	In XT and HS modes when an external crystal is used to drive OSC1
DO56	Сю	All I/O pins and OSC2		—	50	pF	In EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C mode

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-2: EXTERNAL CLOCK TIMING

FIGURE 32-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 32-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

					Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp					
Param. No.	Symbol	Characteristics ⁽²⁾			Min.	Typical	Max.	Units	Conditions	
TA10	T⊤xH	TxCK High Time	Synchrono with presca		[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15	
			Asynchron with presca		10		—	ns	—	
TA11	T⊤xL	TxCK Low Time	,		[(12.5 ns or 1 Трв)/N] + 25 ns	_	_	ns	Must also meet parameter TA15	
	Asynchronou with prescale			10	_	—	ns	_		
TA15	A15 TTXP TxCK Synchrono Input Period with presca			[(Greater of 25 ns or 2 TPB)/N] + 30 ns		_	ns	VDD > 2.7V		
					[(Greater of 25 ns or 2 TPB)/N] + 50 ns	—	_	ns	Vdd < 2.7V	
			Asynchron with presca		20	—	_	ns	VDD > 2.7V (Note 3)	
					50	—	_	ns	VDD < 2.7V (Note 3)	
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>))			32	—	100	kHz	_	
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		ĸ	—	—	1	Трв	—	

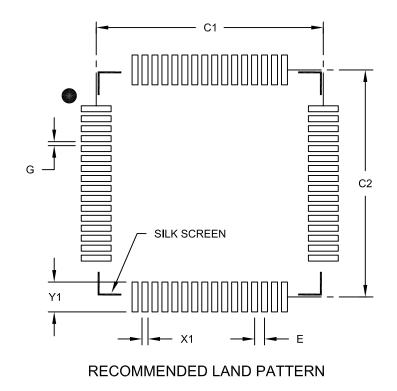
Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

TABLE 32-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	bol Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_
			400 kHz mode	Трв * (BRG + 2)	_	μS	_
			1 MHz mode ⁽²⁾	Tpb * (BRG + 2)	—	μS	_
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_
			400 kHz mode	Tpb * (BRG + 2)	—	μS	_
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	μS	_
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	100	_	ns	
IM26 Thd:dat	THD:DAT	Data Input	100 kHz mode	0	—	μS	_
	Hold Time	400 kHz mode	0	0.9	μS		
		1 MHz mode ⁽²⁾	0	0.3	μS		
IM30 Tsu:sta	Start Condition Setup Time	100 kHz mode	Трв * (BRG + 2)	—	ns	Only relevant for	
		400 kHz mode	Трв * (BRG + 2)	_	ns	Repeated Start	
		1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Трв * (BRG + 2)	—	ns	After this period, the
			400 kHz mode	Трв * (BRG + 2)	_	ns	first clock pulse is
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)	_	ns	_
		Setup Time	400 kHz mode	Трв * (BRG + 2)	_	ns	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)	_	ns	_
		Hold Time	400 kHz mode	Трв * (BRG + 2)	_	ns	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	
IM40	TAA:SCL	Output Valid from	100 kHz mode	_	3500	ns	_
		Clock	400 kHz mode	_	1000	ns	_
			1 MHz mode ⁽²⁾	_	350	ns	_
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	The amount of time the
			400 kHz mode	1.3	<u> </u>	μS	bus must be free before
			1 MHz mode ⁽²⁾	0.5	<u> </u>	μS	a new
IMEO	CD	Rue Consolitive La	ading		400		transmission can start
IM50	Св	Bus Capacitive Lo	-	-	400	pF	—
IM51	Tpgd	Pulse Gobbler Del	-	52	312	ns	_


Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

3: The typical value for this parameter is 104 ns.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETER	S	
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

Section Name Update Description 4.0 "Memory Organization" Updated all register tables to include the Virtual Address and All Resets columns. Updated the title of Figure 4-4 to include the PIC32MX575F256L device. Updated the title of Figure 4-6 to include the PIC32MX695F512L and PIC32MX695F512H devices. Also changed PIC32MX795F512L to PIC32MX795F512H. Updated the title of Table 4-3 to include the PIC32MX695F512H device. Updated the title of Table 4-5 to include the PIC32MX575F5256L device. Updated the title of Table 4-6 to include the PIC32MX695F512L device. Reversed the order of Table 4-11 and Table 4-12. Reversed the order of Table 4-14 and Table 4-15. Updated the title of Table 4-15 to include the PIC32MX575F256L and PIC32MX695F512L devices. Updated the title of Table 4-45 to include the PIC32MX575F256L device. Updated the title of Table 4-47 to include the PIC32MX695F512H and PIC32MX695F512L devices. 1.0 "I/O Ports" Updated the second paragraph of **1.1.2** "Digital Inputs" and removed Table 12-1. 22.0 "10-bit Analog-to-Digital Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2). Converter (ADC)" 1.0 "Special Features" Removed references to the ENVREG pin in 1.3 "On-Chip Voltage Regulator". Updated the first sentence of 1.3.1 "On-Chip Regulator and POR" and 1.3.2 "On-Chip Regulator and BOR". Updated the Connections for the On-Chip Regulator (see Figure 1-2). 1.0 "Electrical Characteristics" Updated the Absolute Maximum Ratings and added Note 3. Added Thermal Packaging Characteristics for the 121-pin XBGA package (see Table 1-3). Updated the Operating Current (IDD) DC Characteristics (see Table 1-5). Updated the Idle Current (IIDLE) DC Characteristics (see Table 1-6). Updated the Power-Down Current (IPD) DC Characteristics (see Table 1-7). Removed Note 1 from the Program Flash Memory Wait State Characteristics (see Table 1-12). Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics, changing SP52 to SP35 between the MSb and Bit 14 on SDOx (see Figure 1-13). 1.0 "Packaging Information" Added the 121-pin XBGA package marking information and package details. "Product Identification System" Added the definition for BG (121-lead 10x10x1.1 mm, XBGA). Added the definition for Speed.

TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)

Revision C (February 2010)

The revision includes the following updates, as described in Table B-2:

TABLE B-2: MAJOR SECTION UPDATES

Section Name		U	pdate Description	
"High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers"	 Added the following devices: PIC32MX675F256H PIC32MX775F256H PIC32MX775F512H PIC32MX675F256L PIC32MX775F512L Added the following pins: 			
	 EREFCLK ECRSDV AEREFCLK AECRSDV 			
1.0 "Device Overview"			SDV pins to Table 5	
1.0 Device Overview	Table 1-1:	n number pinout	i/O descriptions for t	he following pin names in
	• SCL3	• SCL5	RTCC	• C10UT
	SDA3SCL2	SDA5TMS	CVREF-CVREF+	C2IN-C2IN+
	• SDA2	• TMS • TCK	CVREF+ CVREFOUT	• C20UT
	• SCL4	• TDI	• C1IN-	• PMA0
	• SDA4	• TDO	• C1IN+	• PMA1
			Pinout I/O Descriptio	ons table (Table 1-1):
	 EREFCLK ECRSDV AEREFCLK AECRSDV 		·	
4.0 "Memory Organization"	Added new de Figure 4-4.	vices and updated	d the virtual and phy	vsical memory map values in
	Added new de	vices to Figure 4-	5.	
	Added new de	vices to the follow	ving register maps:	
	 Table 4-3, Table 4-4, Table 4-6 and Table 4-7 (Interrupt Register Maps) Table 4-12 (I2C2 Register Map) Table 4-15 (SPI1 Register Map) Table 4-24 through Table 4-35 (PORTA-PORTG Register Maps) Table 4-36 and Table 4-37 (Change Notice and Pull-up Register Maps) Table 4-45 (CAN1 Register Map) Table 4-46 (CAN2 Register Map) Table 4-47 (Ethernet Controller Register Map) 			
	Configuration	Nord Summary).		n Table 4-42 (Device
1.0 "Special Features"	Changed all references of POSCMD to POSCMOD in the Device Configuration Word 1 register (see Register 1-2).			
Appendix A: "Migrating from PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX Devices"	Added the new	v section Appendi	X .	

Revision E (July 2010)

Minor corrections were incorporated throughout the document.

Revision F (December 2010)

The revision includes the following global update:

VCAP/VDDCORE has been changed to: VCAP/VCORE

Other major changes are referenced by their respective chapter/section in Table B-4:

TABLE B-4: SECTION UPDATES

Section Name	Update Description
High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers	Removed the following Analog Feature: FV tolerant input pins (digital pins only)
	Updated the term LIN 1.2 support as LIN support for the peripheral feature: Six UART modules with: RS-232, RS-485, and LIN support
1.0 "Device Overview"	Updated the value of 64-pin QFN/TQFP pin number for the following pin names: PMA0, PMA1 and ECRSDV
4.0 "Memory Organization"	The following register map tables were updated:
	• Table 4-2:
	- Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT
	 Changed bits 25/9/-24/8 to U5IS<1:0> in IPC12
	- Added note 2
	Table 4-3 through Table 4-7:
	 Changed bits 24/8-24/10 to SRIPL<2:0> in INTSTAT
	 Changed bits 25/9-24/8 to U5IS<1:0> in IPC12
	• Table 4-3:
	 Changed bits 24/8 to I2C5BIF in IFS1
	- Added note 2
	• Table 4-4:
	 Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8 to I2C5BIE in IEC1
	 Added note 2 references
	• Table 4-5:
	 Changed bits 24/8 to I2C5BIF in IFS1
	 Changed bits 24/8 to I2C5BIE in IEC1
	 Added note 2 references
	• Table 4-6:
	 Changed bit 24/8 to I2C5BIF in IFS1
	 Updated the bit value of bit 24/8 as I2C5BIE for the IEC1 register.
	- Added note 2
	• Table 4-7:
	- Changed bit 25/9 to I2C5SIF in IFS1
	- Changed bit 24/8 as I2C5BIF in IFS1
	- Changed bit 25/9 as I2C5SIE in IEC1
	- Changed bit 24/8 as I2C5BIE in IEC1
	- Added note 2 references
	Added note 2 to Table 4-8
	Updated the All Resets values for the following registers in Table 4-11: I2C3CON, I2C4CON, I2C5CON and I2C1CON.
	Updated the All Resets values for the I2C2CON register in Table 4-12