

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

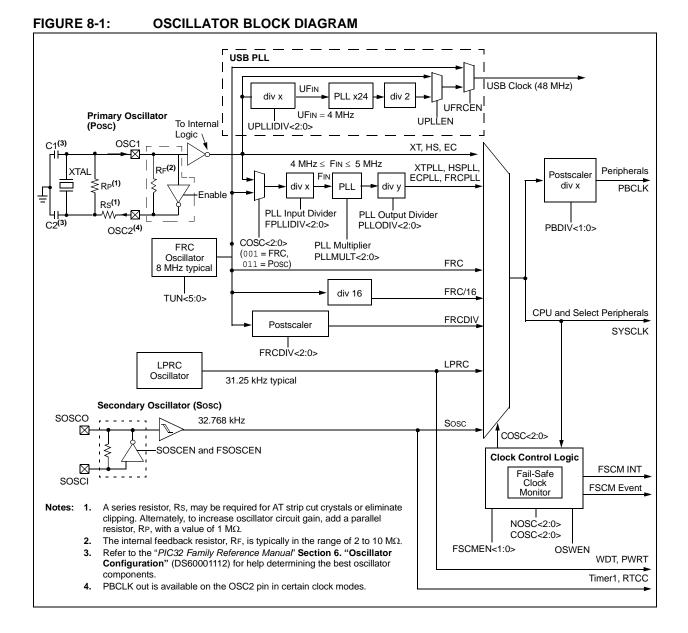
Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	128K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx695f512l-80i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


NOTES:

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The Oscillator module has the following features:

- A total of four external and internal oscillator options as clock sources
- On-chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

Figure 8-1shows the Oscillator module block diagram.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	—	_	_	_	—	_
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	—	SUSPEND	DMABUSY	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_	_	_	_	_	_	_

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- ON: DMA On bit⁽¹⁾ bit 15
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	-	-	_	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	—	_	-	—
15.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	-		—
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE	—	TCKPS	S<1:0>	_	TSYNC	TCS	—

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit⁽¹⁾
 - 1 = Timer is enabled 0 = Timer is disabled

bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

- 1 = Discontinue operation when device enters Idle mode
- 0 = Continue operation when device is in Idle mode

bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

- 1 = Writes to TMR1 are ignored until pending write operation completes
- 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

bit 11 TWIP: Asynchronous Timer Write in Progress bit

In Asynchronous Timer mode:

1 = Asynchronous write to TMR1 register in progress

0 = Asynchronous write to TMR1 register complete

In Synchronous Timer mode:

This bit is read as '0'.

- bit 10-8 **Unimplemented:** Read as '0'
- bit 7 TGATE: Timer Gated Time Accumulation Enable bit

<u>When TCS = 1:</u> This bit is ignored.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 =Gated time accumulation is disabled
- bit 6 Unimplemented: Read as '0'
- bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits
 - 11 = 1:256 prescale value
 - 10 = 1:64 prescale value
 - 01 = 1:8 prescale value
 - 00 = 1:1 prescale value
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

14.2 Control Registers

TABLE 14-1:	TIMER2 THROUGH TIMER5 REGISTER MAP

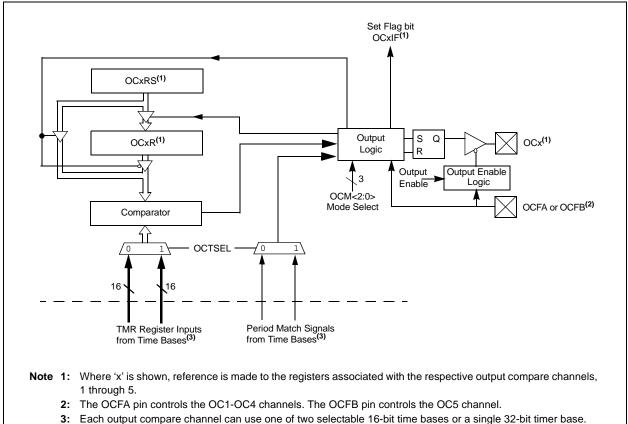
		••																	
ess										В	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0800	T2CON	31:16	—	_	—	—		—			—	—	—		—	-	—		0000
0800	12001	15:0	ON	_	SIDL	_	-	—	1		TGATE		TCKPS<2:0>		T32		TCS ⁽²⁾		0000
0810	TMR2	31:16	_	—	—	—	_	—	_	—	—	_	—	_	—	—	—	_	0000
0010	T IVIT VZ	15:0			-					TMR2	<15:0>				-				0000
0820	PR2	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	1112	15:0								PR2<	15:0>		•						FFFF
0A00	T3CON	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0,100	100011	15:0	ON	—	SIDL	_	_	—	_	_	TGATE		TCKPS<2:0>	`	—	—	TCS ⁽²⁾	_	0000
0A10	TMR3	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0			1					TMR3	<15:0>								0000
0A20	PR3	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	-	15:0								PR3<	15:0>		-						FFFF
0C00	T4CON	31:16	_	—	—	—	—	—	—	—	—	—	—	—		—		—	0000
		15:0	ON	_	SIDL	—	_	_		_	TGATE		TCKPS<2:0>	>	T32	_	TCS ⁽²⁾	_	0000
0C10	TMR4	31:16	—	—		—	—	—	_			—	—	—		_	—	_	0000
		15:0								TMR4									0000
0C20	PR4	31:16	-	—	—	—	_	_	_	-	-	_	—	_	—	_	—	—	0000
		15:0	_			_				PR4<				_		_	_	_	FFFF
0E00	T5CON	31:16 15:0	ON								— TGATE		 TCKPS<2:0>				— TCS ⁽²⁾		0000
<u> </u>		31:16	- UN		SIDL					_	IGATE	_		, 	_		-	_	0000
0E10	TMR5	15:0									0000								
		31:16	_	_		_	_	_	_	—		_	_	_	_	_	_	_	0000
0E20	PR5	15:0								 PR5<			_						FFFF
		13.0								11/04	10.02								LLLL

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on 64-pin devices.

17.0 OUTPUT COMPARE


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16. "Output Compare"** (DS60001111) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP (CONTINUED)

ess							•		-	Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5230	I2C5MSK	31:16	-	—	—	_		_	—	-	_	_		_	—	—	_		0000
5230	IZCONISK	15:0	-	—	—	-		_					MSK	<9:0>				-	0000
5240	I2C5BRG	31:16	_	_	_	—	_	—	—	—	_	—	_	—	—		-		0000
5240		15:0	—	—	Baud Rate Generator Register						•		0000						
5250	I2C5TRN	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—		—	—	0000
0200		15:0	—	_	_	—	_	—	_	_		-		Transmit	Register		•		0000
5260	I2C5RCV	31:16	-			_	_	-		_	_	—	_	—		_	—	_	0000
		15:0	-		—	—		—		_				Receive	Register				0000
5300	I2C1CON	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5310	I2C1STAT	31:16	—	_	_	_	_	_	—	—	_	—	—	_	_		—	—	0000
			ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5320	I2C1ADD	31:16	_								—	—	0000						
			ADD<9:0>					0000											
5330	I2C1MSK	31:16	_	_	_	_	_	-	_	-	_	_	—	-	_	-	—	—	0000
		15:0	_		_	_		_					MSK	<9:0>					0000
5340	I2C1BRG	31:16	_			—	_	—		_	-	-		_	—		-	_	0000
-		15:0	_			—					Ва	ud Rate Ger	Ū.	ster			1		0000
5350	I2C1TRN	31:16	_	—	—	_	_	_	_	_	_	_	—		—	—	—	—	0000
		15:0	_	_	_	_	_	_		_				Transmit	Register				0000
5360	I2C1RCV	31:16 15:0	_	_				—			—	—	—	- Deseive	Register	—	—	—	0000
								_						Receive					
5400	12C2CON(2)	31:16 15:0	ON		-	-		-	— DI001144	-	-	— STREN	— ACKDT			-		-	0000
				_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN					PEN	RSEN	SEN	1000
5410	12C2STAT ⁽²⁾	31:16			_	_	_	— DCI	— 	-	-	-	— D/A	— P	-	— •	-	— TDF	0000
		15:0 31:16	ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5420	12C2ADD(2)	15:0				_	_		_	-	—	—		 <9:0>	—		_	—	0000
		31:16	_			_		_	_		_		ADD	<9.0>			_	_	0000
5430	12C2MSK ⁽²⁾	15:0							_	_	_	_	 MSK	<0.0>	_		_	_	0000
		31:16									_			< 3.02				_	0000
5440	I2C2BRG ⁽²⁾	15:0	_			_	_	_	_		Ra	ud Rate Ger	erator Regi	ster	_				0000
		31:16	_	_	_	_	_	_	_	_	Da				_		_	_	0000
5450	I2C2TRN ⁽²⁾	15:0	_	_	_		_		_					Transmit	Register				0000
		31:16	_	_	_	_		_	_	_	_	_	_				_	_	0000
5460	12C2RCV ⁽²⁾	15:0	_	_	_	_	_	_	_	_				Receive	Register				0000
Legen								L ues are show	l 	aire al				110001100					0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

REGISTER 24-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED)

bit 15	FLTEN5: Filter 17 Enable bit
	0 = Filter is disabled
bit 14-13	MSEL5<1:0>: Filter 5 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL5<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN4: Filter 4 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 6-5	MSEL4<1:0>: Filter 4 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL4<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 25-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—				—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	_	—		_	—	—
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSEIE ⁽¹⁾	RXBUSEIE ⁽²⁾	_	_	—	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONEIE ⁽²⁾	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾		TXDONEIE ⁽¹⁾	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾
 - 1 = Enable TXBUS Error Interrupt
 - 0 = Disable TXBUS Error Interrupt
- bit 13 **RXBUSEIE:** Receive BVCI Bus Error Interrupt Enable bit⁽²⁾
 - 1 = Enable RXBUS Error Interrupt 0 = Disable RXBUS Error Interrupt
 - 0 = Disable RABOS Efformetry
- bit 12-10 Unimplemented: Read as '0'

bit 9	EWMARKIE: Empty Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable EWMARK Interrupt 0 = Disable EWMARK Interrupt
bit 8	FWMARKIE: Full Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable FWMARK Interrupt 0 = Disable FWMARK Interrupt
bit 7	RXDONEIE: Receiver Done Interrupt Enable bit ⁽²⁾ 1 = Enable RXDONE Interrupt 0 = Disable RXDONE Interrupt
bit 6	PKTPENDIE: Packet Pending Interrupt Enable bit ⁽²⁾ 1 = Enable PKTPEND Interrupt 0 = Disable PKTPEND Interrupt
bit 5	RXACTIE: RX Activity Interrupt Enable bit 1 = Enable RXACT Interrupt 0 = Disable RXACT Interrupt
bit 4	Unimplemented: Read as '0'
bit 3	TXDONEIE: Transmitter Done Interrupt Enable bit ⁽¹⁾ 1 = Enable TXDONE Interrupt 0 = Disable TXDONE Interrupt
bit 2	TXABORTIE: Transmitter Abort Interrupt Enable bit ⁽¹⁾ 1 = Enable TXABORT Interrupt 0 = Disable TXABORT Interrupt
bit 1	RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit ⁽²⁾ 1 = Enable RXBUFNA Interrupt 0 = Disable RXBUFNA Interrupt
bit 0	RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit ⁽²⁾ 1 = Enable RXOVFLW Interrupt 0 = Disable RXOVFLW Interrupt

- **Note 1:** This bit is only used for TX operations.
 - **2:** This bit is only used for RX operations.

REGISTER 25-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	-	—	_	—	-	—	_	—		
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	—	_	_	_	—	_	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	SCOLFRMCNT<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	SCOLFRMCNT<7:0>									

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **SCOLFRMCNT<15:0>:** Single Collision Frame Count bits Increment count for frames that were successfully transmitted on the second try.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		_		—	_	—	-	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	_	—	—	_	—	_	—	
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	
10.0	—	_	—	PHYADDR<4:0>					
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0		_		REGADDR<4:0>					

Legend:

0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—	—	—		—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		-		—	—			—
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	SIDL	—	—	—		—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
7:0	—	—	—	—		—	C2OUT	C1OUT

REGISTER 26-2: CMSTAT: COMPARATOR STATUS REGISTER

-	-	
	ond	
Leu	ena:	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-14 Unimplemented: Read as '0'

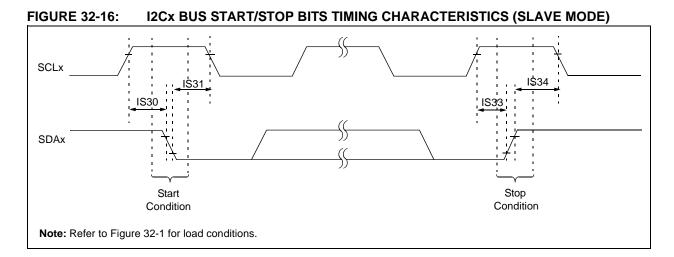
- bit 13 SIDL: Stop in Idle Control bit
 - 1 = All Comparator modules are disabled while in Idle mode
 - 0 = All Comparator modules continue to operate while in Idle mode

bit 12-2 Unimplemented: Read as '0'

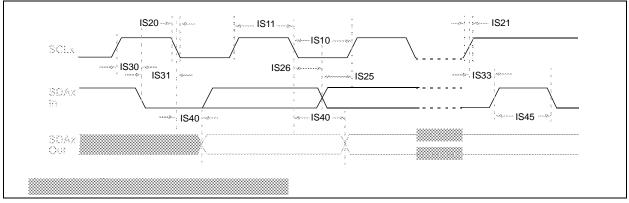
- bit 1 **C2OUT:** Comparator Output bit
 - 1 = Output of Comparator 2 is a '1'
 - 0 = Output of Comparator 2 is a '0'
- bit 0 C1OUT: Comparator Output bit
 - 1 = Output of Comparator 1 is a '1'
 - 0 = Output of Comparator 1 is a '0'

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHA	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$							
Param. No.	Typical ⁽³⁾	Max.	Units	nits Conditions						
Operatir	Operating Current (IDD) ^(1,2) for PIC32MX534/564/664/764 Family Devices									
DC20c	6	9	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC		4 MHz			
DC20d	7	10			+105⁰C					
DC20e	2			Code executing from SRAM						
DC21b	19	32	~^^	Code executing from Flash			25 MHz			
DC21c	14	_	mA	Code executing from SRAM		_	(Note 4)			
DC22b	31	50	~^^	Code executing from Flash			60 MHz			
DC22c	29	_	mA	Code executing from SRAM			(Note 4)			
DC23c	39	65	mA	Code executing from Flash	-40⁰C, +25⁰C, +85⁰C		80 MHz			
DC23d	49	70			+105⁰C					
DC23e	39	_	1	Code executing from SRAM	_					
DC25b	100	150	μA	_	+25°C	3.3V	LPRC (31 kHz) (Note 4)			


Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- **2:** The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.


TABLE 32-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS (unles					Standard Operating Conditions: 2.3V to 3.6V unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp				
Param. No.	Symbol	Chai	racteristic	s ⁽¹⁾	Min.	Max.	Units	Condit	ions
TB10	ТтхН	TxCK High Time	Synchronous, with prescaler		[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	value (1, 2, 4, 8,
TB11	ΤτxL	TxCK Low Time	Synchrono prescaler	ous, with	[(12.5 ns or 1 ТРВ)/N] + 25 ns		ns	Must also meet parameter TB15	16, 32, 64, 256)
TB15	ΤτχΡ	TxCK Input	Synchronous, with prescaler		[(Greater of [(25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V	
P		Period	Period		[(Greater of [(25 ns or 2 Трв)/N] + 50 ns	—	ns	VDD < 2.7V	
TB20	TCKEXTMRL	Delay from Clock Edge			_	1	Трв		

Note 1: These parameters are characterized, but not tested in manufacturing.

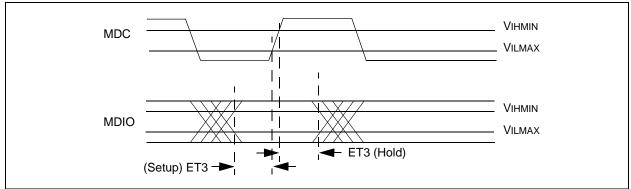
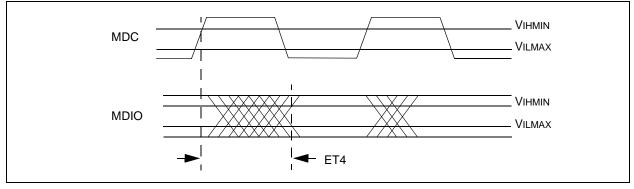


TABLE 32-35: ETHERNET MODULE SPECIFICATIONS


АС СНА	RACTERISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Characteristic	Min.	Typical	Max.	Units	Conditions			
MIIM Timing Requirements									
ET1	MDC Duty Cycle	40		60	%	—			
ET2	MDC Period	400	—	_	ns	—			
ET3	MDIO Output Setup and Hold	10	—	10	ns	See Figure 32-19			
ET4	MDIO Input Setup and Hold	0	—	300	ns	See Figure 32-20			
MII Timi	ng Requirements								
ET5	TX Clock Frequency	—	25	_	MHz	—			
ET6	TX Clock Duty Cycle	35	—	65	%	—			
ET7	ETXDx, ETEN, ETXERR Output Delay	0	—	25	ns	See Figure 32-21			
ET8	RX Clock Frequency	—	25	_	MHz	—			
ET9	RX Clock Duty Cycle	35	—	65	%	—			
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	—	30	ns	See Figure 32-22			
RMII Tin	ning Requirements								
ET11	Reference Clock Frequency		50	_	MHz	—			
ET12	Reference Clock Duty Cycle	35		65	%	—			
ET13	ETXDx, ETEN, Setup and Hold	2	—	4	ns	—			
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	—	4	ns	—			

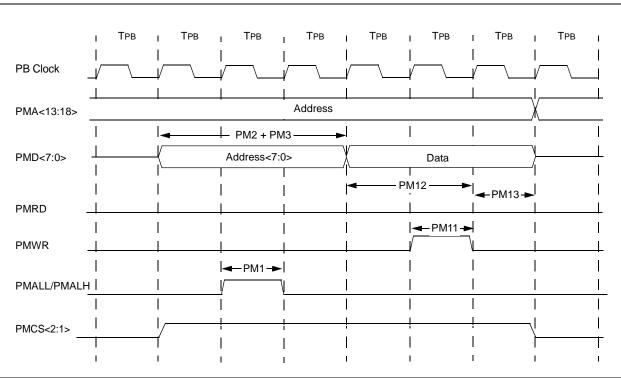

Note 1: The Ethernet module is functional at VBORMIN < VDD < 2.9V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 32-19: MDIO SOURCED BY THE PIC32 DEVICE

FIGURE 32-20: MDIO SOURCED BY THE PHY

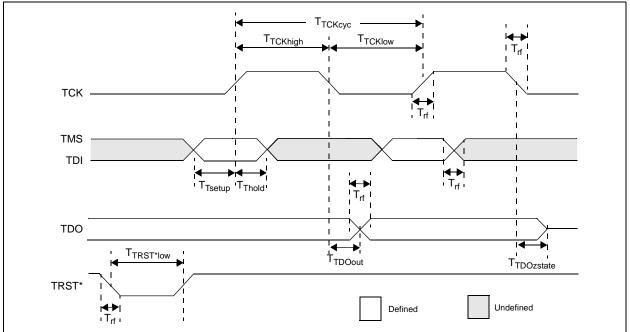

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	—	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв		—	—

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-28: EJTAG TIMING CHARACTERISTICS

TABLE 32-43: EJTAG TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			$\label{eq:constraint} \begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions			
EJ1	Ттсксүс	TCK Cycle Time	25	_	ns				
EJ2	Ттскнідн	TCK High Time	10		ns	—			
EJ3	TTCKLOW	TCK Low Time	10		ns	—			
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_			
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_			
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	_			
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	-	5	ns	—			
EJ8	TTRSTLOW	TRST Low Time	25	_	ns	—			
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE B-4: SECTION UPDATES (CONTINUED)

Section Name	Update Description
7.0 "Interrupt Controller"	Updated the following Interrupt Sources in Table 7-1:
	- Changed IC2AM – I2C4 Master Event to: IC4M – I2C4 Master Event
	- Changed IC3AM – I2C5 Master Event to: IC5M – I2C4 Master Event
	 Changed U1E – UART1A Error to: U1E – UART1 Error
	- Changed U4E – UART1B Error to: U4E – UART4 Error
	- Changed U1RX – UART1A Receiver to: U1RX – UART1 Receiver
	 Changed U4RX – UART1B Receiver to: U4RX – UART4 Receiver Changed U1TX – UART1A Transmitter to: U1TX – UART1 Transmitter
	 Changed UTTX – UART1A Transmitter to: UTTX – UART4 Transmitter Changed U4TX – UART1B Transmitter to: U4TX – UART4 Transmitter
	 Changed U6E – UART2B Error to: U6E – UART6 Error
	- Changed U6RX – UART2B Receiver to: U6RX – UART6 Receiver
	- Changed U6TX – UART2B Transmitter to: U6TX – UART6 Transmitter
	 Changed U5E – UART3B Error to: U5E – UART5 Error
	 Changed U5RX – UART3B Receiver to: U5RX – UART5 Receiver
	- Changed U5TX – UART3B Transmitter to: U5TX – UART5 Transmitter
1.0 "Oscillator Configuration"	Updated Figure 1-1
1.0 "Output Compare"	Updated Figure 1-1
1.0 "Ethernet Controller"	Added a note on using the Ethernet controller pins (see note above Table 1-3)
1.0 "Comparator Voltage Reference (CVREF)"	Updated the note in Figure 1-1
1.0 "Special Features"	Updated the bit description for bit 10 in Register 1-2
	Added notes 1 and 2 to Register 1-4
1.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings:
	 Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V - 0.3V to +3.6V was updated
	 Voltage on VBUS with respect to VSS - 0.3V to +5.5V was added
	Updated the maximum value of DC16 as 2.1 in Table 1-4
	Updated the Typical values for the following parameters: DC20b, DC20c, DC21c, DC22c and DC23c (see Table 1-5)
	Updated Table 1-11:
	 Removed the following DC Characteristics: Programming temperature 0°C ≤ TA ≤ +70°C (25°C recommended)
	 Updated the Minimum value for the Parameter number D131 as 2.3 Removed the Conditions for the following Parameter numbers: D130, D131, D132, D135, D136 and D137
	Updated the condition for the parameter number D130a and D132a
	Updated the Minimum, Typical and Maximum values for parameter D305 in Table 1-13
	Added note 2 to Table 1-18
	Updated the Minimum and Maximum values for parameter F20b (see Table 1-19)
	Updated the following figures:
	• Figure 1-4
	• Figure 1-9
	• Figure 1-22
	• Figure 1-23
Appendix A: "Migrating from PIC32MX3XX/4XX to PIC32MX5XX/	Removed the A.3 Pin Assignments sub-section.
6XX/7XX Devices"	

Revision J (September 2016)

This revision includes typographical and formatting updates throughout the data sheet text. In addition, all SFR Register maps were moved from the Memory chapter to their respective peripheral chapters.

All other major updates are referenced by their respective section in Table B-7.

Section Name	Update Description
"32-bit Microcontrollers (up to 512	Updated Communication Interfaces for LIN support to 2.1.
KB Flash and 128 KB SRAM) with Graphics Interface, USB, CAN, and Ethernet"	Updated Qualification and Class B Support to AEC-Q100 REVH.
2.0 "Guidelines for Getting Started with 32-bit MCUs"	The Recommended Minimum Connection diagram was updated (see Figure 2-1).
	The Example of MCLR Pin Connections diagram was updated (see Figure 2- 2).
	2.11 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.
4.0 "Memory Organization"	The SFR Memory Map was added (see Table 4-1).
7.0 "Interrupt Controller"	The UART interrupt sources were updated in the Interrupt IRQ, Vector, and Bit location table (see Table 7-1).
8.0 "Oscillator Configuration"	Updated the bit value definitions for the TUN<5:0> bits in the OCSTUN register (see Register 8-2).
15.0 "Watchdog Timer (WDT)"	The content in this chapter was relocated from the Special Features chapter to its own chapter.
18.0 "Serial Peripheral Interface (SPI)"	The register map tables were combined (see Table 18-1).
19.0 "Inter-Integrated Circuit (I ² C)"	The register map tables were combined (see Table 19-1).
	The PMADDR register was updated (see Register 21-3).
21.0 "Parallel Master Port (PMP)"	The bit value definitions for the ADRMUX<1:0> and CSF<1:0> bits in the PMCON register were updated (see Register 21-1).
29.0 "Special Features"	Removed the duplicate bit value definition for '010' in the DEVCFG2 register (see Register 29-3).
	Note 1 was added to the Programming, Debugging, and Trace Ports block diagram (see Figure 29-2).
	The DDPCON register was relocated (see Register 29-6).
	The Device ID, Revision, and Configuration Summary was updated (see Table 29-2).