

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx695f512l-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

L11

TABLE 10: PIN NAMES (CONTINUED)FOR USB AND CAN DEVICES

121-PIN TFBGA (BOTTOM VIEW)

PIC32MX534F064L PIC32MX564F064L PIC32MX564F128L PIC32MX575F256L PIC32MX575F512L

L1

A11

Note: The TFBGA package skips from row "H" to row "J" and has no "I" row. A1

Pin #	Full Pin Name
J3	PGED2/AN7/RB7
J4	AVdd
J5	AN11/PMA12/RB11
J6	TCK/RA1
J7	AN12/PMA11/RB12
J8	No Connect (NC)
J9	No Connect (NC)
J10	SCL3/SDO3/U1TX/RF8
J11	D-/RG3
K1	PGEC1/AN1/CN3/RB1
K2	PGED1/AN0/CN2/RB0
K3	VREF+/CVREF+/PMA6/RA10
K4	AN8/C1OUT/RB8
K5	No Connect (NC)
K6	AC1RX/SS4/U5RX/U2CTS/RF12
K7	AN14/PMALH/PMA1/RB14

1					
Pin #	Full Pin Name				
K8	VDD				
K9	SCK3/U4TX/U1RTS/CN21/RD15				
K10	USBID/RF3				
K11 SDA3/SDI3/U1RX/RF2					
L1	PGEC2/AN6/OCFA/RB6				
L2	VREF-/CVREF-/PMA7/RA9				
L3	AVss				
L4	AN9/C2OUT/RB9				
L5	AN10/CVREFOUT/PMA13/RB10				
L6	AC1TX/SCK4/U5TX/U2RTS/RF13				
L7	AN13/PMA10/RB13				
L8	AN15/OCFB/PMALL/PMA0/CN12/RB15				
L9	SS3/U4RX/U1CTS/CN20/RD14				
L10	SDA5/SDI4/U2RX/PMA9/CN17/RF4				
L11	SCL5/SDO4/U2TX/PMA8/CN18/RF5				

Note 1: Shaded pins are 5V tolerant.

3.2 Architecture Overview

The MIPS32 M4K processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e[®] Support
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32 M4K processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bit-wise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

MIPS32 M4K processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16 bit wide *rs*, 15 iterations are skipped and for a 24 bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate								
MULT/MULTU, MADD/MADDU,	16 bits	1	1								
MSUB/MSUBU	32 bits	2	2								
MUL	16 bits	2	1								
	32 bits	3	2								
DIV/DIVU	8 bits	12	11								
	16 bits	19	18								
	24 bits	26	25								
	32 bits	33	32								

TABLE 3-1:MIPS32[®] M4K[®] CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT
LATENCIES AND REPEAT RATES

FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX534F064H AND PIC32MX534F064L DEVICES

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
31.24	NVMKEY<31:24>												
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
23:16	NVMKEY<23:16>												
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
15:8	NVMKEY<15:8>												
7:0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0					
				NVMK	EY<7:0>								

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read.

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	NVMADDR<31:24>												
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	NVMADDR<23:16>												
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	NVMADDR<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				NVMA	DDR<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

7.1 **Control Registers**

TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES

ess										Bits									
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AII Resets
1000		31:16	—	—	_	—	_	_	_	_	_	—	_	—	_	_	—	SS0	0000
1000	INTCON	15:0		_		MVEC	_		TPC<2:0>			_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT(3)	31:16	_	—	_	—	—	_	—	_	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	—		SRIPL<2:0>		—	—			VEC<5:0	>			0000
1020	IPTMR	31:16								IPTMR<3'	1:0>								0000
		15:0									0000								
		24.40												TEIE		00415		TAIE	0000
1030	IFS0	31:10	12C TIMIF	1201515	IZC I DIF	12C2MIE	SPISKAIF	SPIJEIF	_	_	_	OCOIF	ICOIF	IDIF	IN 141F	OC4IF	IC4IF	141	0000
		15.0	INITSIE	OCSIE	ICSIE	TSIE	INT2IF		IC2IE	T2IE	INIT1IE	OC1IE	IC1IE	T1IF	INTOIE	CS1IE	CSOIE	CTIE	0000
		31.16	IC3EIE	IC2FIF	IC1FIF	_	—	CAN1IF	USBIE	FCEIE	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IE	DMA2IF	DMA1IF	DMA0IE	0000
1040 IFS1		00			10121			U2TXIF	U2RXIF	U2EIF	U3TXIF	U3RXIF	U3EIF	Distin	2111/1011	5	2	2.1.7.1011	0000
	IFS1	15:0 F	RTCCIF	FSCMIF	_	_	_	SPI4TXIF	SPI4RXIF	SPI4EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
								I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF						
4050	1500	31:16	_	—	_	_	_		_	—	-	—	—	—	_	_	_		0000
1050	152	15:0	_	—	_	—	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
						U1TXIE	U1RXIE	U1EIE											
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	SPI3TXIE	SPI3RXIE	SPI3EIE	—	—	—	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
1000	1200					I2C3MIE	I2C3SIE	I2C3BIE											
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	—	_	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	45.0	DTOOLE	500145				U2TXIE	U2RXIE	U2EIE	U3TXIE	U3RXIE	U3EIE					0115	
		15:0	RICCIE	FSCMIE	_	_	_	SPIATXIE	SPI4RXIE	SPI4EIE	SPIZIXIE	SPI2RXIE	SPIZEIE	CMP2IE	CMPTIE	PMPIE	ADTIE	CNIE	0000
		21.16						12C5IVITE	120551E	I2C5BIE	12C4IVIIE	120451E	I2C4BIE						0000
1080	IEC2	15:0																	0000
		31.16	_		_			UUINAIE	INTOIS	<1.0>					S1IP<2.0>		CS1IS	104LIE	0000
1090	IPC0	15:0					CS0IP<2:0>		CSOIS	<1:0>				с. С	TIP<2:0>		CTIS	<1:0>	0000
Leaen	d: x=≀	unknowr	n value on l	Reset: — =	unimpleme	ented read a	s '0' Reset v	alues are sh	own in hexad	ecimal									

Legend:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET Note 1: and INV Registers" for more information.

These bits are not available on PIC32MX534/564/664/764 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

PIC32MX5XX/6XX/7XX

NOTES:

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits

- 111 = Clock is multiplied by 24
- 110 = Clock is multiplied by 21
- 101 = Clock is multiplied by 20
- 100 = Clock is multiplied by 19
- 011 = Clock is multiplied by 18
- 010 =Clock is multiplied by 17
- 001 =Clock is multiplied by 16
- 000 =Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)
 - On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).
- bit 7 CLKLOCK: Clock Selection Lock Enable bit

If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):

- 1 = Clock and PLL selections are locked
- 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x):

Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit
 - 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled

bit 4 SLPEN: Sleep Mode Enable bit

- 1 = Device will enter Sleep mode when a WAIT instruction is executed
- 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
35E0		31:16	-	-	—	—	—	—	-	—	_	—	—	—	—	—	-	—	0000
001.0	DOINOOIZ	15:0								CHSSIZ	Z<15:0>								0000
2000		31:16	—	—	_	_	_	- 1	—	—	_	_	_	_	-	_	_	_	0000
3600	DCH/DSIZ	15:0								CHDSIZ	Z<15:0>								0000
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	—	-	_	_	0000
3610	DCH/SPIR	15:0	CHSPTR<15:0> 00											0000					
2620		31:16	_	_	—	-	-	-	_	_	_	—	-	_	—	_	_	_	0000
3020	DCHIDPIK	15:0	CHDPTR<15:0> 0											0000					
2020		31:16	_	_	—	_	-	—	_	-	_	—	_	_	—	_	—	_	0000
3630	DCH/CSIZ	15:0								CHCSIZ	Z<15:0>								0000
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	—	-	_	_	0000
3040 DCH/CPTR 15:0> CHCPTR<15:0>										0000									
2650		31:16	_	—	—	—	_	_	—	—	—	—	_	—	—	—	—	_	0000
3050		15:0		_	—	_	_	_	_	—				CHPD/	AT<7:0>				0000

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

PIC32MX5XX/6XX/7XX

REGISTER 10-14: DCHxSPTR: DMA CHANNEL 'x' SOURCE POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	_	—	—	—	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	_	—	—	—	—	—	—				
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8	CHSPTR<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7.0				CHSPTF	R<7:0>							

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

111111111111111 = Points to byte 65,535 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Bit Bit Bit Bit Bit Bit Bit Bit Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 ____ ___ ____ ____ ____ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15:8 CHDPTR<15:8> R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7:0 CHDPTR<7:0>

REGISTER 10-15: DCHxDPTR: DMA CHANNEL 'x' DESTINATION POINTER REGISTER

Legend:

R = Readable bit	W = Writable bit	ble bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

111111111111111 = Points to byte 65,535 of the destination

12.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32 MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. Following are some of the key features of this module:

- · Individual output pin open-drain enable/disable
- · Individual input pin weak pull-up enable/disable
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

© 2009-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15.6	ON ⁽¹⁾	—	SIDL	—	—	—	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR	ICI<	ICI<1:0>		ICBNE	ICM<2:0>		

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	ON: Input Capture Module Enable bit ⁽¹⁾
	 1 = Module is enabled 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Control bit
	1 = Halt in Idle mode0 = Continue to operate in Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
	 1 = Capture rising edge first 0 = Capture falling edge first
bit 8	C32: 32-bit Capture Select bit
	1 = 32-bit timer resource capture0 = 16-bit timer resource capture
bit 7	ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')
	 1 = Timer2 is the counter source for capture 0 = Timer3 is the counter source for capture
bit 6-5	ICI<1:0>: Interrupt Control bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	00 = Interrupt on every second capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	 1 = Input capture overflow is occurred 0 = No input capture overflow is occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty

Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

Addr me (1) me (1)	VII Resets
Image: Bit in the second se	٩
AND DISCOUL 31:16 CAL<9:0>	0000
D200 RTCCON 15:0 ON - SIDL RTSECSEL RTCCLKON RTCWREN RTCSYNC HALFSEC RTCC	0000
	0000
UZIO RICALKW 15:0 ALRMEN CHIME PIV ALRMSYNC AMASK<3:0> ARPT<7:0>	0000
DOCUME 31:16 HR10<3:0> MIN10<3:0> MIN10<3:0>	xxxx
VOLUME 15:0 SEC10<3:0> -	xx00
DATE 31:16 YEAR10 YEAR01 MONTH10 MONTH	xxxx
DASO RECEARE 15:0 DAY10 DAY01<3:0> - - - - WDAY01<3:0>	xx00
0240 AL DATINE 31:16 HR10<3:0> HR01<3:0> MIN10<3:0> MIN01<3:0>	xxxx
0240 ALRWITINE 15:0 SEC10<3:0>	xx00
2350 AL PMDATE 31:16 MONTH10<3:0>	00xx
DESUGATION DAY10 DAY01<3:0> - - - - WDAY01<3:0>	xx0x

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R-x	R-x								
31.24	CiFIFOUAn<31:24>									
22.16	R-x	R-x								
23.10	CiFIFOUAn<23:16>									
15.0	R-x	R-x								
15.0		CiFIFOUAn<15:8>								
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾		
				CiFIFOU	IAn<7:0>					

REGISTER 24-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER 'n' (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	_		—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	_		—			
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—	—	—	—	_		—			
7.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
7.0	_	_	_		CiFIFOCI<4:0>						

REGISTER 24-23: CiFIFOCIN: CAN MODULE MESSAGE INDEX REGISTER 'n' (n = 0 THROUGH 31)

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

25.0 ETHERNET CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Ethernet Controller" (DS60001155) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system.

Key features of the Ethernet Controller include:

- Supports 10/100 Mbps data transfer rates
- Supports full-duplex and half-duplex operation
- Supports RMII and MII PHY interface
- Supports MIIM PHY management interface
- Supports both manual and automatic Flow Control
- RAM descriptor-based DMA operation for both receive and transmit path
- · Fully configurable interrupts
- Configurable receive packet filtering
 - CRC check
 - 64-byte pattern match
 - Broadcast, multicast and unicast packets
 - Magic Packet™
 - 64-bit hash table
 - Runt packet
- Supports packet payload checksum calculation
- · Supports various hardware statistics counters

Figure 25-1 illustrates a block diagram of the Ethernet controller.

FIGURE 25-1: ETHERNET CONTROLLER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	_	—	—	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
15:8	ON ⁽¹⁾	COE	CPOL ⁽²⁾	—	—	—	—	COUT
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7.0	EVPOL	_<1:0>		CREF	_		CCH	<1:0>

REGISTER 26-1: CMxCON: COMPARATOR 'x' CONTROL REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: Comparator ON bit⁽¹⁾

Clearing this bit does not affect the other bits in this register.

- 1 = Module is enabled. Setting this bit does not affect the other bits in this register
- 0 = Module is disabled and does not consume current.
- bit 14 COE: Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted

bit 12-9 Unimplemented: Read as '0'

- bit 8 COUT: Comparator Output bit
 - 1 =Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled

bit 5 Unimplemented: Read as '0'

- bit 4 **CREF:** Comparator Positive Input Configure bit
 - 1 = Comparator non-inverting input is connected to the internal CVREF
 - 0 = Comparator non-inverting input is connected to the CxIN+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the C2IN+ pin for C1 and C1IN+ pin for C2
 - 01 = Comparator inverting input is connected to the C1IN+ pin for C1 and C2IN+ pin for C2
 - 00 = Comparator inverting input is connected to the C1IN- pin for C1 and C2IN- pin for C2
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard (unless o Operating	Operating therwise st temperatur	Conditie tated) e -40° -40°	ons: 2.3 C ≤ Ta ≤ C ≤ Ta ≤	V to 3.6V +85°C for Industrial +105°C for V-Temp
Param. No.	Symbol	Characteristics	Min. Typical Max. Units Condition				Conditions
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage	2.3	_	3.6	V	—
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.75	_	_	V	—
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	_	2.1	V	_
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005	—	0.115	V/µs	—

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

TABLE 32-38: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
Clock P	Parameter	S						
AD50	TAD	Analog-to-Digital Clock Period ⁽²⁾	65	—	_	ns	See Table 32-37	
Conver	sion Rate							
AD55	TCONV	Conversion Time	_	12 Tad	_		—	
AD56	FCNV	Throughput Rate	_	—	1000	ksps	AVDD = 3.0V to 3.6V	
		(Sampling Speed)	—	—	400	ksps	AVDD = 2.5V to 3.6V	
AD57	TSAMP	Sample Time	1 Tad	—	_		TSAMP must be \geq 132 ns	
Timing	Paramete	rs						
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	_		Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 TAD		_	
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	_	0.5 TAD	_		—	
AD63	TDPU	Time to Stabilize Analog Stage from Analog-to-Digital Off to Analog-to-Digital On ⁽³⁾		_	2	μS	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

PIC32MX5XX/6XX/7XX

FIGURE 32-28: EJTAG TIMING CHARACTERISTICS

TABLE 32-43: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			anditions: 2.3V to 3.6V ad) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp	
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions	
EJ1	Ттсксус	TCK Cycle Time	25	—	ns	—	
EJ2	Ттскнідн	TCK High Time	10		ns	_	
EJ3	TTCKLOW	TCK Low Time	10	—	ns		
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_	
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3		ns	_	
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	_	
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	_	
EJ8	TTRSTLOW	TRST Low Time	25	—	ns		
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	_		ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

Example

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

Legend	: XXX	Customer-specific information						
_	Y	Year code (last digit of calendar year)						
	ΥY	Year code (last 2 digits of calendar year)						
	WW Week code (week of January 1 is week '01')							
	NNN Alphanumeric traceability code							
	Pb-free JEDEC designator for Matte Tin (Sn)							
	* This package is Pb-free. The Pb-free JEDEC designator (\bigcirc							
		can be found on the outer packaging for this package. \Box						
Note:	In the event the full Microchip part number cannot be marked on one line, it will							
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.							

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	N	64				
Lead Pitch	е	0.50 BSC				
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.95 1.00		1.05		
Standoff	A1	0.05 -		0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	ø	0°	3.5°	7°		
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.25mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2