

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx695f512lt-80i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

TABLE 4:PIN NAMES FOR 64-PIN USB AND CAN DEVICES

64	-PIN QFN ⁽²⁾ AND TQFP (TOP VIEW)			
	PIC32MX534F064H PIC32MX564F064H PIC32MX564F128H PIC32MX575F256H PIC32MX575F512H	QFN	1 (2)	⁶⁴ TQFP
Pin #	Full Pin Name		Pin #	Full Pin Name
1	PMD5/RE5		33	USBID/RF3
2	PMD6/RE6		34	VBUS
3	PMD7/RE7		35	VUSB3V3
4	SCK2/U6TX/U3RTS/PMA5/CN8/RG6		36	D-/RG3
5	SDA4/SDI2/U3RX/PMA4/CN9/RG7		37	D+/RG2
6	SCL4/SDO2/U3TX/PMA3/CN10/RG8		38	Vdd
7	MCLR		39	OSC1/CLKI/RC12
8	SS2/U6RX/U3CTS/PMA2/CN11/RG9		40	OSC2/CLKO/RC15
9	Vss		41	Vss
10	Vdd		42	RTCC/IC1/INT1/RD8
11	AN5/C1IN+/VBUSON/CN7/RB5		43	SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9
12	AN4/C1IN-/CN6/RB4		44	SCL1/IC3/PMCS2/PMA15/INT3/RD10
13	AN3/C2IN+/CN5/RB3		45	IC4/PMCS1/PMA14/INT4/RD11
14	AN2/C2IN-/CN4/RB2		46	OC1/INT0/RD0
15	PGEC1/AN1/VREF-/CVREF-/CN3/RB1		47	SOSCI/CN1/RC13
16	PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0		48	SOSCO/T1CK/CN0/RC14
17	PGEC2/AN6/OCFA/RB6		49	SCK3/U4TX/U1RTS/OC2/RD1
18	PGED2/AN7/RB7		50	SDA3/SDI3/U1RX/OC3/RD2
19	AVdd		51	SCL3/SDO3/U1TX/OC4/RD3
20	AVss		52	OC5/IC5/PMWR/CN13/RD4
21	AN8/SS4/U5RX/U2CTS/C1OUT/RB8		53	PMRD/CN14/RD5
22	AN9/C2OUT/PMA7/RB9		54	CN15/RD6
23	TMS/AN10/CVREFOUT/PMA13/RB10		55	CN16/RD7
24	TDO/AN11/PMA12/RB11		56	VCAP
25	Vss		57	Vdd
26	Vdd		58	C1RX/RF0
27	TCK/AN12/PMA11/RB12		59	C1TX/RF1
28	TDI/AN13/PMA10/RB13		60	PMD0/RE0
29	AN14/SCK4/U5TX/U2RTS/PMALH/PMA1/RB14		61	PMD1/RE1
30	AN15/OCFB/PMALL/PMA0/CN12/RB15		62	PMD2/RE2
31	AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4		63	PMD3/RE3
32	AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5		64	PMD4/RE4

Note 1: Shaded pins are 5V tolerant.

2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

TABLE 13: PIN NAMES FOR 124-PIN USB, ETHERNET, AND CAN DEVICES (CONTINUED)

12	4-PIN VTLA (BOTTOM VIEW) ^(2,3)			A34
	A17	B13	B29	Conductive Thermal Pad
	PIC32MX675F512L PIC32MX695F512L PIC32MX795F512L	B1	B56	B41 A51
	A1			
	Polarity Indicator		A68	
Package Bump #	Full Pin Name		Package Bump #	Full Pin Name
B8	Vss		B33	TDO/RA5
B9	TMS/RA0		B34	OSC1/CLKI/RC12
B10	AERXD1/INT2/RE9		B35	No Connect (NC)
B11	AN4/C1IN-/CN6/RB4		B36	AETXCLK/SCL1/INT3/RA14
B12	Vss		B37	RTCC/EMDIO/AEMDIO/IC1/RD8
B13	AN2/C2IN-/CN4/RB2		B38	SCK1/IC3/PMCS2/PMA15/RD10
B14	PGED1/AN0/CN2/RB0		B39	SDO1/OC1/INT0/RD0
B15	No Connect (NC)		B40	SOSCO/T1CK/CN0/RC14
B16	PGED2/AN7/RB7		B41	Vss
B17	VREF+/CVREF+/AERXD3/PMA6/RA10		B42	OC3/RD2
B18	AVss		B43	ETXD2/IC5/PMD12/RD12
B19	AN9/C2OUT/RB9		B44	OC5/PMWR/CN13/RD4
B20	AN11/ERXERR/AETXERR/PMA12/RB11		B45	ETXEN/PMD14/CN15/RD6
B21	VDD		B46	Vss
B22	AC1TX/SCK4/U5TX/U2RTS/RF13		B47	No Connect (NC)
B23	AN12/ERXD0/AECRS/PMA11/RB12		B48	VCAP
B24	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14		B49	C1RX ⁽¹⁾ /ETXD1/PMD11/RF0
B25	Vss		B50	C2TX ⁽¹⁾ /ETXERR/PMD9/RG1
B26	AETXD0/SS3/U4RX/U1CTS/CN20/RD14		B51	TRCLK/RA6
B27	SDA5/SDI4/U2RX/PMA9/CN17/RF4		B52	PMD0/RE0
B28	No Connect (NC)		B53	VDD
B29	SCL3/SDO3/U1TX/RF8		B54	TRD2/RG14
B30	VUSB3V3		B55	TRD0/RG13
B31	D+/RG2		B56	PMD3/RE3

This pin is only available on PIC32MX795F512L devices. Note 1:

2:

Shaded package bumps are 5V tolerant. It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout. 3:

		Veeter		Interru	ot Bit Location	
Interrupt Source ⁽¹⁾	Number	Number	Flog	Enable	Priority	Sub Briarity
		07	Flay			
AD1 – ADC1 Convert Done	33	27	IFS1<1>	IEC1<1>	IPC6<28:26>	IPC6<25:24>
PMP – Parallel Master Port	34	28	IFS1<2>	IEC1<2>	IPC7<4:2>	IPC7<1:0>
CMP1 – Comparator Interrupt	35	29	IFS1<3>	IEC1<3>	IPC7<12:10>	IPC7<9:8>
CMP2 – Comparator Interrupt	36	30	IFS1<4>	IEC1<4>	IPC7<20:18>	IPC7<17:16>
U2E – UAR I2 Error SPI2E – SPI2 Fault I2C4B – I2C4 Bus Collision Event	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>
U2RX – UART2 Receiver SPI2RX – SPI2 Receive Done I2C4S – I2C4 Slave Event	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>
U2TX – UART2 Transmitter SPI2TX – SPI2 Transfer Done IC4M – I2C4 Master Event	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>
U3E – UART3 Error SPI4E – SPI4 Fault I2C5B – I2C5 Bus Collision Event	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>
U3RX – UART3 Receiver SPI4RX – SPI4 Receive Done I2C5S – I2C5 Slave Event	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>
U3TX – UART3 Transmitter SPI4TX – SPI4 Transfer Done IC5M – I2C5 Master Event	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>
I2C2B – I2C2 Bus Collision Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>
I2C2S – I2C2 Slave Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>
I2C2M – I2C2 Master Event	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>
FSCM – Fail-Safe Clock Monitor	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>
RTCC – Real-Time Clock and Calendar	47	35	IFS1<15>	IEC1<15>	IPC8<28:26>	IPC8<25:24>
DMA0 – DMA Channel 0	48	36	IFS1<16>	IEC1<16>	IPC9<4:2>	IPC9<1:0>
DMA1 – DMA Channel 1	49	37	IFS1<17>	IEC1<17>	IPC9<12:10>	IPC9<9:8>
DMA2 – DMA Channel 2	50	38	IFS1<18>	IEC1<18>	IPC9<20:18>	IPC9<17:16>
DMA3 – DMA Channel 3	51	39	IFS1<19>	IEC1<19>	IPC9<28:26>	IPC9<25:24>
DMA4 – DMA Channel 4	52	40	IFS1<20>	IEC1<20>	IPC10<4:2>	IPC10<1:0>
DMA5 – DMA Channel 5	53	41	IFS1<21>	IEC1<21>	IPC10<12:10>	IPC10<9:8>
DMA6 – DMA Channel 6	54	42	IFS1<22>	IEC1<22>	IPC10<20:18>	IPC10<17:16>
DMA7 – DMA Channel 7	55	43	IFS1<23>	IEC1<23>	IPC10<28:26>	IPC10<25:24>
FCE – Flash Control Event	56	44	IFS1<24>	IEC1<24>	IPC11<4:2>	IPC11<1:0>
USB – USB Interrupt	57	45	IFS1<25>	IEC1<25>	IPC11<12:10>	IPC11<9:8>
CAN1 – Control Area Network 1	58	46	IFS1<26>	IEC1<26>	IPC11<20:18>	IPC11<17:16>
CAN2 – Control Area Network 2	59	47	IFS1<27>	IEC1<27>	IPC11<28:26>	IPC11<25:24>
ETH – Ethernet Interrupt	60	48	IFS1<28>	IEC1<28>	IPC12<4:2>	IPC12<1:0>
IC1E – Input Capture 1 Error	61	5	IFS1<29>	IEC1<29>	IPC1<12:10>	IPC1<9:8>
IC2E – Input Capture 2 Error	62	9	IFS1<30>	IEC1<30>	IPC2<12:10>	IPC2<9:8>

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

7.1 **Control Registers**

TABLE 7-2: INTERRUPT REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H AND PIC32MX575F512H DEVICES

ess										Bits									
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AII Resets
1000		31:16	—	—	_	—	_	_	_	_	_	—	_	—	_	_	—	SS0	0000
1000	INTCON	15:0		_		MVEC	_		TPC<2:0>			_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT(3)	31:16	_	—	_	_	—	_	—	_	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	—	SRIPL<2:0> — — VEC<5:0>							0000				
1020	IPTMR	31:16								IPTMR<3'	1:0>								0000
		15:0																	0000
		24.40												TEIE		00415		TAIE	0000
1030	IFS0	31:10	12C TIMIF	1201515	IZC I DIF	12C2MIE	SPISKAIF	SPIJEIF	_	_	_	OCOIF	ICOIF	IDIF	IN 141F	OC4IF	IC4IF	141	0000
		15.0	INITSIE	OCSIE	ICSIE	TSIE	INT2IF		IC2IE	T2IE	INIT1IE	OC1IE	IC1IE	T1IF	INTOIE	CS1IE	CSOIE	CTIE	0000
		31.16	IC3EIE	IC2FIF	IC1FIF	_	—	CAN1IF	USBIE	FCEIE	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IE	DMA2IF	DMA1IF	DMA0IE	0000
1040 IF		00			10121			U2TXIF	U2RXIF	U2EIF	U3TXIF	U3RXIF	U3EIF	Distin	2111/1011	5	2	2.1.7.1011	0000
	IFS1	15:0	RTCCIF	FSCMIF	_	_	_	SPI4TXIF	SPI4RXIF	SPI4EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
								I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF						
4050	1500	31:16	_	—	_	_	_		_	—		—	—	—	_	_	_		0000
1050	152	15:0	_	—	_	—	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
						U1TXIE	U1RXIE	U1EIE											
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	SPI3TXIE	SPI3RXIE	SPI3EIE	—	—	—	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
1000	1200					I2C3MIE	I2C3SIE	I2C3BIE											
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	—	_	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	45.0	DTOOLE	500145				U2TXIE	U2RXIE	U2EIE	U3TXIE	U3RXIE	U3EIE					0115	
		15:0	RICCIE	FSCMIE	_	_	_	SPIATXIE	SPI4RXIE	SPI4EIE	SPI2TXIE	SPI2RXIE	SPIZEIE	CMP2IE	CMPTIE	PMPIE	ADTIE	CNIE	0000
		21.16						12C5IVITE	120551E	I2C5BIE	12C4IVIIE	120451E	I2C4BIE						0000
1080	IEC2	15:0																	0000
		31.16	_		_			UUINAIE	INTOIS	<1.0>					S1IP<2.0>		CS1IS	104LIE	0000
1090	IPC0	15:0					INT0IP<2:0>		CS0IS<1:0> — — —		CTIP<2:0>		CTIP<2:0> CTIS<1:0>			0000			
Leaen	d: x=≀	unknowr	n value on l	Reset: — =	unimpleme	ented read a	s '0' Reset v	alues are sh	own in hexad	ecimal									

Legend:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET Note 1: and INV Registers" for more information.

These bits are not available on PIC32MX534/564/664/764 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	_	—	_	—	—		—	_			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
15:8	—	—	—	—	—		RIPL<2:0> ⁽¹⁾				
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0			VEC<5:0> ⁽¹⁾								

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 **RIPL<2:0>:** Requested Priority Level bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- **Note 1:** This value should only be used when the interrupt controller is configured for Single-vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0 R/W-0 R/W-0 F		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	TPTMR<31:24>														
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
Bit Range 31:24 23:16 15:8 7:0		TPTMR<23:16>													
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15.6		TPTMR<15:8>													
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7.0		TPTMR<7:0>													

REGISTER 7-3: TPTMR: TEMPORAL PROXIMITY TIMER REGISTER

Legend:						
R = Readable bit	ble bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 TPTMR<31:0>: Temporal Proximity Timer Reload bits

Used by the Temporal Proximity Timer as a reload value when the Temporal Proximity timer is triggered by an interrupt event.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	R/W-y R/W-y		R/W-y	R/W-0	R/W-0	R/W-1	
31:24	—	F	RCDIV<2:0>						
00.40	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	
23:16	—	SOSCRDY	PBDIVRDY	PBDI\	/<1:0>	Р	LLMULT<2:0>	>	
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y R/W-y		R/W-y	
15:8	—		COSC<2:0>		—	NOSC<2:0>			
7.0	R/W-0	R-0 R-0		R/W-0	R/W-0	R/W-0	R/W-y	R/W-0	
7:0	CLKLOCK	ULOCK	SLOCK	SLPEN	CF	UFRCEN	SOSCEN	OSWEN	

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:

y = Value set from Configuration bits on POR

- R = Readable bit -n = Value at POR
- W = Writable bit U = Unimplemented bit, read as '0'
- '1' = Bit is set
- 0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-27 PLLODIV<2:0>: Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3400		31:16	_	_	—	—	—	—	_	—	—	—	_	—	_	—		_	0000
3400	DONIJDAI	15:0	—	—	—	—	—	—	—	—				CHPDA	T<7:0>				0000
34F0	DCH6CON	31:16	_	_	—	—	—	—	_	—	—	—	_	—	_	_	_	—	0000
0.20	201100011	15:0	CHBUSY	—	—	—	—	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
34F0	DCH6ECON	31:16	—	_	-	-			_	-	050005	OADODT	DATEN	CHAIR	Q<7:0>				00FF
		15:0				CHSIR	Q<7:0>					CABORT							FF00
3500	DCH6INT	15.0									CHSDIE	CHSHIE							0000
		31:16									CHODI	CHOIM	CIIDDII	CHDHII	CLIPCII	CHOON	OTTAI	CHLINI	0000
3510	DCH6SSA	15:0								CHSSA	A<31:0>								0000
0500	DOLIODOA	31:16								01100									0000
3520	DCH6DSA	15:0								CHDSA	A<31:0>								0000
3530	DCH6SSIZ	31:16	—	-	—	_	_	_	_	—	_	_	-	_	-	_	_	-	0000
3330	DCH000012	15:0	15:0 CHSSIZ<15:0> 000												0000				
3540	DCH6DSIZ	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHDSI	Z<15:0>								0000
3550	DCH6SPTR	31:16	—	—	—	—	—	—	—		— —	—	—	_	—	—	—	—	0000
		15:0								CHSPT	R<15:0>								0000
3560	DCH6DPTR	15.0	_	_	_	—	_	—	_	CHDPT	— R<15:0>	—	_	—	_	—	-	_	0000
-		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3570	DCH6CSIZ	15:0								CHCSI	Z<15:0>								0000
0500		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3580	DCH6CPTR	15:0			•					CHCPT	R<15:0>			•					0000
3590		31:16	—		—	—	—	—		—	—	—	-	_	-	_	—	-	0000
0000	DONODAI	15:0		_	—	—	—	—	—	—				CHPDA	T<7:0>				0000
35A0	DCH7CON	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
		15:0	CHBUSY							CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	l<1:0>	0000
35B0	DCH7ECON											OOFF							
		15.0	_	_	_		Q<7.0>		_	_									FF00
35C0	DCH7INT	15.0	_	_	_	_	_	_	_	_	CHSDIE	CHSHIF	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		31:16									0110211	0110111	01001		0112011	0110011	U 117.01	JIER	0000
35D0	DCH7SSA	15:0								CHSSA	A<31:0>								0000
2552		31:16	3 0000																
35E0	DCH/DSA	15:0								CHDSA	4<31:0>								0000
Legen	d: x = u	Inknowr	value on Re	eset; — = ui	nimplemente	d, read as '0	'. Reset val	ues are show	vn in hexade	ecimal.									

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. 2:

DS60001156J-page 117

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-bit Timer
- Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous Internal 32-bit Timer
- · Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through Timer5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or Timer4; 'y' represents Timer3 or Timer5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (only Timer2 and Timer3)
- ADC event trigger (only Timer3)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (16-BIT)

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾ bit 5-2 1111 = Wait of 16 TPB 0001 = Wait of 2 ТРВ 0000 = Wait of 1 TPB (default) WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾ bit 1-0 11 = Wait of 4 Трв 10 = Wait of 3 TPB 01 = Wait of 2 TPB 00 = Wait of 1 TPB (default) For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB 00 = Wait of 0 TPB (default)
 - **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

23.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104) in the "PIC32 Family Reference Manual", which is available from Microchip web the site (www.microchip.com/PIC32).

The PIC32MX5XX/6XX/7XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1 Msps conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold (S&H) circuit
- Automatic Channel Scan mode
- Selectable conversion trigger source

- 16-word conversion result buffer
- · Selectable buffer fill modes
- Eight conversion result format options
- · Operation during Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 23-1. The 10-bit ADC has up to 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers to one S&H. The analog input multiplexers can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 23-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight 32-bit output formats when it is read from the result buffer.

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

			Bits g														6	
Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	31:16								cult Word P		2-21:0-1							0000
CIBUFB	15:0																	
	31:16		ADC Result Word C (ADC18LIEC<31:0>)												0000			
CIBUFC	15:0							ADC Re	suit word C	(ADC1BUFC	-<31:0>)							0000
	31:16								sult Word D		1-21.0-1							0000
CIBUFD	15:0							ADC RE		(ADC IBUFL)<31.0>)							0000
	31:16								cult Word E		-21.0-)							0000
CIBUFE	15:0							ADC RE		(ADC IBUFE	<31.0>)							0000
	31:16														0000			
UDUFF	15:0		ADC Result Word F (ADC1BUFF<31:0>)												0000			
	C1BUFB C1BUFC C1BUFC C1BUFC C1BUFE C1BUFF	Burget Burget<	Big Big <td>Bit Spectrum Spectrum 31/15 30/14 C1BUFB 31:16 31/15 30/14 C1BUFC 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFF 31:16 15:0 16</td> <td>B B 31/15 30/14 29/13 C1BUFB 31:16 15:0 1000000000000000000000000000000000000</td> <td>Big Big 31/15 30/14 29/13 28/12 C1BUFB 31:16 </td> <td>Big Big Big Big Big Big Big Big Big Big</td> <td>Big Big 31/15 30/14 29/13 28/12 27/11 26/10 C1BUFB 31:16 15:0 1</td> <th>Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 C1BUFB 31:16 </th> <th>Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 C1BUFB 31:16 </th> <th>Big Single Single<td>Big Sin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 C1BUFB 31:16 </td><td>Big Sin Sin<th>Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16 </th><th>we be be</th><td>see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0 </td><td>BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0 </td><td>BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16 </td></td></th>	Bit Spectrum Spectrum 31/15 30/14 C1BUFB 31:16 31/15 30/14 C1BUFC 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFD 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFE 31:16 15:0 16 C1BUFF 31:16 15:0 16	B B 31/15 30/14 29/13 C1BUFB 31:16 15:0 1000000000000000000000000000000000000	Big Big 31/15 30/14 29/13 28/12 C1BUFB 31:16	Big	Big Big 31/15 30/14 29/13 28/12 27/11 26/10 C1BUFB 31:16 15:0 1	Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 C1BUFB 31:16	Big Big 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 C1BUFB 31:16	Big Single Single <td>Big Sin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 C1BUFB 31:16 </td> <td>Big Sin Sin<th>Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16 </th><th>we be be</th><td>see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0 </td><td>BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0 </td><td>BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16 </td></td>	Big Sin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 C1BUFB 31:16	Big Sin Sin <th>Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16 </th> <th>we be be</th> <td>see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0 </td> <td>BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0 </td> <td>BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16 </td>	Bin 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 C1BUFB 31:16	we be	see sin so/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 C1BUFB 15:0	BBC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 C1BUFB 31:16 15:0	BB 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 C1BUFB 31:16

= unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend: x = unknown value on Reset

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

REGISTER 23-2:	AD1CON2: ADC CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—			—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
15:8		VCFG<2:0>		OFFCAL	—	CSCNA	—	—
7.0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	BUFS	—	SMPI<3:0>			BUFM	ALTS	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

Bit Value	VREFH	VREFL
1xx	AVdd	AVss
011	External VREF+ pin	External VREF- pin
010	AVdd	External VREF- pin
001	External VREF+ pin	AVss
000	AVdd	AVss

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the S&H circuit are connected to VREFL.

0 = Disable Offset Calibration mode

The inputs to the S&H circuit are controlled by AD1CHS or AD1CSSL.

bit 11 Unimplemented: Read as '0'

- bit 10 **CSCNA:** Input Scan Select bit
 - 1 = Scan inputs

0 = Do not scan inputs

- bit 9-8 Unimplemented: Read as '0'
- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
- 1110 = Interrupts at the completion of conversion for each 15" sample/convert sequence
- •

0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, and then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23.10	—	WAKFIL	—	—	—	SEG2PH<2:0> ^(1,4)		,4)
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.8 SEG2PHTS ⁽¹⁾ SAM ⁽²⁾		SEG1PH<2:0>		PRSEG<2:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SJW<1:	0> ⁽³⁾			BRP<	5:0>		

REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

- bit 22 **WAKFIL:** CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x Tq
Note 1:	SEG2PH
2:	3 Time bit sampling is not allowed for BRP < 2.
3:	SJW ≤ SEG2PH.
4:	The Time Quanta per bit must be greater than 7 (that is, $TOBIT > 7$).
••	

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—		—	—		—	
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	—	—	—		FSIZE<4:0> ⁽¹⁾				
15.0	U-0	S/HC-0	S/HC-0	R/W-0	U-0	U-0	U-0	U-0	
10.0	—	FRESET	UINC	DONLY ⁽¹⁾	—	—	_	—	
7:0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	TXEN	TXABAT ⁽²⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ	RTREN	TXPR	<1:0>	

REGISTER 24-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20-16 F	SIZE<4:0>: FIF	O Size bits ⁽¹⁾
-------------	----------------	----------------------------

- 11111 = FIFO is 32 messages deep
- •
- 00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep

00000 = FIFO is 1 message deep

bit 15 Unimplemented: Read as '0'

bit 14 FRESET: FIFO Reset bits

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll whether this bit is clear before taking any action.

0 = No effect

bit 13 UINC: Increment Head/Tail bit

 $\frac{TXEN = 1:}{When this bit is set the FIFO head will increment by a single message$ $<math display="block">\frac{TXEN = 0:}{When this bit is set the FIFO tail will increment by a single message$ When this bit is set the FIFO tail will increment by a single message $<math display="block">\frac{TXEN = 0}{When this bit is set the FIFO tail will increment by a single message }$

bit 12 DONLY: Store Message Data Only bit⁽¹⁾

 $\frac{\text{TXEN} = 1:}{\text{TXEN} = 1:}$ (FIFO configured as a Transmit FIFO) This bit is not used and has no effect. $\frac{\text{TXEN} = 0:}{\text{TXEN} = 0:}$ (FIFO configured as a Receive FIFO)

- 1 =Only data bytes will be stored in the FIFO
- 0 = Full message is stored, including identifier

bit 11-8 Unimplemented: Read as '0'

- bit 7 **TXEN:** TX/RX Buffer Selection bit
 - 1 = FIFO is a Transmit FIFO
 - 0 = FIFO is a Receive FIFO
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 25-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7.0	_			B2	BIPKTGP<6:()>		

Legend:

Logona			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	_	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	—	—	—	—	-
15.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	RESETMGMT	—	—	—	—	—	—	—
7.0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				CLKSEL<3:0> ⁽¹⁾				SCANINC

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 RESETMGMT: Test Reset MII Management bit
 - 1 = Reset the MII Management module
 - 0 = Normal Operation

bit 14-6 **Unimplemented:** Read as '0'

bit 5-2 CLKSEL<3:0>: MII Management Clock Select 1 bits⁽¹⁾

These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

bit 1 NOPRE: Suppress Preamble bit

- 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
- 0 = Normal read/write cycles are performed

bit 0 SCANINC: Scan Increment bit

- 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
- 0 = Continuous reads of the same PHY
- Note 1: Table 25-7 provides a description of the clock divider encoding.

Note:	Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers).
	8-bit accesses are not allowed and are ignored by the hardware.

TABLE 25-7: MIIM CLOCK SELECTION

MIIM Clock Select	EMAC1MCFG<5:2>
SYSCLK divided by 4	000x
SYSCLK divided by 6	0010
SYSCLK divided by 8	0011
SYSCLK divided by 10	0100
SYSCLK divided by 14	0101
SYSCLK divided by 20	0110
SYSCLK divided by 28	0111
SYSCLK divided by 40	1000
Undefined	Any other combination

PIC32MX5XX/6XX/7XX

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standar (unless Operatir	d Operatin otherwise ng temperat	g Cond stated) ure -4 -4	itions: 2.3V to 3.6V $0^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $0^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp		
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions				
Power-D	Oown Curre	nt (IPD) ⁽¹⁾ f	or PIC32	MX575/675/	695/775	795 Family Devices		
DC40	10	40		-40°C				
DC40a	36	100		+25°C	2.21/	Rose Dower Down Current (Note 6)		
DC40b	400	720		+85°C	2.3V	Base Power-Down Current (Note 6)		
DC40h	900	1800		+105°C				
DC40c	41	120		+25°C	°C 3.3V Base Power-Down Current			
DC40d	22	80	μΑ	-40°C				
DC40e	42	120		+25°C				
DC40g	315	400 (5)		+70°C	3.6V	Base Power-Down Current (Note 6)		
DC40f	410	800		+85°C				
DC40i	1000	2000		+105°C				
Module	Differential	Current fo	or PIC32M	IX575/675/6	695/775/	795 Family Devices		
DC41		10			2.3V	Watchdog Timer Current: AIWDT (Notes 3,6)		
DC41a	5		μA	—	3.3V	Watchdog Timer Current: AIWDT (Note 3)		
DC41b		20			3.6V	Watchdog Timer Current: AIWDT (Note 3,6)		
DC42		40			2.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6)		
DC42a	23		μΑ	— 3.3\		RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)		
DC42b		50			3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3,6)		
DC43	—	1300			2.5V	ADC: ΔIADC (Notes 3,4,6)		
DC43a	1100	—	μA	—	3.3V	ADC: Aladc (Notes 3,4)		
DC43b	—	1300		3.6V ADC: △IADC (Notes 3,4,6)				

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}} = \text{VDD}$
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

FIGURE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2	—		ns	_
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	—	_	ns	—
SP72	TscF	SCKx Input Fall Time	—	5	10	ns	—
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	—
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	_	_		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	—	_		ns	See parameter DO31
SP35 TscH2dc	TscH2doV,	SDOx Data Output Valid after SCKx Edge	_	—	20	ns	VDD > 2.7V
	TscL2doV		_	_	30	ns	Vdd < 2.7V
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10	_		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	_		ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp				
Param. No.	am. o. Symbol Characteristics ⁽¹⁾ Min. Typical ⁽²⁾ Max. Units Con			Conditions			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	5	—	25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тѕск + 20	_		ns	_
SP60	SP60 TssL2DOV SDOx Data Output Valid after SSx Edge SSx Edge		_	_	25	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

34.1 Package Marking Information (Continued)

121-Lead TFBGA (10x10x1.1 mm)

124-Lead VTLA (9x9x0.9 mm)

Example

Legend	: XXX	Customer-specific information			
	Y	Year code (last digit of calendar year)			
	YY	Year code (last 2 digits of calendar year)			
	WW	Week code (week of January 1 is week '01')			
	NNN	Alphanumeric traceability code			
		Pb-free JEDEC designator for Matte Tin (Sn)			
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)			
		can be found on the outer packaging for this package.			
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will			
	be carried over to the next line, thus limiting the number of available				
	characters	s for customer-specific information.			