

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                   |
| Core Size                  | 32-Bit Single-Core                                                             |
| Speed                      | 80MHz                                                                          |
| Connectivity               | CANbus, Ethernet, I <sup>2</sup> C, SPI, UART/USART, USB OTG                   |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                     |
| Number of I/O              | 53                                                                             |
| Program Memory Size        | 128KB (128K x 8)                                                               |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                |                                                                                |
| RAM Size                   | 32K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                    |
| Data Converters            | A/D 16x10b                                                                     |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 64-VFQFN Exposed Pad                                                           |
| Supplier Device Package    | 64-VQFN (9x9)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx764f128h-v-mr |
|                            |                                                                                |

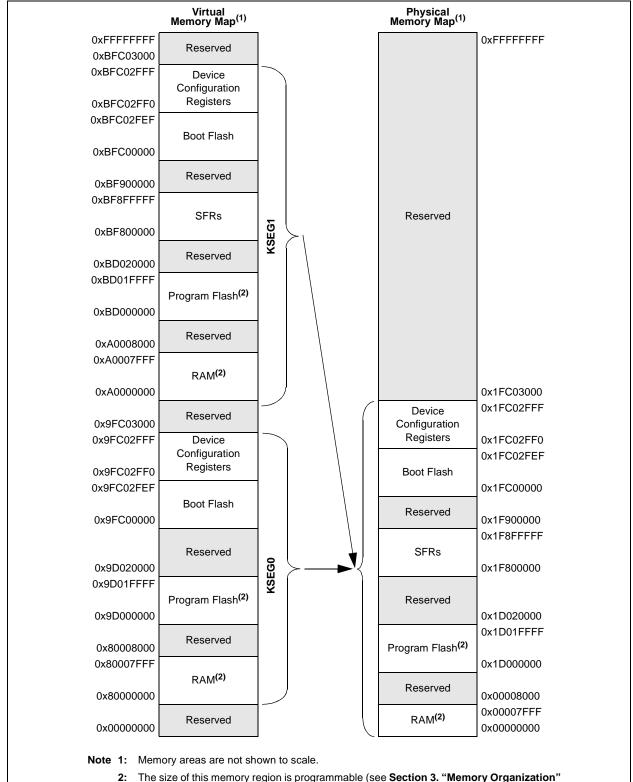
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

### TABLE 8: PIN NAMES FOR 100-PIN USB AND ETHERNET DEVICES (CONTINUED)

### **100-PIN TQFP (TOP VIEW)**


PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L

100

| Pin # | Full Pin Name                   | Pin # | Full Pin Name   |
|-------|---------------------------------|-------|-----------------|
| 71    | EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 | 86    | VDD             |
| 72    | SDO1/OC1/INT0/RD0               | 87    | ETXD1/PMD11/RF0 |
| 73    | SOSCI/CN1/RC13                  | 88    | ETXD0/PMD10/RF1 |
| 74    | SOSCO/T1CK/CN0/RC14             | 89    | ETXERR/PMD9/RG1 |
| 75    | Vss                             | 90    | PMD8/RG0        |
| 76    | OC2/RD1                         | 91    | TRCLK/RA6       |
| 77    | OC3/RD2                         | 92    | TRD3/RA7        |
| 78    | OC4/RD3                         | 93    | PMD0/RE0        |
| 79    | ETXD2/IC5/PMD12/RD12            | 94    | PMD1/RE1        |
| 80    | ETXD3/PMD13/CN19/RD13           | 95    | TRD2/RG14       |
| 81    | OC5/PMWR/CN13/RD4               | 96    | TRD1/RG12       |
| 82    | PMRD/CN14/RD5                   | 97    | TRD0/RG13       |
| 83    | ETXEN/PMD14/CN15/RD6            | 98    | PMD2/RE2        |
| 84    | ETXCLK/PMD15/CN16/RD7           | 99    | PMD3/RE3        |
| 85    | VCAP/VDDCORE                    | 100   | PMD4/RE4        |

Note 1: Shaded pins are 5V tolerant.

## FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX564F128H, PIC32MX564F128L, PIC32MX664F128H, PIC32MX664F128L, PIC32MX764F128H AND PIC32MX764F128L DEVICES



(DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

### REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit
  - 1 = Enable FRC as the clock source for the USB clock source
  - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
  - 1 = Enable Secondary Oscillator
  - 0 = Disable Secondary Oscillator

### bit 0 **OSWEN:** Oscillator Switch Enable bit

- 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2   | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|------------------|------------------|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0                 | U-0              | U-0              |
| 31:24        | —                 | —                 | —                 | —                 | _                 | _                   | _                | —                |
| 22:46        | U-0               | R-0               | U-0               | U-0               | U-0               | U-0                 | U-0              | U-0              |
| 23:16        | —                 | —                 | —                 | —                 | _                 | _                   | —                | —                |
| 45.0         | U-0               | R-0               | U-0               | U-0               | U-0               | U-0                 | U-0              | U-0              |
| 15:8         | —                 | —                 | —                 | _                 | _                 | _                   | _                | —                |
| 7.0          | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0             | R/W-0               | R/W-0            | R/W-0            |
| 7:0          | —                 | —                 |                   |                   | TUN<              | 5:0> <sup>(1)</sup> |                  |                  |

### REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

### Legend:

| · J · ·           |                  |                                    |                    |  |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |  |

### bit 31-6 Unimplemented: Read as '0'

| bit 5-0 | <b>TUN&lt;5:0&gt;:</b> FRC Oscillator Tuning bits <sup>(1)</sup><br>100000 = Center frequency -12.5% for PIC32MX575/595/675/695/775/795 devices<br>100000 = Center frequency -1.5% for PIC32MX534/564/664/764 devices<br>100001 = |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | •                                                                                                                                                                                                                                 |
|         | •                                                                                                                                                                                                                                 |
|         | •                                                                                                                                                                                                                                 |
|         | 111111 =<br>000000 = Center frequency; Oscillator runs at nominal frequency (8 MHz)<br>000001 =                                                                                                                                   |
|         | •                                                                                                                                                                                                                                 |
|         | •                                                                                                                                                                                                                                 |
|         | •                                                                                                                                                                                                                                 |
|         | 011110 =<br>011111 = Center frequency +12.5% for PIC32MX575/595/675/695/775/795 devices<br>011111 = Center frequency +1.5% for PIC32MX534/564/664/764 devices                                                                     |

**Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized nor tested.

| Note: | Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the |
|-------|----------------------------------------------------------------------------------------------------------|
|       | "PIC32 Family Reference Manual" for details.                                                             |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|--|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |  |
| 31.24        |                   | —                 |                   |                   | —                 |                   | —                | —                |  |  |  |  |  |  |
| 23:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |  |
| 23.10        |                   | —                 |                   |                   | —                 |                   | —                | —                |  |  |  |  |  |  |
| 15:8         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |  |
| 10.0         |                   |                   |                   | LMASK<            | <10:3>            |                   |                  |                  |  |  |  |  |  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |  |
| 7.0          | l                 | LMASK<2:0>        |                   | —                 | —                 | —                 | —                | —                |  |  |  |  |  |  |

### REGISTER 9-4: CHEMSK: CACHE TAG MASK REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |  |

bit 31-16 Unimplemented: Write '0'; ignore read

### bit 15-5 LMASK<10:0>: Line Mask bits

- 1 = Enables mask logic to force a match on the corresponding bit position in LTAG<19:0> bits (CHETAG<23:4>) and the physical address
- 0 = Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B (disables mask logic)
- bit 4-0 **Unimplemented:** Write '0'; ignore read

|              |                   |                   |                   | •                 |                   |                   |                  |                  |  |  |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|--|--|
| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |  |  |
| 24.24        | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |  |  |  |  |
| 31:24        | CHEW0<31:24>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |  |  |
| 22.16        | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |  |  |  |  |
| 23:16        | CHEW0<23:16>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |  |  |
| 45.0         | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |  |  |  |  |
| 15:8         | CHEW0<15:8>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |  |  |
| 7.0          | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |  |  |  |  |
| 7:0          |                   |                   |                   | CHEWO             | <7:0>             |                   |                  |                  |  |  |  |  |  |  |  |

### REGISTER 9-5: CHEW0: CACHE WORD 0

| Legend:           |                  |                                    |                    |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |

bit 31-0 **CHEW0<31:0>:** Word 0 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

#### **Control Registers** 10.1

### TABLE 10-1: DMA GLOBAL REGISTER MAP

| ess                         |                       | â         |            |              |            |               |              |              |             | Bi       | its       |      |      |      |      |      |           |      | s          |
|-----------------------------|-----------------------|-----------|------------|--------------|------------|---------------|--------------|--------------|-------------|----------|-----------|------|------|------|------|------|-----------|------|------------|
| Virtual Address<br>(BF88_#) | Register<br>Name      | Bit Range | 31/15      | 30/14        | 29/13      | 28/12         | 27/11        | 26/10        | 25/9        | 24/8     | 23/7      | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1      | 16/0 | All Resets |
| 0000                        | DMACON <sup>(1)</sup> | 31:16     | _          | _            | -          | _             | _            |              | _           | _        | _         | _    | _    | _    | _    | _    | _         | _    | 0000       |
| 3000                        | DMACON                | 15:0      | ON         | _            | _          | SUSPEND       | DMABUSY      | _            | _           | _        | _         | _    | _    | _    | _    | _    | _         | _    | 0000       |
| 2010                        | DMASTAT               | 31:16     | _          | _            | _          | _             | —            | _            | _           | _        | _         | -    | _    | _    | —    | _    | _         | _    | 0000       |
| 3010                        | DIVIASTAT             | 15:0      | _          | —            |            | —             | —            | —            |             |          |           | —    | _    | _    | RDWR | D    | MACH<2:0> | (2)  | 0000       |
| 2020                        | DMAADDR               | 31:16     |            |              |            |               |              |              |             | DMAADD   | DP -21:05 |      |      |      |      |      |           |      | 0000       |
| 3020                        | DIVIAADDR             | 15:0      |            |              |            |               |              |              |             | DIVIAADL | 011431.02 |      |      |      |      |      |           |      | 0000       |
| Legen                       | <b>d</b> .            | nknown    | value on R | eset: — – un | implemente | ed read as '( | ' Reset valu | ies are show | n in hevede | cimal    |           |      |      |      |      |      |           |      |            |

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

DMACH<3> bit is not available on PIC32MX534/564/664/764 devices. 2:

### TABLE 10-2: DMA CRC REGISTER MAP<sup>(1)</sup>

| ess                         |                                 | Bit Range |       | Bits          |       |                        |       |           |      |        |          |        |        |      |      |            |      |      | ú          |
|-----------------------------|---------------------------------|-----------|-------|---------------|-------|------------------------|-------|-----------|------|--------|----------|--------|--------|------|------|------------|------|------|------------|
| Virtual Address<br>(BF88_#) | Register<br>Name <sup>(1)</sup> |           | 31/15 | 30/14         | 29/13 | 28/12                  | 27/11 | 26/10     | 25/9 | 24/8   | 23/7     | 22/6   | 21/5   | 20/4 | 19/3 | 18/2       | 17/1 | 16/0 | All Resets |
| 2020                        | DCRCCON                         | 31:16     | _     | _             | BYTO  | BYTO<1:0> WBO — — BITO |       |           |      |        | —        | _      |        | _    | _    | —          | —    | _    | 0000       |
| 3030                        | DURCUUN                         | 15:0      | —     | —             | —     |                        |       | PLEN<4:0> |      |        | CRCEN    | CRCAPP | CRCTYP | _    | —    | CRCCH<2:0> |      |      |            |
| 3040                        | DCRCDATA                        | 31:16     |       |               |       |                        |       |           |      | DCRCDA | TA-31:05 |        |        |      |      |            |      |      | 0000       |
| 3040                        | DONODAIA                        | 15:0      |       |               |       |                        |       |           |      | DUNUDA | 17431.02 |        |        |      |      |            |      |      | 0000       |
| 3050                        | DCRCXOR                         | 31:16     |       | DCRCXOR<31:0> |       |                        |       |           |      |        |          |        |        |      |      | 0000       |      |      |            |
| 3030                        | DUNUAUK                         | 15:0      |       |               |       |                        |       |           |      | DOROAC |          |        |        |      |      |            |      |      | 0000       |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

### REGISTER 10-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        | —                 | -                 | -                 | —                 | —                 | _                 | —                | —                |
| 23:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 |                   |                   |                   | —                 |                   | —                | —                |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | —                 | _                 | _                 | _                 | —                 | _                 | —                | —                |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | CHPDAT<7:0>       |                   |                   |                   |                   |                   |                  |                  |

### Legend:

| 5                 |                  |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

### bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CHPDAT<7:0>:** Channel Data Register bits <u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

> All other modes: Unused.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        |                   | —                 | _                 | _                 | —                 | _                 | _                | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        |                   | —                 | _                 | —                 | —                 | -                 | _                | —                |
| 45.0         | R/W-0             | U-0               | R/W-0             | R/W-0             | R/W-0             | U-0               | R/W-0            | R/W-0            |
| 15:8         | ON <sup>(1)</sup> | —                 | SIDL              | IREN              | RTSMD             | -                 | UEN              | <1:0>            |
| 7.0          | R/W-0             | R/W-0             | R/W-0, HC         | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | WAKE              | LPBACK            | ABAUD             | RXINV             | BRGH              | PDSEL             | <1:0>            | STSEL            |

### **REGISTER 20-1: UXMODE: UARTX MODE REGISTER**

| Legend:           |                  | HC = Cleared by hard | ware               |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented b  | it, read as '0'    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

### bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** UARTx Enable bit<sup>(1)</sup>
  - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits.
  - 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal.
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
  - 1 = Discontinue operation when device enters Idle mode
  - 0 = Continue operation when device enters Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
  - 1 = IrDA is enabled
  - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
  - $1 = \overline{\text{UxRTS}}$  pin is in Simplex mode
  - $0 = \overline{\text{UxRTS}}$  pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 UEN<1:0>: UARTx Enable bits
  - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
  - 10 = UxTX, UxRX,  $\overline{\text{UxCTS}}$  and  $\overline{\text{UxRTS}}$  pins are enabled and used
  - 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
  - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
  - 1 = Wake-up is enabled
  - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
  - 1 = Loopback mode is enabled
  - 0 = Loopback mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        |                   |                   |                   |                   |                   |                   |                  | —                |
| 45.0         | R-0               | R/W-0, HS, SC     | U-0               | U-0               | R-0               | R-0               | R-0              | R-0              |
| 15:8         | IBF               | IBOV              | _                 | _                 | IB3F              | IB2F              | IB1F             | IB0F             |
| 7.0          | R-1               | R/W-0, HS, SC     | U-0               | U-0               | R-1               | R-1               | R-1              | R-1              |
| 7:0          | OBE               | OBUF              | _                 | _                 | OB3E              | OB2E              | OB1E             | OB0E             |

### REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (ONLY SLAVE MODES)

| Legend: HS = Set by Hardware |                  | SC = Cleared by software  |                    |
|------------------------------|------------------|---------------------------|--------------------|
| R = Readable bit             | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR            | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 **IBF:** Input Buffer Full Status bit
  - 1 = All writable input buffer registers are full
  - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
  - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
  - 0 = An overflow has not occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
  - 1 = Input buffer contains data that has not been read (reading buffer will clear this bit)
  - 0 = Input buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
  - 1 = All readable output buffer registers are empty
  - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
  - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
  - 0 = An underflow has not occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
  - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
  - 0 = Output buffer contains data that has not been transmitted

| REGISTE      | REGISTER 23-3: AD1CON3: ADC CONTROL REGISTER 3 |                   |                   |                          |                   |                   |                  |                  |
|--------------|------------------------------------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|------------------|------------------|
| Bit<br>Range | Bit<br>31/23/15/7                              | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4        | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
| 04.04        | U-0                                            | U-0               | U-0               | U-0                      | U-0               | U-0               | U-0              | U-0              |
| 31:24        | —                                              | —                 | —                 | —                        | —                 | —                 | —                | —                |
| 00.40        | U-0                                            | U-0               | U-0               | U-0                      | U-0               | U-0               | U-0              | U-0              |
| 23:16        | —                                              | —                 | —                 | —                        | —                 | —                 | —                | —                |
| 45.0         | R/W-0                                          | U-0               | U-0               | R/W-0                    | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 15:8         | ADRC                                           | —                 | —                 | SAMC<4:0> <sup>(1)</sup> |                   |                   |                  |                  |
| 7.0          | R/W-0                                          | R/W-0             | R/W-0             | R/W-0                    | R/W-0             | R/W-0             | R/W              | R/W-0            |
| 7:0          | ADCS<7:0> <sup>(2)</sup>                       |                   |                   |                          |                   |                   |                  |                  |

### Legend:

| 0                 |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

| bit 15    | ADRC: ADC Conversion Clock Source bit               |
|-----------|-----------------------------------------------------|
|           | 1 = Clock derived from FRC                          |
|           | 0 = Clock derived from Peripheral Bus Clock (PBCLK) |
| bit 14-13 | Unimplemented: Read as '0'                          |

```
bit 12-8 SAMC<4:0>: Auto-Sample Time bits<sup>(1)</sup>
          11111 = 31 TAD
          00001 = 1 TAD
          00000 = 0 TAD (Not allowed)
          ADCS<7:0>: ADC Conversion Clock Select bits<sup>(2)</sup>
bit 7-0
          11111111 =TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD
```

```
00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD
00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
```

- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
  - 2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1.

Table 25-1, Table 25-2, Table 25-3 and Table 25-4 show four interfaces and the associated pins that can be used with the Ethernet Controller.

## TABLE 25-1:MII MODE DEFAULT<br/>INTERFACE SIGNALS<br/>(FMIIEN = 1, FETHIO = 1)

| Pin Name | Description          |
|----------|----------------------|
| EMDC     | Management Clock     |
| EMDIO    | Management I/O       |
| ETXCLK   | Transmit Clock       |
| ETXEN    | Transmit Enable      |
| ETXD0    | Transmit Data        |
| ETXD1    | Transmit Data        |
| ETXD2    | Transmit Data        |
| ETXD3    | Transmit Data        |
| ETXERR   | Transmit Error       |
| ERXCLK   | Receive Clock        |
| ERXDV    | Receive Data Valid   |
| ERXD0    | Receive Data         |
| ERXD1    | Receive Data         |
| ERXD2    | Receive Data         |
| ERXD3    | Receive Data         |
| ERXERR   | Receive Error        |
| ECRS     | Carrier Sense        |
| ECOL     | Collision Indication |

# TABLE 25-2:RMII MODE DEFAULT<br/>INTERFACE SIGNALS<br/>(FMIIEN = 0, FETHIO = 1)

| Pin Name | Description                        |
|----------|------------------------------------|
| EMDC     | Management Clock                   |
| EMDIO    | Management I/O                     |
| ETXEN    | Transmit Enable                    |
| ETXD0    | Transmit Data                      |
| ETXD1    | Transmit Data                      |
| EREFCLK  | Reference Clock                    |
| ECRSDV   | Carrier Sense – Receive Data Valid |
| ERXD0    | Receive Data                       |
| ERXD1    | Receive Data                       |
| ERXERR   | Receive Error                      |

**Note:** Ethernet controller pins that are not used by selected interface can be used by other peripherals.

## TABLE 25-3:MII MODE ALTERNATE<br/>INTERFACE SIGNALS<br/>(FMIIEN = 1, FETHIO = 0)

| Pin Name  | Description                         |
|-----------|-------------------------------------|
| AEMDC     | Management Clock                    |
| AEMDIO    | Management I/O                      |
| AETXCLK   | Transmit Clock                      |
| AETXEN    | Transmit Enable                     |
| AETXD0    | Transmit Data                       |
| AETXD1    | Transmit Data                       |
| AETXD2    | Transmit Data                       |
| AETXD3    | Transmit Data                       |
| AETXERR   | Transmit Error                      |
| AERXCLK   | Receive Clock                       |
| AERXDV    | Receive Data Valid                  |
| AERXD0    | Receive Data                        |
| AERXD1    | Receive Data                        |
| AERXD2    | Receive Data                        |
| AERXD3    | Receive Data                        |
| AERXERR   | Receive Error                       |
| AECRS     | Carrier Sense                       |
| AECOL     | Collision Indication                |
| Note: The | MII mode Alternate Interface is not |

**Note:** The MII mode Alternate Interface is not available on 64-pin devices.

## TABLE 25-4:RMII MODE ALTERNATE<br/>INTERFACE SIGNALS<br/>(FMIIEN = 0, FETHIO = 0)

| Pin Name | Description                        |
|----------|------------------------------------|
| AEMDC    | Management Clock                   |
| AEMDIO   | Management I/O                     |
| AETXEN   | Transmit Enable                    |
| AETXD0   | Transmit Data                      |
| AETXD1   | Transmit Data                      |
| AEREFCLK | Reference Clock                    |
| AECRSDV  | Carrier Sense – Receive Data Valid |
| AERXD0   | Receive Data                       |
| AERXD1   | Receive Data                       |
| AERXERR  | Receive Error                      |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3        | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0         |
|--------------|-------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|------------------|--------------------------|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0                      | U-0               | U-0              | U-0                      |
| 31.24        |                   | —                 | -                 | -                 | —                        | —                 | —                | —                        |
| 23:16        | U-0               | U-0               | U-0               | U-0               | U-0                      | U-0               | U-0              | U-0                      |
| 23.10        |                   | —                 | -                 | -                 | —                        | —                 | —                | —                        |
| 15:8         | U-0               | U-0               | U-0               | U-0               | R/W-0                    | U-0               | U-0              | R/W-0                    |
| 10.0         | _                 | —                 | _                 | _                 | RESETRMII <sup>(1)</sup> | —                 | —                | SPEEDRMII <sup>(1)</sup> |
| 7:0          | U-0               | U-0               | U-0               | U-0               | U-0                      | U-0               | U-0              | U-0                      |
| 7.0          |                   | _                 |                   |                   | _                        | _                 |                  | —                        |

### REGISTER 25-29: EMAC1SUPP: ETHERNET CONTROLLER MAC PHY SUPPORT REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
|-------------------|------------------|----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

- bit 31-12 Unimplemented: Read as '0'
- bit 11 **RESETRMII:** Reset RMII Logic bit<sup>(1)</sup>
  - 1 = Reset the MAC RMII module
    - 0 = Normal operation.
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPEEDRMII: RMII Speed bit<sup>(1)</sup>
  - This bit configures the Reduced MII logic for the current operating speed.
    - 1 = RMII is running at 100 Mbps
    - 0 = RMII is running at 10 Mbps
- bit 7-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for the RMII module.

**Note:** Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 31.24        | —                 | —                 |                   | —                 | —                 | —                 |                  | —                |  |
| 22:46        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 23:16        |                   | -                 |                   | —                 | —                 |                   |                  | —                |  |
| 15:8         | U-0               | U-0               | R/W-0             | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 15.6         | —                 | —                 | SIDL              | —                 | —                 | —                 |                  | —                |  |
| 7:0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | R-0              | R-0              |  |
| 7:0          | —                 | —                 | —                 | —                 |                   | —                 | C2OUT            | C1OUT            |  |

### REGISTER 26-2: CMSTAT: COMPARATOR STATUS REGISTER

| -   | -    |  |
|-----|------|--|
|     | ond  |  |
| Leu | ena: |  |
|     |      |  |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |  |
|-------------------|------------------|---------------------------|--------------------|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |  |

### bit 31-14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in Idle Control bit
  - 1 = All Comparator modules are disabled while in Idle mode
  - 0 = All Comparator modules continue to operate while in Idle mode

### bit 12-2 Unimplemented: Read as '0'

- bit 1 **C2OUT:** Comparator Output bit
  - 1 = Output of Comparator 2 is a '1'
  - 0 = Output of Comparator 2 is a '0'
- bit 0 C1OUT: Comparator Output bit
  - 1 = Output of Comparator 1 is a '1'
  - 0 = Output of Comparator 1 is a '0'

### 29.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MX5XX/6XX/7XX family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. Key features include:

- Flexible device configuration
- Watchdog Timer (WDT)
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>)

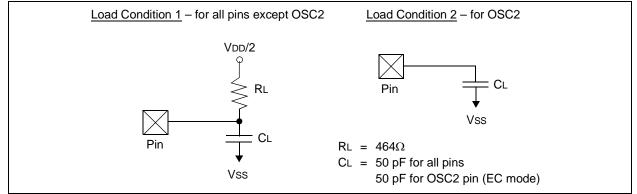
### 29.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- DEVID: Device and Revision ID Register

| DC CHARACTERISTICS |        |                                                         | Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp |    |          |       |                                                   |  |  |
|--------------------|--------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|-------|---------------------------------------------------|--|--|
| Param.<br>No.      | Symbol | Characteristics                                         | tics Min. Typical <sup>(1)</sup> Max.                                                                                                                                                              |    | Max.     | Units | Conditions                                        |  |  |
|                    | VIL    | Input Low Voltage                                       |                                                                                                                                                                                                    |    |          |       |                                                   |  |  |
| DI10               |        | I/O Pins:                                               |                                                                                                                                                                                                    |    |          |       |                                                   |  |  |
|                    |        | with TTL Buffer                                         | Vss                                                                                                                                                                                                | —  | 0.15 Vdd | V     |                                                   |  |  |
|                    |        | with Schmitt Trigger Buffer                             | Vss                                                                                                                                                                                                | —  | 0.2 Vdd  | V     |                                                   |  |  |
| DI15               |        | MCLR <sup>(2)</sup>                                     | Vss                                                                                                                                                                                                | —  | 0.2 Vdd  | V     |                                                   |  |  |
| DI16               |        | OSC1 (XT mode)                                          | Vss                                                                                                                                                                                                | —  | 0.2 Vdd  | V     | (Note 4)                                          |  |  |
| DI17               |        | OSC1 (HS mode)                                          | Vss                                                                                                                                                                                                | —  | 0.2 Vdd  | V     | (Note 4)                                          |  |  |
| DI18               |        | SDAx, SCLx                                              | Vss                                                                                                                                                                                                | _  | 0.3 Vdd  | V     | SMBus disabled<br>(Note 4)                        |  |  |
| DI19               |        | SDAx, SCLx                                              | Vss                                                                                                                                                                                                | —  | 0.8      | V     | SMBus enabled<br>(Note 4)                         |  |  |
|                    | Vih    | Input High Voltage                                      |                                                                                                                                                                                                    |    |          |       |                                                   |  |  |
| DI20               |        | I/O Pins not 5V-tolerant <sup>(5)</sup>                 | 0.65 VDD                                                                                                                                                                                           | —  | Vdd      | V     | (Note 4,6)                                        |  |  |
|                    |        | I/O Pins 5V-tolerant with<br>PMP <sup>(5)</sup>         | 0.25 VDD + 0.8V                                                                                                                                                                                    | _  | 5.5      | V     | (Note 4,6)                                        |  |  |
|                    |        | I/O Pins 5V-tolerant <sup>(5)</sup>                     | 0.65 Vdd                                                                                                                                                                                           | _  | 5.5      | V     |                                                   |  |  |
| DI28               |        | SDAx, SCLx                                              | 0.65 Vdd                                                                                                                                                                                           | —  | 5.5      | V     | SMBus disabled (Note 4,6)                         |  |  |
| DI29               |        | SDAx, SCLx                                              | 2.1                                                                                                                                                                                                | _  | 5.5      | V     | SMBus enabled,<br>2.3V ≤ VPIN ≤ 5.5<br>(Note 4,6) |  |  |
| DI30               | ICNPU  | Change Notification Pull-up Current                     | —                                                                                                                                                                                                  | —  | -50      | μA    | VDD = 3.3V, VPIN = VSS<br>(Note 3,6)              |  |  |
| DI31               | ICNPD  | Change Notification<br>Pull-down Current <sup>(4)</sup> | —                                                                                                                                                                                                  | 50 | _        | μA    | VDD = 3.3V, VPIN = VDD                            |  |  |

### TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

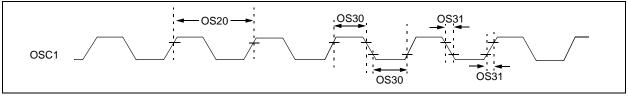

**Note 1:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).</p>
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

### 32.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters.

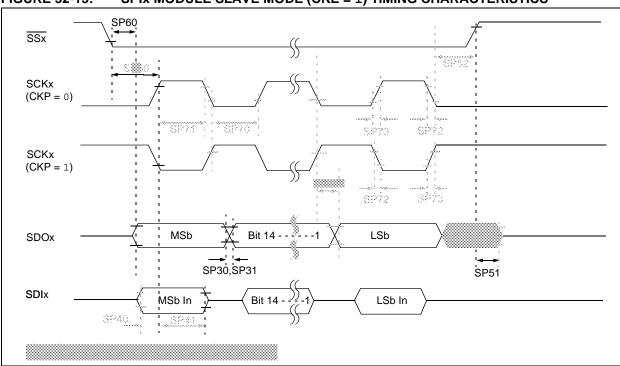
### FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS




### TABLE 32-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

| AC CHARACTERISTICS |        |                       | (unles                                            | ard Operati<br>s otherwise<br>ting tempera | e stated | <b>l)</b><br>∙40°C ≤ | : <b>2.3V to 3.6V</b><br>TA ≤ +85°C for Industrial<br>TA ≤ +105°C for V-Temp |
|--------------------|--------|-----------------------|---------------------------------------------------|--------------------------------------------|----------|----------------------|------------------------------------------------------------------------------|
| Param.<br>No.      | Symbol | Characteristics       | Min. Typical <sup>(1)</sup> Max. Units Conditions |                                            |          |                      |                                                                              |
| DO50               | Cosco  | OSC2 pin              |                                                   | _                                          | 15       | pF                   | In XT and HS modes when an<br>external crystal is used to drive<br>OSC1      |
| DO56               | Сю     | All I/O pins and OSC2 |                                                   | —                                          | 50       | pF                   | In EC mode                                                                   |
| DO58               | Св     | SCLx, SDAx            |                                                   | —                                          | 400      | pF                   | In I <sup>2</sup> C mode                                                     |

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


### FIGURE 32-2: EXTERNAL CLOCK TIMING



### TABLE 32-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

|               |           |                          |                                | (unless                                      | 0 1                                           | C ≤ TA ≤ | +85°C      | <b>6∨</b><br>for Industrial<br>C for V-Temp |                       |
|---------------|-----------|--------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------|----------|------------|---------------------------------------------|-----------------------|
| Param.<br>No. | Symbol    | Chai                     | Characteristics <sup>(1)</sup> |                                              | Characteristics <sup>(1)</sup> Min. Max. Unit |          | Units      | Condit                                      | ions                  |
| TB10          | ТтхН      | TxCK<br>High Time        | Synchrono<br>prescaler         | ous, with                                    | [(12.5 ns or 1 TPB)/N]<br>+ 25 ns             | —        | ns         | Must also meet<br>parameter<br>TB15         | value<br>(1, 2, 4, 8, |
| TB11          | ΤτxL      | TxCK<br>Low Time         | Synchrono<br>prescaler         | ous, with                                    | [(12.5 ns or 1 ТРВ)/N]<br>+ 25 ns             |          | ns         | Must also meet<br>parameter<br>TB15         | 16, 32, 64,<br>256)   |
| TB15          | ΤτχΡ      | TxCK<br>Input            | Synchrono<br>prescaler         | ous, with                                    | [(Greater of [(25 ns or<br>2 Трв)/N] + 30 ns  | _        | ns         | VDD > 2.7V                                  |                       |
|               | Period    |                          |                                | [(Greater of [(25 ns or<br>2 Трв)/N] + 50 ns | —                                             | ns       | VDD < 2.7V |                                             |                       |
| TB20          | TCKEXTMRL | Delay from<br>Clock Edge |                                |                                              | _                                             | 1        | Трв        |                                             |                       |

Note 1: These parameters are characterized, but not tested in manufacturing.



### FIGURE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

### TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

| AC CHA        |                       | (unless o                                                                 | d Operating<br>otherwise st<br>g temperatur | t <b>ated)</b><br>e -40° | °C ≤ TA ≤ | <b>3V to 3.6V</b><br>≤ +85°C for Industrial<br>≤ +105°C for V-Temp |                    |
|---------------|-----------------------|---------------------------------------------------------------------------|---------------------------------------------|--------------------------|-----------|--------------------------------------------------------------------|--------------------|
| Param.<br>No. | Symbol                | Characteristics <sup>(1)</sup>                                            | Min.                                        | Typical <sup>(2)</sup>   | Max.      | Units                                                              | Conditions         |
| SP70          | TscL                  | SCKx Input Low Time <sup>(3)</sup>                                        | Tsck/2                                      |                          | —         | ns                                                                 | —                  |
| SP71          | TscH                  | SCKx Input High Time <sup>(3)</sup>                                       | Tsck/2                                      | —                        | _         | ns                                                                 | —                  |
| SP72          | TscF                  | SCKx Input Fall Time                                                      | _                                           | 5                        | 10        | ns                                                                 | —                  |
| SP73          | TscR                  | SCKx Input Rise Time                                                      |                                             | 5                        | 10        | ns                                                                 | —                  |
| SP30          | TDOF                  | SDOx Data Output Fall Time <sup>(4)</sup>                                 | —                                           | —                        | _         | ns                                                                 | See parameter DO32 |
| SP31          | TDOR                  | SDOx Data Output Rise Time <sup>(4)</sup>                                 |                                             | —                        | _         | ns                                                                 | See parameter DO31 |
| SP35          | TscH2doV,             | SDOx Data Output Valid after                                              | _                                           | —                        | 20        | ns                                                                 | VDD > 2.7V         |
|               | TscL2doV              | SCKx Edge                                                                 | _                                           | —                        | 30        | ns                                                                 | VDD < 2.7V         |
| SP40          | TDIV2SCH,<br>TDIV2SCL | Setup Time of SDIx Data Input to SCKx Edge                                | 10                                          | —                        | —         | ns                                                                 | —                  |
| SP41          | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                                 | 10                                          | —                        | —         | ns                                                                 | —                  |
| SP50          | TssL2scH,<br>TssL2scL | $\overline{SSx} \downarrow$ to SCKx $\downarrow$ or SCKx $\uparrow$ Input | 175                                         | —                        | —         | ns                                                                 | —                  |

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

### TABLE 32-37: 10-BIT ADC CONVERSION RATE PARAMETERS

| (unless otherw                       | Standard Operating Conditions (see Note 3): 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp |                             |               |              |                            |  |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--------------|----------------------------|--|--|--|--|--|
| ADC Speed <sup>(2)</sup>             | TAD<br>Minimum                                                                                                                                                                                                  | Sampling<br>Time<br>Minimum | Rs<br>Maximum | Vdd          | ADC Channels Configuration |  |  |  |  |  |
| 1 Msps to<br>400 ksps <sup>(1)</sup> | 65 ns                                                                                                                                                                                                           | 132 ns                      | 500Ω          | 3.0V to 3.6V | ANX CHX<br>S&H<br>ADC      |  |  |  |  |  |
| Up to 400 ksps                       | 200 ns                                                                                                                                                                                                          | 200 ns                      | 5.0 kΩ        | 2.5V to 3.6V | ANX ADC<br>ANX or VREF-    |  |  |  |  |  |

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

**3:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

### **Revision J (September 2016)**

This revision includes typographical and formatting updates throughout the data sheet text. In addition, all SFR Register maps were moved from the Memory chapter to their respective peripheral chapters.

All other major updates are referenced by their respective section in Table B-7.

| Section Name                                                                     | Update Description                                                                                                      |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| "32-bit Microcontrollers (up to 512                                              | Updated Communication Interfaces for LIN support to 2.1.                                                                |
| KB Flash and 128 KB SRAM) with<br>Graphics Interface, USB, CAN, and<br>Ethernet" | Updated Qualification and Class B Support to AEC-Q100 REVH.                                                             |
| 2.0 "Guidelines for Getting Started with 32-bit MCUs"                            | The Recommended Minimum Connection diagram was updated (see Figure 2-1).                                                |
|                                                                                  | The Example of MCLR Pin Connections diagram was updated (see Figure 2-<br>2).                                           |
|                                                                                  | 2.11 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.                              |
| 4.0 "Memory Organization"                                                        | The SFR Memory Map was added (see Table 4-1).                                                                           |
| 7.0 "Interrupt Controller"                                                       | The UART interrupt sources were updated in the Interrupt IRQ, Vector, and Bit location table (see Table 7-1).           |
| 8.0 "Oscillator Configuration"                                                   | Updated the bit value definitions for the TUN<5:0> bits in the OCSTUN register (see Register 8-2).                      |
| 15.0 "Watchdog Timer (WDT)"                                                      | The content in this chapter was relocated from the Special Features chapter to its own chapter.                         |
| 18.0 "Serial Peripheral Interface (SPI)"                                         | The register map tables were combined (see Table 18-1).                                                                 |
| 19.0 "Inter-Integrated Circuit (I <sup>2</sup> C)"                               | The register map tables were combined (see Table 19-1).                                                                 |
|                                                                                  | The PMADDR register was updated (see Register 21-3).                                                                    |
| 21.0 "Parallel Master Port (PMP)"                                                | The bit value definitions for the ADRMUX<1:0> and CSF<1:0> bits in the PMCON register were updated (see Register 21-1). |
| 29.0 "Special Features"                                                          | Removed the duplicate bit value definition for '010' in the DEVCFG2 register (see Register 29-3).                       |
|                                                                                  | Note 1 was added to the Programming, Debugging, and Trace Ports block diagram (see Figure 29-2).                        |
|                                                                                  | The DDPCON register was relocated (see Register 29-6).                                                                  |
|                                                                                  | The Device ID, Revision, and Configuration Summary was updated (see Table 29-2).                                        |