

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Active
MIPS32 ® M4K™
32-Bit Single-Core
80MHz
CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Brown-out Detect/Reset, DMA, POR, PWM, WDT
53
128KB (128K x 8)
FLASH
-
32K x 8
2.3V ~ 3.6V
A/D 16x10b
Internal
-40°C ~ 85°C (TA)
Surface Mount
64-VFQFN Exposed Pad
64-VQFN (9x9)
https://www.e-xfl.com/product-detail/microchip-technology/pic32mx764f128ht-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nun	nber ⁽¹⁾		D .		
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
AECRS		41	J7	B23	1	ST	Alternate Ethernet carrier sense ⁽²⁾
AEMDC	30	71	C11	A46	0	_	Alternate Ethernet Management Data clock ⁽²⁾
AEMDIO	49	68	E9	B37	I/O		Alternate Ethernet Management Data ⁽²⁾
TRCLK	—	91	C5	B51	0	—	Trace clock
TRD0	—	97	A3	B55	0	—	Trace Data bits 0-3
TRD1	_	96	C3	A65	0		
TRD2	—	95	C4	B54	0		
TRD3	—	92	B5	A62	0	—	
PGED1	16	25	K2	B14	I/O	ST	Data I/O pin for Programming/ Debugging Communication Channel 1
PGEC1	15	24	K1	A15	I	ST	Clock input pin for Programming/ Debugging Communication Channel 1
PGED2	18	27	J3	B16	I/O	ST	Data I/O pin for Programming/ Debugging Communication Channel 2
PGEC2	17	26	L1	A20	I	ST	Clock input pin for Programming/ Debugging Communication Channel 2
MCLR	7	13	F1	B7	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	19	30	J4	A22	Ρ	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	L3	B18	Р	Р	Ground reference for analog modules
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	A7, C2, C9, E5, K8, F8, G5, H4, H6	A10, A14, A30, A41, A48, A59, B1, B21, B53	Ρ	_	Positive supply for peripheral logic and I/O pins
VCAP	56	85	B7	B48	Р		Capacitor for Internal Voltage Regulator
Vss	9, 25, 41	15, 36, 45, 65, 75	A8, B10, D4, D5, E7, F5, F10, G6, G7, H3	A3, A25, A43, A63, B8, B12, B25, B41, B46	Ρ	_	Ground reference for logic and I/O pins. This pin must be connected at all times.
VREF+	16	29	K3	B17	I	Analog	Analog voltage reference (high) input
VREF-	15	28	L2	A21	I	Analog	Analog voltage reference (low) input
Legend: C	CMOS = CMC ST = Schmitt	S compatib	le input or o	output S levels	A O	nalog = A = Outpu	Analog input P = Power t I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer
Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Note 1: If the USB module is not used, this pin must be connected to VDD.

2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 3Ω and the inductor capacity greater than 10 mA.

Where:

$$f = \frac{F_{CNV}}{2}$$
 (i.e., ADC conversion rate/2)
$$f = \frac{1}{(2\pi\sqrt{LC})}$$
$$L = \left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$$

3: Aluminum or electrolytic capacitors should not be used. ESR $\leq 3\Omega$ from -40°C to 125°C @ SYSCLK frequency (i.e., MIPS).

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (1 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 32.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met without interfering with the Debug/Programmer tools.

- 2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
- **3:** No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. For detailed information, refer to **Section 3.** "Memory Organization" (DS60001115) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MX5XX/6XX/7XX microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX5XX/6XX/7XX devices to execute from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1) mode address space
- Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable (KSEG0) and non-cacheable (KSEG1) address regions

4.1 Memory Layout

PIC32MX5XX/6XX/7XX microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX5XX/6XX/7XX devices are illustrated in Figure 4-1 through Figure 4-6. Table 4-1 provides memory map information for the Special Function Registers (SFRs).

		P	1C32M)	K/95F51	IZL DE	/ICES													
ess		0								В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_			_						—	—			_	_	SS0	0000
		15:0		_	_	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INTTEP	INTOEP	0000
1010	INTSTAT ⁽³⁾	31:16		_	_		_	_		_	_	_	_	-			_		0000
		31.16	_	—	_	—	—		SRIPL<2.0>	•	—	—			VEC	<5.0>			0000
1020	IPTMR	15:0					IPTMR<31:0>									0000			
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	SPI1TXIF	SPI1RXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF ⁽²⁾	CAN1IF	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF SPI4TXIF I2C5MIF	U2RXIF SPI4RXIF I2C5SIF	U2EIF SPI4EIF I2C5BIF	U3TXIF SPI2TXIF I2C4MIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF I2C4BIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	0000
1050	IFS2	15:0		_	_	_	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	SPI1TXIE	SPI1RXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE ⁽²⁾	CAN1IE	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
4000	1500	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	0000
1080	IEC2	15:0		_	_	-	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPCO	31:16		_	_		INT0IP<2:0>	,	INTOIS	S<1:0>	_	_	_		CS1IP<2:0>		CS1IS	3<1:0>	0000
1050	11 00	15:0	_	—	—		CS0IP<2:0>		CSOIS	S<1:0>	—	—	—		CTIP<2:0>		CTIS	<1:0>	0000
10A0	IPC1	31:16	_	—	_		INT1IP<2:0>	,	INT1IS	S<1:0>	_	—	—		OC1IP<2:0>		OC1IS	3<1:0>	0000
		15:0	_	—	_		IC1IP<2:0>		IC1IS	<1:0>	—	_	—		T1IP<2:0>		T1IS-	<1:0>	0000
10B0	IPC2	31:16		_	_		INT2IP<2:0>	•	INT2IS	5<1:0>	_	_	—	OC2IP<2:0>		OC2IS	3<1:0>	0000	
		15:0	_	_	_		IC2IP<2:0>	IC2IS<1:0>		_	_	_	T2IP<2:0>		12IP<2:0>		T2IS-	<1:0>	0000
1000	IPC3	31:16		_	_		11N1 31P<2:0>	`	111131	><1:0>	_	_	_		UU3IP<2:0>	•	00318	><1:0>	0000
1000		15.0							000	-1.0							1.210	21105	

TABLE 7-7:INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND
PIC32MX795F512L DEVICES

d: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This bit is unimplemented on PIC32MX764F128L device.

3: This register does not have associated CLR, SET, and INV registers.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
35E0		31:16	-	-	—	—	—	—	-	—	_	—	—	—	—	—	-	—	0000
001.0	DOINOOIZ	15:0								CHSSIZ	Z<15:0>								0000
2000		31:16	—	—	_	_	_	- 1	—	—	_	_	_	_	-	_	_	_	0000
3600	DCH/DSIZ	15:0	CHDSIZ<15:0> 00												0000				
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	—	-	_	_	0000
3610	DCH/SPIR	15:0	CHSPTR<15:0> 00												0000				
2620		31:16	_	_	—	-	-	-	_	_	_	—	-	_	—	_	_	_	0000
3020	DCHIDPIK	15:0								CHDPT	R<15:0>								0000
2020		31:16	_	_	—	_	-	—	_	-	_	—	_	_	—	_	—	_	0000
3630	DCH/CSIZ	15:0								CHCSIZ	Z<15:0>								0000
2040		31:16	_	_	-	-	-	-	_	-	_	-	-	_	-	-	_	_	0000
3640	DCH/CPIR	15:0								CHCPT	R<15:0>								0000
2650		31:16	_	—	—	—	_	_	—	—	—	—	_	_	—	—	_	_	0000
3650	DCH7DAT	15:0		_	_	_	_	_	_	—				CHPD/	AT<7:0>				0000

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

13.2 Control Registers

TABLE 13-1: TIMER1 REGISTER MAP

ess										В	its								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	TACON	31:16	—	—	—	—	—	—	—	-	—	-	_	—	—	—	—	—	0000
0600	TICON	15:0	ON	_	SIDL	TWDIS	TWIP	_	_	—	TGATE	_	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
0610	TMD1	31:16	_	_	_	—	—	_	_	—	_	_	_	—	_	_	-	_	0000
0610	TIVIKT	15:0		TMR1<15:0> 0000															
0620	DD1	31:16	_	_	_	_	_		_	_	_	_	_	_	_	_	_	—	0000
0020	FRI	15:0		PR1<15:0> FFFF															

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR104	<3:0>		HR01<3:0>					
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:10		MIN10	<3:0>		MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10	<3:0>			SEC01	<3:0>			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	_	_	_	_	_	_	_	_		
Legend:										
R = Readable bit W = Writable bit U = Unimp			U = Unimple	emented bit, re	ead as '0'					

REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

			1, 1640 43 0
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 31-28 HR10<3:0>: Binary-Co	ded Decimal Value of Hou	irs bits, 10 digits; contains a	value from 0 to 2

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	_				_	—		—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	-	—			
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
15.0	—	—	—								
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
7.0	_		ICODE<6:0> ⁽¹⁾								

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit							
	11111 = Filter 31							
	11110 = Filter 30							
	•							
	•							
	• 00001 = Filter 1							
	00000 = Filter 0							
bit 7	Unimplemented: Read as '0'							
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾							
	1111111 = Reserved							
	•							
	•							
	•							
	1001001 = Reserved							
	1001000 = Invalid message received (IVRIF)							
	1000111 = CAN module mode change (MODIF) 1000110 = CAN timestamp timer (CTMPIE)							
	1000110 - Bus bandwidth error (SERRIE)							
	1000100 = Address error interrupt (SERRIF)							
	1000011 = Receive FIFO overflow interrupt (RBOVIF)							
	1000010 = Wake-up interrupt (WAKIF)							
	1000001 = Error Interrupt (CERRIF)							
	1000000 = No interrupt							
	0111111 = Reserved							
	•							
	:							
	0100000 = Reserved							
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)							
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)							
	•							
	•							
	• 0000001 - FIEO1 Interrupt (CiESTAT<1> set)							
	0.000000 = FIFOO Interrupt (CiFSTAT<0 > set)							

Note 1: These bits are only updated for enabled interrupts.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R-x	R-x										
31.24	CiFIFOUAn<31:24>											
22.16	R-x	R-x										
23.10		CiFIFOUAn<23:16>										
15.0	R-x	R-x										
15.0	CiFIFOUAn<15:8>											
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾				
7.0	CiFIFOUAn<7:0>											

REGISTER 24-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER 'n' (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
51.24	—	—	—	—	—	_		—						
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23.10	—	—	—	—	—	_		—						
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15.0	—	—	—	—	—	_		—						
7.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0						
7.0	_	_	_		(CiFIFOCI<4:0	>							

REGISTER 24-23: CiFIFOCIN: CAN MODULE MESSAGE INDEX REGISTER 'n' (n = 0 THROUGH 31)

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

REGISTER 25-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24		—		—	—	—		—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	_	—	—	—	_	—				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1				
10.0	MACMAXF<15:8> ⁽¹⁾											
7:0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0				
				MACMAXF	<7:0> ⁽¹⁾							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits⁽¹⁾

These bits reset to 0x05EE, which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field.

Note 1: If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

28.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MX5XX/6XX/7XX family of devices. These devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

28.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the Peripheral Bus Clock (PBCLK) and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

28.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- **Posc Idle mode:** the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.

- **Sosc Idle mode:** the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

28.3 Power-Saving Operation

Peripherals and the CPU can be halted or disabled to further reduce power consumption.

28.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 28.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit, if enabled, remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

TABLE 29-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess										Bit	S								
Virtual Addr (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	FVBUSONIO	FUSBIDIO	_	_	_	FCANIO	FETHIO	FMIIEN	-	_	_		_	F	SRSSEL<2:0>	>	xxxx
2660	15:0					USERID<15:0> x										xxxx			
2554		31:16	—	—	_		_	—	-	_	—		—	—		FF	PLLODIV<2:0	>	xxxx
2664	DEVCFG2	15:0	UPLLEN	—	-	-	_	UF	PLLIDIV<2:0)>	_	F	PLLMUL<2:0)>	-	F	PLLIDIV<2:0>	,	xxxx
2550		31:16	—	_	_	_	-	_	_	_	FWDTEN	_	_		١	NDTPS<4:0	>		xxxx
2FF8 DEVCFG	DEVCEGI	15:0	FCKSM	1<1:0>	FPBDI	V<1:0>	_	OSCIOFNC	POSCM	OD<1:0>	IESO	_	FSOSCEN	_	_	I	FNOSC<2:0>		xxxx
2FFC D		31:16	—	_	_	CP	-	_	_	BWP	-	_	_	_		PWP	<7:4>		xxxx
	DEVCEGO	15:0		PWP<	3:0>		_	_	_	_	_	_	_		ICESEL	_	DEBUG	<1:0>	xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 29-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

ess		0								В	its								(1)
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E200								—	—	—	0000								
F200	DDPCON	15:0		_	_	—	_	—	—	—	—	—	—		JTAGEN	TROEN	—	TDOEN	0008
5000		31:16		VER<3:0> DEVID<27:16>										xxxx					
15:0 DEVID 15:0											xxxx								
E000	OVOKEV	31:16	EVE//EV24-0-											0000					
F230	STSKET	15:0								STORE	1<31.0>								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant. Refer to "PIC32MX5XX/6XX/7XX Family Silicon Errata and Data Sheet Clarification" (DS80000480) for more information.

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temp. Range	Max. Frequency				
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX5XX/6XX/7XX				
DC5	2.3-3.6V	-40°C to +85°C	80 MHz				
DC5b	2.3-3.6V	-40°C to +105°C	80 MHz				

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

TABLE 32-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-Temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD		PINT + PI/c)	W
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	See Note
Package Thermal Resistance, 121-Pin TFBGA (10x10x1.1 mm)	θJA	40		°C/W	1
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)	θJA	43	—	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θJA	43		°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θJA	47		°C/W	1
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 124-Pin VTLA (9x9x0.9 mm)	θJA	21		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHA	RACTERIST	ICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$								
Param. No.	Typical ⁽³⁾	Max.	Units		Conditions	5					
Operating Current (IDD) ^(1,2) for PIC32MX534/564/664/764 Family Devices											
DC20c	6	9	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	4 MHz				
DC20d	7	10			+105⁰C						
DC20e	2	—		Code executing from SRAM	_						
DC21b	19	32	m۸	Code executing from Flash			25 MHz				
DC21c	14	_	IIIA	Code executing from SRAM		_	(Note 4)				
DC22b	31	50	m۸	Code executing from Flash			60 MHz				
DC22c	29	—	IIIA	Code executing from SRAM	_	_	(Note 4)				
DC23c	39	65	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	80 MHz				
DC23d	49	70			+105⁰C						
DC23e	39	_		Code executing from SRAM	_						
DC25b	100	150	μΑ	—	+25°C	3.3V	LPRC (31 kHz) (Note 4)				

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHA	RACTERIS	TICS	Standar (unless Operatir	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp								
Param. No.	Typical ⁽²⁾	Max.	Units			Conditions						
Power-D	Oown Curre	nt (IPD) ⁽¹⁾ f	or PIC32	MX575/675/	/695/775	795 Family Devices						
DC40	10	40		-40°C								
DC40a	36	100		+25°C	2 21/	Rose Rower Down Current (Note 6)						
DC40b	400	720		+85°C	2.3V	Base Power-Down Current (Note 6)						
DC40h	900	1800		+105°C								
DC40c	41	120		+25°C	3.3V	Base Power-Down Current						
DC40d	22	80	μΑ	-40°C								
DC40e	42	120		+25°C								
DC40g	315	400 (5)		+70°C	3.6V	Base Power-Down Current (Note 6)						
DC40f	410	800		+85°C								
DC40i	1000	2000		+105°C								
Module	Differential	Current fo	or PIC32M	IX575/675/6	695/775/	795 Family Devices						
DC41	—	10			2.3V	Watchdog Timer Current: AIWDT (Notes 3,6)						
DC41a	5		μA	—	3.3V	Watchdog Timer Current: AIWDT (Note 3)						
DC41b		20			3.6V	Watchdog Timer Current: AIWDT (Note 3,6)						
DC42	_	40			2.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6)						
DC42a	23	_	μΑ	—	3.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)						
DC42b		50			3.6V RTCC + Timer1 w/32 kHz Crystal: AIRTCC (Note 3,6							
DC43	—	1300			2.5V ADC: ∆IADC (Notes 3,4,6)							
DC43a	1100	—	μA	—	– 3.3V ADC: ΔIADC (Notes 3,4)							
DC43b	—	1300	μ		3.6V	ADC: △IADC (Notes 3,4,6)						

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}} = \text{VDD}$
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

FIGURE 32-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 32-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

АС СНА	ARACTERIS	TICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp							
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Typical	Max.	Units	Conditions		
TA10	T⊤xH	TxCK High Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 Трв)/N] + 25 ns	—	—	ns	Must also meet parameter TA15		
			Asynchror with presc	nous, aler	10	—		ns	—		
TA11	T⊤xL	TxCK Low Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 TPB)/N] + 25 ns	—	_	ns	Must also meet parameter TA15		
			Asynchror with presc	nous, aler	10	—	_	ns	_		
TA15	T⊤xP	TxCK Input Period	Synchrono with presc	ous, aler	[(Greater of 25 ns or 2 Трв)/N] + 30 ns	—	_	ns	VDD > 2.7V		
					[(Greater of 25 ns or 2 Трв)/N] + 50 ns	—	_	ns	Vdd < 2.7V		
			Asynchror with presc	nous, aler	20	—	_	ns	VDD > 2.7V (Note 3)		
					50	—	—	ns	VDD < 2.7V (Note 3)		
OS60	FT1	SOSC1/T1C Input Freque (oscillator en TCS bit (T1C	K Oscillator ncy Range abled by se CON<1>))	r etting	32	—	100	kHz	_		
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal Tx0 o Timer	CK	_	—	1	Трв	—		

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	5	—	25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тѕск + 20	_		ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	25	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	—	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)		1 Трв		—	—

Note 1: These parameters are characterized, but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

APPENDIX B: REVISION HISTORY

Revision A (August 2009)

This is the initial released version of this document.

Revision B (November 2009)

The revision includes the following global update:

Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits.

Other major changes are referenced by their respective chapter/section in Table B-1.

Section Name	Update Description			
"High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers"	Added the following devices: - PIC32MX575F256L - PIC32MX695F512L - PIC32MX695F512H			
	The 100-pin TQFP pin diagrams have been updated to reflect the current pin name locations (see the " Pin Diagrams " section).			
	Added the 121-pin Ball Grid Array (XBGA) pin diagram.			
	Updated Table 1: "PIC32 USB and CAN – Features"			
	Added the following tables:			
	 Table 4: "Pin Names: PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L and PIC32MX575F512L Devices" 			
	 Table 5: "Pin Names: PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L and PIC32MX695F512L Devices" 			
	 Table 6: "Pin Names: PIC32MX775F256L, PIC32MX775F512L and PIC32MX795F512L Devices" 			
	Updated the following pins as 5V tolerant:			
	- 64-pin QFN: Pin 36 (D-/RG3) and Pin 37 (D+/RG2)			
	- 64-pin TQFP: Pin 36 (D-/RG3) and Pin 37 (D+/RG2)			
	- 100-pin TQFP: Pin 56 (D-/RG3) and Pin 57 (D+/RG2)			
1.0 "Guidelines for Getting Started	Removed the last sentence of 1.3.1 "Internal Regulator Mode".			
with 52-bit Microcontrollers"	Removed Section 2.3.2 "External Regulator Mode"			

TABLE B-1: MAJOR SECTION UPDATES