

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx764f128ht-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX5XX/6XX/7XX

TABLE 1:PIC32MX5XX USB AND CAN FEATURES

					U	SB and	I CAN									
Device	Pins	Program Memory (KB)	Data Memory (KB)	USB	CAN	Timers/Capture/Compare	DMA Channels (Programmable/Dedicated)	UART ^(2,3)	Spl ⁽³⁾	I ² C ⁽³⁾	10-bit 1 Msps ADC (Channels)	Comparators	dSd/dWd	JTAG	Trace	Packages ⁽⁴⁾
PIC32MX534F064H	64	64 + 12 ⁽¹⁾	16	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX564F064H	64	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX564F128H	64	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX575F256H	64	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX575F512H	64	512 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX534F064L	100	64 + 12 ⁽¹⁾	16	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX564F064L	100	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX564F128L	100	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX575F256L	100	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX575F512L	100	512 + 12 (1)	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
Legend: PF, PT =	TQFP	MR = Q	FN		BG =	TFBG/	4	TL =	VTLA	(5)						

Note 1: This device features 12 KB boot Flash memory.

2: CTS and RTS pins may not be available for all UART modules. Refer to the "Device Pin Tables" section for more information.

3: Some pins between the UART, SPI and I²C modules may be shared. Refer to the "**Device Pin Tables**" section for more information.

4: Refer to 34.0 "Packaging Information" for more information.

5: 100-pin devices in the VTLA package are available upon request. Please contact your local Microchip Sales Office for details.

1

TABLE 8: PIN NAMES FOR 100-PIN USB AND ETHERNET DEVICES (CONTINUED)

100-PIN TQFP (TOP VIEW)

PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L

100

Pin #	Full Pin Name	Pin #	Full Pin Name
71	EMDC/AEMDC/IC4/PMCS1/PMA14/RD11	86	VDD
72	SDO1/OC1/INT0/RD0	87	ETXD1/PMD11/RF0
73	SOSCI/CN1/RC13	88	ETXD0/PMD10/RF1
74	SOSCO/T1CK/CN0/RC14	89	ETXERR/PMD9/RG1
75	Vss	90	PMD8/RG0
76	OC2/RD1	91	TRCLK/RA6
77	OC3/RD2	92	TRD3/RA7
78	OC4/RD3	93	PMD0/RE0
79	ETXD2/IC5/PMD12/RD12	94	PMD1/RE1
80	ETXD3/PMD13/CN19/RD13	95	TRD2/RG14
81	OC5/PMWR/CN13/RD4	96	TRD1/RG12
82	PMRD/CN14/RD5	97	TRD0/RG13
83	ETXEN/PMD14/CN15/RD6	98	PMD2/RE2
84	ETXCLK/PMD15/CN16/RD7	99	PMD3/RE3
85	VCAP/VDDCORE	100	PMD4/RE4

Note 1: Shaded pins are 5V tolerant.

2.9 Configuration of Analog and Digital Pins During ICSP Operations

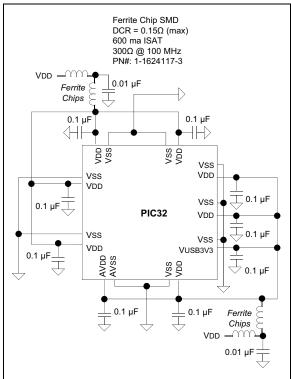
If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins by setting all bits in the AD1PCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain ADC pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFG register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all ADC pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.11 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-4. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-4: EMI/EMC/EFT SUPPRESSION CIRCUIT

5.1 **Control Registers**

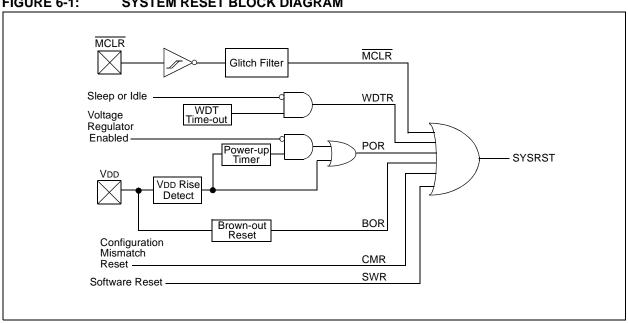
FLASH CONTROLLER REGISTER MAP

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400	NVMCON ⁽¹⁾	31:16	_	_		_	_		—				—	_		—	—	—	0000
F400	INVIVICOIN**	15:0	WR	WR WREN WRERR LVDERR LVDSTAT NVMOP<3:0> 0000															
F410	NVMKEY	31:16								NVMKE	V~31·0>								0000
1410		15:0									1<31.02								0000
E420	NVMADDR ⁽¹⁾	31:16								NVMADE	P-31.0>								0000
1 420		15:0								NVINADL	//<31.02								0000
E420	NVMDATA	31:16									A -21.0								0000
F430	INVIVIDATA	15:0		NVMDATA<31:0>															
F440		31:16		NVMSRCADDR<31:0>															
F440	ADDR	15:0	NVMSRCADDR<51.0> 0000																

PIC32MX5XX/6XX/7XX

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:


6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24		_	-	—	_	—		—
23:16	U-0	U-0						
23.10	_	_	_	—	_	—		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
15:8	—	_	—	—	_	—	CMR	VREGS
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7:0	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-10	Unimplemented: Read as '0	n'
	eninplemented. Read as	

bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = Configuration mismatch Reset has occurred
	0 = Configuration mismatch Reset has not occurred
bit 8	VREGS: Voltage Regulator Standby Enable bit
	$\ensuremath{\mathtt{l}}$ = Regulator is enabled and is on during Sleep mode
	0 = Regulator is set to Stand-by Tracking mode
bit 7	EXTR: External Reset (MCLR) Pin Flag bit
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit
	1 = Software Reset was executed
	0 = Software Reset was not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit
	1 = WDT Time-out has occurred
	0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit
	1 = Device was in Sleep mode
	0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = Brown-out Reset has occurred
	0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = Power-on Reset has occurred
	0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view the next detection.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	-	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	—	_	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	_	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0		_	_	—	—			SWRST ⁽¹⁾

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Le	gend:	HC = Cleared by hardwar	e	
R =	= Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n :	= Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾ 1 = Enable software Reset event 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 7-5: INTERRUPT REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L PIC32MX575F512L AND PIC32MX575F256L DEVICES (CONTINUED)

ess		â								В	its																
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets								
10D0	IPC4	31:16	—	_	—	INT4IP<2:0>		INT4IP<2:0>		INT4IP<2:0>		INT4IP<2:0>		INT4IP<2:0>		S<1:0>		—	—		OC4IP<2:0>		OC4I	S<1:0>	0000		
1000	IFC4	15:0	-		_		IC4IP<2:0>		IC4IS	<1:0>		_	_		T4IP<2:0>		T4IS	<1:0>	0000								
4050	IDOF	31:16	Ι	_	-		SPI1IP<2:0>	>	SPI1IS	S<1:0>	_	_	-		OC5IP<2:0>		OC5I	S<1:0>	0000								
10E0	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS	<1:0>		_	_		T5IP<2:0>		T5IS	<1:0>	0000								
		31:16	_	_	_		AD1IP<2:0>		AD1IS	<1:0>		_	_		CNIP<2:0>		CNIS	<1:0>	0000								
10F0	IPC6														U1IP<2:0>		U1IS	<1:0>									
10F0	IPC6	15:0	_	_	_	I2C1IP<2:0>		I2C1IP<2:0>		S<1:0>	_	_	—		SPI3IP<2:0>		SPI3I	S<1:0>	0000								
															I2C3IP<2:0>		12C31	S<1:0>									
							U3IP<2:0>		U3IS-	<1:0>																	
1100	IPC7	31:16	_	—	—		SPI2IP<2:0>	`	SPI2IS<1:0>		—	—	—		CMP2IP<2:0	>	CMP2	S<1:0>	0000								
1100	11 07						I2C4IP<2:0>				12C415	S<1:0>															
		15:0	—	—	—	CMP1IP<2:0>		CMP1IP<2:0>		S<1:0>	_	_	—		PMPIP<2:0>		PMPI	S<1:0>	0000								
		31:16	—	—	—	F	RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCIP<2:0>		RTCCI	S<1:0>	_	_	—		FSCMIP<2:0	>	FSCM	S<1:0>	0000
1110	IPC8																		U2IP<2:0>		U2IS	<1:0>					
1110	11 00	15:0	-	—	-		I2C2IP<2:0>	•	12C215	S<1:0>	—	—	—		SPI4IP<2:0>		SPI4I	S<1:0>	0000								
															I2C5IP<2:0>		12C51	S<1:0>									
1120	IPC9	31:16	-		—	[DMA3IP<2:0	>	DMA3I	S<1:0>		—	—	DMA2IP<2:0>		DMA2	S<1:0>	0000									
1120	11 00	15:0	—	_	—		DMA1IP<2:0		DMA1				—		DMA0IP<2:0			S<1:0>	0000								
1130	IPC10	31:16	—	—	—		DMA7IP<2:0> ⁽²⁾		DMA7IS	<1:0> ⁽²⁾	_	_	—	D	MA6IP<2:0>	(2)	DMA6IS	6<1:0> ⁽²⁾	0000								
1130	1 010	15:0	_	_	—	D	DMA5IP<2:0> ⁽²⁾		DMA5IS	<1:0> ⁽²⁾	_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	S<1:0> ⁽²⁾	0000								
1140	IPC11	31:16	Ι		_	_			_	_	—	—	_	CAN1IP<2:0>		CAN1	S<1:0>	0000									
1140	1011	15:0	_	_	—		USBIP<2:0>		USBIP<2:0>		USBIS	5<1:0>	—	—	—	FCEIP<2:0>		FCEIP<2:0>		FCEIS	S<1:0>	0000					
1150	IPC12	31:16	-		_		U5IP<2:0>		U5IS-	<1:0>	—	—	_	U6IP<2:0>		U6IP<2:0>		U6IS	<1:0>	0000							
1150	11 012	15:0	-		_		U4IP<2:0>		U4IS-	<1:0>	_	_	_	_	—		—	_	0000								

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX534/564 devices.

3: This register does not have associated CLR, SET, and INV registers.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			_	—	-	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23.10	—	—	—	—	_	—	—	SS0
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	—	—	MVEC	_		TPC<2:0>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Read as '0'

- bit 16 **SS0:** Single Vector Shadow Register Set bit
 - 1 = Single vector is presented with a shadow register set
 - 0 = Single vector is not presented with a shadow register set
- bit 15-13 Unimplemented: Read as '0'
- bit 12 MVEC: Multiple Vector Configuration bit
 - 1 = Interrupt controller configured for Multi-vector mode
 - 0 = Interrupt controller configured for Single-vector mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 **INT1EP:** External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

8.1 Control Registers

TABLE 8-1: OSCILLATOR REGISTER MAP

ess		Ð								В	its								(2)
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	OSCCON	31:16	—	_	P	LLODIV<2:0	>	F	RCDIV<2:0	>	—	SOSCRDY	_	PBDIV	<1:0>	Р	LLMULT<2:0	>	0000
FUUU	USCCON	15:0	_		COSC<2:0>		_		NOSC<2:0>		CLKLOCK	ULOCK	SLOCK	SLPEN	CF	UFRCEN	SOSCEN	OSWEN	0000
E010	OSCTUN	31:16	—	_	_	—	_	_		-	—	—	_	—	—	_	_	—	0000
FUIU	USCIUN	15:0	_		_	_	_			_	—		TUN<5:0>					0000	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24				DCRCDAT/	4<31:24>								
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23.10	DCRCDATA<23:16>												
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8				DCRCDAT	A<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0			DCRCDATA<7:0>										

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DCRCXOR<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DCRCXOR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				DCRCXO	R<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	DCRCXOR<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

1 = Enable the XOR input to the Shift register

0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess		Bits																	
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
53A0	U1EP10	31:16	_	_	_	_	_	—	_	_		_	—	—	-		_	_	0000
55A0	UIEFIU	15:0	—	—	_	_	_	—	_	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	-	_	_			_				_	_	—			_		0000
5560	UIEFII	15:0	-	_	_			_				-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	Ι	_		-		_			_	—	—	_	-	-	_	-	0000
5300	UTEPTZ	15:0	Ι	-	_	_	_	-	_	_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5000		31:16		_	_	—	_	-	—	—	_	-	—	—	—	_	_	_	0000
53D0	U1EP13	15:0	Ι	-	_	_	_	-	_	_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
		31:16		_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_	_	_	—	_	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		-	_	_	_	-	_	—	_			—	-	0000
53F0	U1EP15	15:0	_	—	—	-		—	-	—		_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1:

All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

This register does not have associated SET and INV registers. 2:

3: This register does not have associated CLR, SET and INV registers.

Reset value for this bit is undefined. 4:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R-0	R-0 R-0		R-0	R-0		
31:24		—	—		R	0>				
00.40	U-0	U-0	U-0	R-0 R-0		R-0	R-0	R-0		
23:16	—	—	—	TXBUFELM<4:0>						
45.0	U-0	U-0	U-0	U-0	R-0	U-0	U-0	R-0		
15:8	—	—	—	_	SPIBUSY	_	_	SPITUR		
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0		
7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF		

REGISTER 18-2: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (only valid when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (only valid when ENHBUF = 1)
- bit 15-12 Unimplemented: Read as '0'
- bit 11 **SPIBUSY:** SPI Activity Status bit 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 **Unimplemented:** Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - $\ensuremath{\mathtt{l}}$ = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

- bit 7 **SRMT:** Shift Register Empty bit (only valid when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 **SPIROV:** Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can only be cleared (= 0) in software.
- bit 5 SPIRBE: RX FIFO Empty bit (only valid when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'
- bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB is empty
 - 0 = Transmit buffer, SPIxTXB is not empty
 - Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.
 - Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
- bit 2 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	—	—	_	—	_	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_		—	—	—	_	_	—			
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾		AMASK	<3:0> ⁽²⁾				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	ARPT<7:0> ⁽²⁾										

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 **CHIME:** Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽³⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read.
 The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

1111 = Reserved

- 1010 = Reserved
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1000 = Once a month
- 0111 = Once a week
- 0110 = Once a day
- 0101 = Every hour
- 0100 = Every 10 minutes
- 0011 = Every minute
- 0010 = Every 10 seconds
- 0001 = Every second
- 0000 = Every half-second
- Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0 > = 0.0 and CHIME = 0.
 - **2:** This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is only reset on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	PTV<15:8>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	PTV<7:0>											
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
15:8	ON	—	SIDL	_	_	_	TXRTS	RXEN ⁽¹⁾				
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0				
7:0	AUTOFC		_	MANFC	_			BUFCDEC				

REGISTER 25-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 PTV<15:0>: PAUSE Timer Value bits PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set. These bits are only used for Flow Control operations. bit 15 **ON:** Ethernet ON bit 1 = Ethernet module is enabled 0 = Ethernet module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Ethernet Stop in Idle Mode bit 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode bit 12-10 Unimplemented: Read as '0' bit 9 TXRTS: Transmit Request to Send bit 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)

After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.

This bit only affects TX operations.

bit 8 **RXEN:** Receive Enable bit⁽¹⁾

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- 0 = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

REGISTER 25-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0									
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0									
31.24	-	—	_	—	-	—	_	—									
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0									
23:16	_	—	_	—	—	—	_	—									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0									
15:8	SCOLFRMCNT<15:8>																
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0									
7:0				SCOLFRM	CNT<7:0>			SCOLFRMCNT<7:0>									

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **SCOLFRMCNT<15:0>:** Single Collision Frame Count bits Increment count for frames that were successfully transmitted on the second try.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks only allowed in EC and ECPLL modes)	DC 4		50 50	MHz MHz	EC (Note 4) ECPLL (Note 3)
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 4)
OS12			4	—	10	MHz	XTPLL (Notes 3,4)
OS13			10	—	25	MHz	HS (Note 4)
OS14			10	—	25	MHz	HSPLL (Notes 3,4)
OS15			32	32.768	100	kHz	Sosc (Note 4)
OS20	Tosc	Tosc = 1/Fosc = Tcy ⁽²⁾	_	_	_	—	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	_	ns	EC (Note 4)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	0.05 x Tosc	ns	EC (Note 4)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	_	2	_	ms	(Note 4)
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12	_	mA/V	VDD = 3.3V, TA = +25°C (Note 4)

TABLE 32-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

3: PLL input requirements: 4 MHz ≤ FPLLIN ≤ 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but is only tested at 10 MHz at manufacturing.

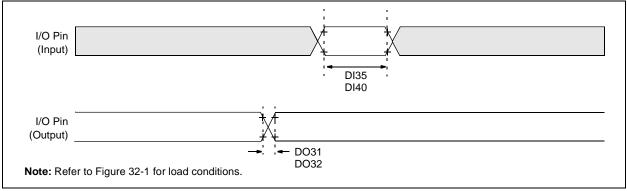

4: This parameter is characterized, but not tested in manufacturing.

TABLE 32-20: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS	(unless	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions			
LPRC @ 31.25 kHz ⁽¹⁾									
F21	LPRC	-15	_	+15	%	—			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 32-3: I/O TIMING CHARACTERISTICS

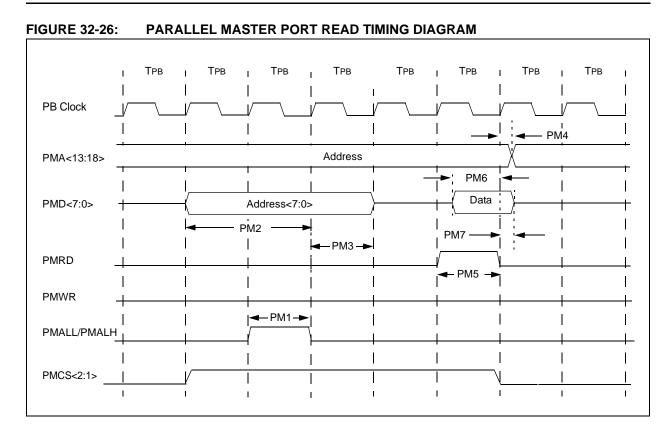


TABLE 32-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Ope (unless other Operating tem	wise state		≤ +85°C fc	or Industria		
Param. No.	Symbol	ol Characteristics ⁽²⁾		Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	Port Output Rise Time		_	5	15	ns	Vdd < 2.5V
				—	5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Time		_	5	15	ns	Vdd < 2.5V
				—	5	10	ns	VDD > 2.5V
DI35	TINP	INTx Pin High or Low Time		10	_	_	ns	—
DI40	Trbp	CNx High or Low Tir	CNx High or Low Time (input)		_	_	TSYSCLK	_

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 32-40: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS		(unless o	l Operating otherwise signature temperatur	tated) [.] e -40°C	≤ Ta ≤ +8	t o 3.6V 35°C for Industrial 105°C for V-Temp	
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	—	_	—
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 Трв	—	—	—
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	—	—	—
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	—
PM5	Trd	PMRD Pulse Width	—	1 Трв	—		—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_	_	ns	_
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 TPBCLK	—	—	ns	PMP PBCLK

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE B-3:	MAJOR SECTION UPDATES	(CONTINUED)	

Section Name	Update Description
1.0 "Electrical Characteristics"	Updated the Typical and Maximum DC Characteristics: Operating Current (IDD) in Table 1-5.
	Updated the Typical and Maximum DC Characteristics: Idle Current (IIDLE) in Table 1-6.
	Updated the Typical and Maximum DC Characteristics: Power-Down Current (IPD) in Table 1-7.
	Added DC Characteristics: Program Memory parameters D130a and D132a in Table 1-11.
	Added the Internal Voltage Reference parameter (D305) to the Comparator Specifications in Table 1-13.