

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx764f128l-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX5XX/6XX/7XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see 2.8 "External Oscillator Pins")

The following pin may be required, as well: VREF+/ VREF- pins used when external voltage reference for ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of the ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	-	_	_	—	_	—	-	—						
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	_	—	_	—	_	—	_	—						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0						
15:8	BMXDKPBA<15:8>													
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0	BMXDKPBA<7:0>													

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 **BMXDKPBA<9:0>:** DRM Kernel Program Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

		P	IC32M)	(695F5 1	12L DE	/ICES													
SS										Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	—	—	_		—	—	—	—	_	_	_	—	—	SS0	0000
1000	introom	15:0	—	—	—	MVEC	—		TPC<2:0>	-	—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	_	_			_	—	—	—			_	_	_	—	—	_	0000
		15:0			—	—	_		SRIPL<2:0>	•	—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	SPI1TXIF	SPI1RXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INTOIF	CS1IF	CS0IF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	—	_	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF SPI4TXIF	U2RXIF SPI4RXIF	U2EIF SPI4EIF	U3TXIF SPI2TXIF	U3RXIF SPI2RXIF	U3EIF SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
								I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF						
1050	IFS2	31:16	_		_	_		—	_	—	—	_	_	—	—	—	_	—	0000
		15:0	_	_	_	-	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	SPI1TXIE	SPI1RXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	_	-	USBIE	FCEIE	DMA7IE ⁽²⁾	DMA6IE ⁽²⁾	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE SPI4TXIE	U2RXIE SPI4RXIE	U2EIE SPI4EIE	U3TXIE SPI2TXIE	U3RXIE SPI2RXIE	U3EIE SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
								I2C5MIE	I2C5SIE	I2C5BIE	I2C4MIE	I2C4SIE	I2C4BIE						
1080	IEC2	31:16	—	_	—	—	—	-	—	—	—	—	—	—	—	—	—	—	0000
1000	1202	15:0	_		—	—	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16	-	_			INT0IP<2:0>			S<1:0>			_		CS1IP<2:0>		CS1IS		0000
		15:0	—	—	—		CS0IP<2:0>			S<1:0>	—	—	—		CTIP<2:0>		CTIS		0000
10A0	IPC1	31:16	_		_		INT1IP<2:0>			S<1:0>	_	_	_		OC1IP<2:0>	•	OC1IS		0000
		15:0	_	_	_		IC1IP<2:0>			<1:0>	_	_	_	T1IP<2:0>			T1IS-		0000
10B0	IPC2	31:16	_	_	—		INT2IP<2:0>			S<1:0>	—	_	_		OC2IP<2:0>	•	OC2IS		0000
		15:0	_				IC2IP<2:0> INT3IP<2:0>			<1:0> S<1:0>					T2IP<2:0> OC3IP<2:0>		T2IS- OC3IS	-	0000
10C0	IPC3	31:16 15:0	_				IC3IP<2:0>			<1:0>	_				T3IP<2:0>	•	T3IS-		0000
Legend	d: x=		n value on F	Reset; — = u	Inimplement	ed, read as '		ues are sho			I	I		1	.011 \2.02		1010		0000

TABLE 7-6: INTERRUPT REGISTER MAP FOR PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L AND

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information.

These bits are not available on PIC32MX664 devices. 2:

This register does note have associated CLR, SET, and INV registers. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			_	—	-	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23.10	—	—	—	—	_	—	—	SS0
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	—	—	MVEC	_		TPC<2:0>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Read as '0'

- bit 16 **SS0:** Single Vector Shadow Register Set bit
 - 1 = Single vector is presented with a shadow register set
 - 0 = Single vector is not presented with a shadow register set
- bit 15-13 Unimplemented: Read as '0'
- bit 12 MVEC: Multiple Vector Configuration bit
 - 1 = Interrupt controller configured for Multi-vector mode
 - 0 = Interrupt controller configured for Single-vector mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 **INT1EP:** External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0
31.24					_	_		-
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16					_	_		-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0					_	_		-
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7.0		_	_	_	_		FRMH<2:0>	

REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** Upper 3 bits of the Frame Numbers bits These register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24		_		—		_		—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	_	—	—	—	_	—	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.6	—	_	—	—	—	_	—	—		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		PID<	:3:0>		EP<3:0>					

REGISTER 11-15: U1TOK: USB TOKEN REGISTER

Legend:						
R = Readable bit	W = Writable bit	N = Writable bit $U =$ Unimplemented bit, re				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7-4 PID<3:0>: Token Type Indicator bits⁽¹⁾ 1101 = SETUP (TX) token type transaction 1001 = IN (RX) token type transaction 0001 = OUT (TX) token type transaction Note: All other values not listed, are Reserved and must not be used.

bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

TABLE 12-5: PORTD REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, AND PIC32MX795F512H DEVICES

ess										Bi	ts								ú
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
60C0	TRISD	31:16	-	-	-	_	_	-	—	—	—	—	—	-	_	-	-	—	0000
6000	TRISD	15:0	_	_	_	-	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
6000	PORTD	31:16	-			_	_		-					_	_		_	_	0000
6000	PORID	15:0	-	-	_	_	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0	LATD	31:16	_	_	_	-	_	-	_	_	_	_	_	_	-	_	_	_	0000
60E0	LAID	15:0	_	_	_	-	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60F0	ODCD	31:16	_		_	_	_	—	-	-	-			—	_	_	_	-	0000
OUFU	ODCD	15:0		_	—	_	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-6: PORTD REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F512L, AND PIC32MX795F512L DEVICES

ess		Ċ,								Bi	ts								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
60C0	TRISD	31:16	_	_	_	-	-	_		_	-	-	_		-	-	—	—	0000
6000	TRISD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
60D0	PORTD	31:16	_	_				-					-				_	_	0000
0000	FORID	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0	LATD	31:16	—	_	_	_	_	_	_	_	-	_	_	_	_	_	—	—	0000
OUEU	LAID	15:0	LAT15	LAT14	LAT13	LAT12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60F0	ODCD	31:16	_	_				_	-				_	-			_	-	0000
OUFU	ODCD	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Ļ

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Т	ABLE 12	PORTG REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H	Н.
		PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES	,
	ssa	Bits	

ö		Φ								-									<i>(</i> 0
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6180	TRISG	31:16	—	—	—	_	—	—	_	—	—	—	_	_	-	_	_	_	0000
6160	TRIBU	15:0	_	_	_	_	_		TRISG9	TRISG8	TRISG7	TRISG6	_		TRISG3	TRISG2	-		03CC
6100	PORTG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
6190	PURIG	15:0	_	_	_	_	_		RG9	RG8	RG7	RG6	_		RG3	RG2	-		xxxx
61A0	LATG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
OTAU	LAIG	15:0	_	_	_	_	_		LATG9	LATG8	LATG7	LATG6	_		LATG3	LATG2	-		xxxx
61B0	ODCG	31:16	-	_	_	_	-	_	_	_	_	-	_			-	_		0000
0180	ODCG	15:0	-	_	_	_	-	_	ODCG9	ODCG8	ODCG7	ODCG6	_		ODCG3	ODCG2	_		0000
Laware				Divisi			fal Deset	alter a successful		dia statistical									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 12-12: PORTG REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										Bi	ts								<i>(</i> 0
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	_	—	_	-	_	—	-	—	—	-	—	-	-	-	-	-	0000
0100	TRISG	15:0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6100	PORTG	31:16		_		_		-	-	-	-	—	-	—	—	—	_	—	0000
6190	PURIG	15:0	RG15	RG14	RG13	RG12			RG9	RG8	RG7	RG6		-	RG3	RG2	RG1	RG0	xxxx
61A0	LATG	31:16	-	_		_	-	-	-	-	-	—	-	—	—	—	—	—	0000
61A0	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	-	LATG3	LATG2	LATG1	LATG0	xxxx
61B0	ODCG	31:16		—	_	_		_		_	_	—	_	—	—	—	—	—	0000
0160	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	-	ODCG9	ODCG8	ODCG7	ODCG6	-	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

I2CxSTAT: I²C STATUS REGISTER (CONTINUED) REGISTER 19-2: **D_A:** Data/Address bit (when operating as I²C slave) bit 5 This bit is cleared by hardware upon a device address match, and is set by hardware by reception of the slave byte. 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address bit 4 P: Stop bit This bit is set or cleared by hardware when a Start, Repeated Start, or Stop condition is detected. 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last bit 3 S: Start bit This bit is set or cleared by hardware when a Start, Repeated Start, or Stop condition is detected. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last **R_W:** Read/Write Information bit (when operating as I²C slave) bit 2 This bit is set or cleared by hardware after reception of an I²C device address byte. 1 = Read – indicates data transfer is output from slave 0 = Write - indicates data transfer is input to slave **RBF:** Receive Buffer Full Status bit bit 1 This bit is set by hardware when the I2CxRCV register is written with a received byte, and is cleared by hardware when software reads I2CxRCV. 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty bit 0 TBF: Transmit Buffer Full Status bit This bit is set by hardware when software writes to the I2CxTRN register, and is cleared by hardware upon completion of data transmission.

1 = Transmit in progress, I2CxTRN is full

0 = Transmit complete, I2CxTRN is empty

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

										Bi	ts								
Virtual Address (BF80_#) Register	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000 PM0	/CON	31:16	_	_	_	_	_	_	_	_		_	_	_	—	_	—	_	0000
7000 1 100		15:0	ON	—	SIDL	ADRMU	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010 PMM	MODE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
7010 Pivily	NODE	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITM	A<3:0>		WAITE	<1:0>	0000
7020 PMA		31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7020 PINA	IADDR	15:0	CS2EN/A15	CS1EN/A14							ADDR	<13:0>							0000
7000 040		31:16								DATAOU	T 04.0								0000
7030 PMD		15:0								DATAOU	1<31:0>								0000
7040 DM	MDIN	31:16									.01.0								0000
7040 PM		15:0								DATAIN	<31:0>								0000
7050 014	MAEN	31:16		_	_	_	_	_	_		_	-	-	_	_	_	_	_	0000
7050 PM/	VIAEN	15:0								PTEN<	:15:0>								0000
7000 0140	10TAT	31:16	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
7060 PMS	ISTAL	15:0	IBF	IBOV	_	-	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	-	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	_	_	_	—
45.0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	PTEN14	_	—	_		PTEN<10:8>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				PTEN	<7:0>			

REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-15 **Unimplemented:** Read as '0'
- bit 15-14 **PTEN14:** PMCS1 Strobe Enable bits
 - 1 = PMA14 functions as either PMA14 or PMCS1⁽¹⁾
 - 0 = PMA14 functions as port I/O
- bit 13-11 Unimplemented: Read as '0'
- bit 10-2 PTEN<10:2>: PMP Address Port Enable bits
 - 1 = PMA<10:2> function as PMP address lines
 - 0 = PMA<10:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- **Note 1:** The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

REGISTER 24-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4 (CONTINUED)

	(
bit 15	FLTEN17: Filter 13 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL17<1:0>: Filter 17 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL17<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN16: Filter 16 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL16<1:0>: Filter 16 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL16<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGIST	ER 24-21:	CiFIFOIN	Tn: CAN F			GISTER 'n' (n	= 0 THROU	GH 31)
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0

Range	31/23/15/7	30/22/14/6	29/21/13/5 28/20/12/4		27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	_				TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—			_	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO full 0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO not empty0 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is not full 0 = FIFO is full
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

TABLE 25-5:ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX664F064L,
PIC32MX664F128L, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H,
PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX764F128H, PIC32MX764F128H,
PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED)

sseptimize and the sector and the sector <th< th=""><th>:16 5:0 :16 :16 </th><th>30/14 </th><th>29/13 </th><th>28/12 </th><th>27/11 — RESET</th><th>26/10</th><th>25/9</th><th>24/8</th><th>its 23/7</th><th>22/6</th><th>21/5</th><th>20/4</th><th>19/3</th><th>18/2</th><th>17/1</th><th>16/0</th><th>All Resets</th></th<>	:16 5:0 :16 :16	30/14 	29/13 	28/12 	27/11 — RESET	26/10	25/9	24/8	its 23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9260 EMAC1 SUPP 31:10 15:0 9270 EMAC1 TEST 31:10 15:0 9280 EMAC1 31:10 31:10	:16 5:0 :16 :16			_	— RESET				23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9260 EMAC1 SUPP 15:0 9270 EMAC1 TEST 31:16 15:0 9280 EMAC1 31:16 31:16	5:0 — :16 — 5:0 — :16 —	-	_			—	_										
9260 SUPP 15:0 9270 EMAC1 TEST 31:16 15:0 9280 EMAC1 31:16	:16 — 5:0 — :16 —	_		-					_	_	—		_	_	—	_	0000
9270 TEST 15:0	5:0 <u>—</u> :16 —		—		RMII	—	—	SPEED RMII	-	-	—	-	—	-	-	_	1000
EMAC1 31:16	:16 —	-		_	—	_	_	_	_	—	_	-	—	_	_		0000
erection EMAC1			_	_	_	_	—	_	_	_	_	-	_	TESTBP	TESTPAUSE	SHRTQNTA	0000
		-	_	_	_	_	_	_	_	_	—	_	_	—	_	_	0000
9280 MCFG 15:0	5:0 RESET MGMT	-	_	CLKSEL<3:0> NOPRE SCANINC 0020													
9290 EMAC1 31:16	:16 —	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	0000
9290 MCMD 15:0	5:0 —	—	—	—	_	—	_	—	—	_	_	_	_	—	SCAN	READ	0000
92A0 EMAC1 31:16		-	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
MADR 15:0		-	—		P	HYADDR<4:0)>		_	_	_		R	EGADDR<4:	0>		0100
92B0 EMAC1 31:16 MWTD 15:0		—	—	_	—	—	—	—	_	_	—	—	—	—	_	—	0000
13.0								MWTD	<15:0>								0000
92C0 EMAC1 31:16 MRDD 15:0		-	—	_	_	_	-	-	-	_	_	_	—	—	_	—	0000
13.0								MRDD						_	_		0000
92D0 EMAC1 31:10 MIND 15:0		_	_	-	_	_		_	_		_		— LINKFAIL		 SCAN		0000
EMAC1 31:16									_								xxxx
9300 SA0 ⁽²⁾ 15:0				STNADD)R6<7:0>								DR5<7:0>				XXXX
EMAC1 31.16		_	_	_	_	_	_	_	_	_		_	_	_	_	_	xxxx
9310 SA1 ⁽²⁾ 15:0		STNADDR4<7:0> STNADDR3<7:0> xxxx															
0320 EMAC1 31:16	:16 —	xxx															
9320 SA2 ⁽²⁾ 15:0	5:0	STNADDR2<7:0> STNADDR1<7:0> xxxx															

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values default to the factory programmed value.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	-					_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	—	-	_	_
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	_	TXBUSE	RXBUSE	_	_	_	EWMARK	FWMARK
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT	_	TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-15	Unimplemented: Read as '0'
bit 14	TXBUSE: Transmit BVCI Bus Error Interrupt bit
	1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 13	RXBUSE: Receive BVCI Bus Error Interrupt bit
	1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 12-10	Unimplemented: Read as '0'
bit 9	EWMARK: Empty Watermark Interrupt bit
	1 = Empty Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.
bit 8	FWMARK: Full Watermark Interrupt bit
	1 = Full Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 7	RXDONE: Receive Done Interrupt bit
	1 = RX packet was successfully received0 = No interrupt pending
	This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
Note:	It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-16: ETHRXOVFLOW: ETHERNET CONTROLLER RECEIVE OVERFLOW STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	_	—	_	—	_	—
00.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	—	_	—	_	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				RXOVFLW	CNT<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				RXOVFLW	/CNT<7:0>			

Legend:

Logona.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **RXOVFLWCNT<15:0>:** Dropped Receive Frames Count bits Increment counter for frames accepted by the RX filter and subsequently dropped due to internal receive error (RXFIFO overrun). This event also sets the RXOVFLW bit (ETHIRQ<0>) interrupt flag.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
- **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER (CONTINUED)

- VLANPAD: VLAN Pad Enable bit^(1,2) bit 6 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames PADENABLE: Pad/CRC Enable bit^(1,3) bit 5 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit LENGTHCK: Frame Length checking bit bit 1 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit 1 = The MAC operates in Full-Duplex mode 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 25-6 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - **3:** This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 25-6:PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	x	x	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	x	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC

NOTES:

REGISTE	ER 29-4: D	DEVCFG3: DE	EVICE CON	FIGURATIO	N WORD 3	

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/P	R/P	r-1	r-1	r-1	R/P	R/P	R/P			
	FVBUSONIO	FUSBIDIO	_	—	—	FCANIO ⁽¹⁾	FETHIO ⁽²⁾	FMIIEN ⁽²⁾			
22.46	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P			
23:16	—	—	—	—	—	FSRSSEL<2:0>					
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
15:8	USERID<15:8>										
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
7:0				USERID	<7:0>						

Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknow		

 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
 bit 30
 FUSBIDIO: USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
 bit 29-27
 Reserved: Write '1'
 bit 26
 FCANIO: CAN I/O Pin Selection bit⁽¹⁾ 1 = Default CAN I/O Pins 0 = Alternate CAN I/O Pins
 bit 25
 FETHIO: Ethernet I/O Pins
 1 = Default Ethernet I/O Pins

FVBUSONIO: USB VBUSON Selection bit

- 0 =Alternate Ethernet I/O Pins
- bit 24 FMIIEN: Ethernet MII Enable bit⁽²⁾
 - 1 = MII is enabled
 - 0 = RMII is enabled
- bit 23-19 Reserved: Write '1'
- bit 18-16 FSRSSEL<2:0>: SRS Select bits
 - 111 = Assign Interrupt Priority 7 to a shadow register set
 - 110 = Assign Interrupt Priority 6 to a shadow register set
 - •

bit 31

- 001 = Assign Interrupt Priority 1 to a shadow register set

000 = All interrupt priorities are assigned to a shadow register set

- bit 15-0 **USERID<15:0>:** User ID bits This is a 16-bit value that is user-defined and is readable via ICSP[™] and JTAG.
- Note 1: This bit is Reserved and reads '1' on PIC32MX664/675/695 devices.
 - 2: This bit is Reserved and reads '1' on PIC32MX534/564/575 devices.

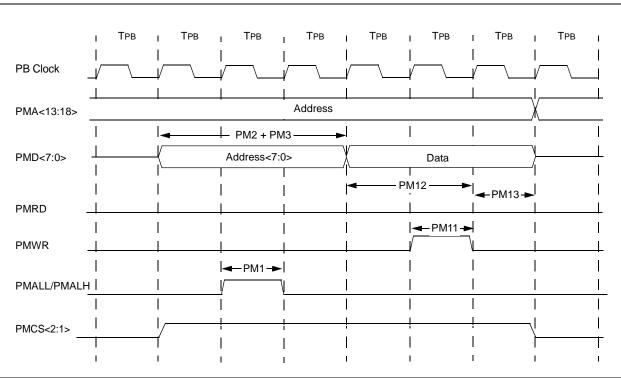
TABLE 32-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V)

AC CHARACTERISTICS			Standard (unless of Operating	herwise	ture -40°C	≤ T A ≤ +	⋅85°C fo	r Industrial or V-Temp
Param. No. Symbol Characteristi			ics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		3.92	_	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes
OS51	Fsys	On-Chip VCO Syste Frequency	On-Chip VCO System		_	120	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		_	_	2	ms	—
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25		+0.25	%	Measured over 100 ms period

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$


For example, if SYSCLK = 80 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{80}{20}}} = \frac{D_{CLK}}{2}$$

TABLE 32-19: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	(unless	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp					
Param. No.	Characteristics	Min.	Typical	ypical Max. Units Conditions		Conditions		
Internal	FRC Accuracy @ 8.00 MH	z ⁽¹⁾ for F	PIC32MX5	575/675/6	95/775/7	95 Family Devices		
F20a	FRC	-2	—	+2	%	—		
Internal	Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾ for PIC32MX534/564/664/764 Family Devices							
F20b	FRC	-0.9	—	+0.9	%	—		

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

FIGURE 32-27: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 32-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions	
PM11	Twr	PMWR Pulse Width	_	1 Трв		—	_	
PM12	12 TDVSU Data Out Valid before PMWR or PMENB goes Inactive (data setup time)		—	2 Трв	_	—	_	
PM13	PM13 TDVHOLD PMWR or PMEMB Invalid to Data Out Invalid (data hold time)		—	1 Трв		—	—	

Note 1: These parameters are characterized, but not tested in manufacturing.