

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx764f128l-v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24		—	—		IP03<2:0>		IS03	<1:0>
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10		—	—		IP02<2:0>		IS02-	<1:0>
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0		—	—		IP01<2:0>	IS01-	<1:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_			IP00<2:0>		IS00-	<1:0>

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP03<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• 010 = Interrupt priority is 2
	010 = Interrupt priority is 2 001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS03<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 23-21	Unimplemented: Read as '0'
bit 20-18	IP02<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1 000 = Interrupt is disabled
hit 17 16	•
DIL 17-10	IS02<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
hit 15-13	Unimplemented: Read as '0'
511 10 10	Chimpionionicu. Nodu do 0
Note:	This register represents a generic definition
1	· · · ·

definitions.

ister represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit ns.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded Host, full-speed Device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Endpoint buffering anywhere in system RAM
- Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, as well as other third party may specifications or technologies, require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess					· · ·						Bits								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	U1FRML ⁽³⁾	31:16		—	—	—	—	—	—	—	_	—	_	—	—	—	_	_	0000
5200	OTTRIME	15:0	—	_	—	—	—	—	—	—				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0200	01110	15:0	—	—	—	—	—	—	—	—	_	—	_	-	—		FRMH<2:0>	•	0000
52A0	U1TOK	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
02/10	orron	15:0	—	—	—	—	—	—	—	—		PID	<3:0>			EP	<3:0>		0000
52B0	U1SOF	31:16	—	—	—	—	—	—	—	—	_	—	_	—	—	—	_	—	0000
5260	0130F	15:0	—	_	_	—	_	_	_					CNT<7	7:0>				0000
52C0	U1BDTP2	31:16	—	-	—	—	_	_	-		—	—		—	—	_		_	0000
5200	OIBDIF2	15:0	—	—	—	—	—	—	—	—				BDTPTRH	H<7:0>				0000
52D0	U1BDTP3	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
5200	UIBDIF3	15:0	—	_	_	_	_	_	-					BDTPTRU	J<7:0>				0000
52E0	U1CNFG1	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
52E0	UTCINFGT	15:0	—	_	_	—	_	_	_		UTEYE	UOEMON		USBSIDL	—	_		UASUSPND	0001
5300	U1EP0	31:16	—	_	_	_	_	_	-		—	_		—	_	_		_	0000
5300	UIEPU	15:0	—	_	_	—	_	_	_		LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5310	U1EP1	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
5310	UIEPI	15:0	—	_	_	_	_	_	_	_	—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5320	U1EP2	31:16	—	_	_	—	_	_	_		—	_		—	_	_		_	0000
5520	UIEFZ	15:0	_	_	_	_	_	_	_		—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5330	U1EP3	31:16	—	_	_	_	_	_	_	_	—	_	-	—	_	-		_	0000
5330	UIEP3	15:0	—	_	_	—	_	_	_		—	_		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340	U1EP4	31:16	_	_	-	-	-	-	-	_	_	_	_	—	-	_	_	_	0000
5540	UTEP4	15:0	—	_	_	_	_	_	_	_	—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5350	U1EP5	31:16	_	_	-	-	-	-	-	_	_	_	_	—	-	_	_	_	0000
5350	UIEP5	15:0	_	_	-	-	-	-	-	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5260	U1EP6	31:16			_	—	_		_	_	—			—	_	—			0000
5360	UIEP6	15:0	_	_	-	-	-	-	-	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5270	U1EP7	31:16	_	_	_	_	_	_	_	—	_	_	_	—	_	_	-	_	0000
5370	UTEPT	15:0			_	_	_		_	_	—			EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5200		31:16	_	_	_	_	_	_	_	—	-	—	_	—	_	—	_	_	0000
5380	U1EP8	15:0	—	_	—	—	_	—	—	_	_	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5000		31:16	_	—	_	_	_	_	_	—	_	—	_	—	—	—	—	—	0000
5390	U1EP9	15:0	_	—	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

 5390
 U1EP9

 Legend:
 x =

 Note
 1:
 All n

end: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

1: All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

REGISTER 11-11: U1CON: USB CONTROL REGISTER (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Reset all Even/Odd buffer pointers to the Even buffer descriptor banks
 - 0 = Even/Odd buffer pointers are not reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry is enabled
 - 0 = USB module and supporting circuitry is disabled

SOFEN: SOF Enable bit(5)

- 1 = SOF token is sent every 1 ms
- 0 = SOF token is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set RESUME for 10 ms in Device mode, or for 25 ms in Host mode, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 12-9: PORTF REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX795F512H, DEVICES

ess		e								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TRISF	31:16	_	—	_	—	-	—	—	—	_	—	_	—	—	_	-	—	0000
6140	IRIOF	15:0		_	_	_	_	_	_	_	_	_	TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
6150	PORTF	31:16	_	_		_		_					-	_	_	_		-	0000
6150	PURIF	15:0		-	-	—	—	—	-	-	-	-	RF5	RF4	RF3		RF1	RF0	xxxx
6160	LATF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
6160	LAIF	15:0	-	_	—	_	_	_	_	_	_	_	LATF5	LATF4	LATF3	—	LATF1	LATF0	xxxx
6170	ODCF	31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
0170	ODCF	15:0	_	_	_		-						ODCF5	ODCF4	ODCF3		ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-10: PORTF REGISTER MAP PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX775F512L, PIC32MX7

ess		Ċ,								Bi	ts								- y
Virtual Address (BF88_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
	TDIOF	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6140	IRISE	15:0	-	_	TRISF13	TRISF12	_	_	_	TRISF8	_	_	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6150	PORTF	31:16	-	_	_	_	_	-	_	_	-		-		_		_	_	0000
0150	FUNIF	15:0	-	—	RF13	RF12	_		_	RF8			RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160	LATF	31:16	—	—	_		—	_	_		-	_	_	_	_	_	—	—	0000
0100	LAIF	15:0		—	LATF13	LATF12		-		LATF8		-	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCF	31:16	—	_	_	—	_		_				_		—		-	-	0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	_	-	—	ODCF8	_	-	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—			_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	_	_	_	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	_	_	_	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	ON: Input Capture Module Enable bit ⁽¹⁾
	 1 = Module is enabled 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Control bit
	1 = Halt in Idle mode0 = Continue to operate in Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
	 1 = Capture rising edge first 0 = Capture falling edge first
bit 8	C32: 32-bit Capture Select bit
	1 = 32-bit timer resource capture0 = 16-bit timer resource capture
bit 7	ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')
	 1 = Timer2 is the counter source for capture 0 = Timer3 is the counter source for capture
bit 6-5	ICI<1:0>: Interrupt Control bits
	11 = Interrupt on every fourth capture event
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	 1 = Input capture overflow is occurred 0 = No input capture overflow is occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty

Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

21.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

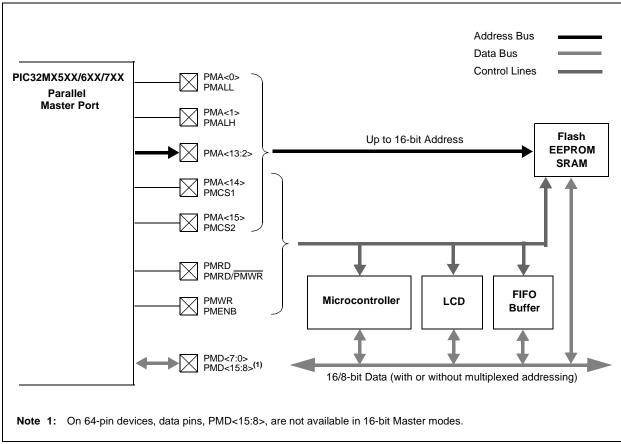

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Figure 21-1 shows the PMP module pinout and its connections to external devices.

FIGURE 21-1:

The following are key features of the PMP module:

- 8-bit and 16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- · Address auto-increment/auto-decrement
- · Programmable address/data multiplexing
- Programmable polarity on control signals
- · Parallel Slave Port support
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable wait states
- · Operates during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Note: On 64-pin devices, the PMD<15:8> data pins are not available.

PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set
 - 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC S&H circuit is sampling
 - 0 = The ADC S&H circuit is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC < 2:0 > = 000, writing '0' to this bit will end sampling and start conversion.

bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾

- Clearing this bit will not affect any operation in progress.
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write a '0' to end sampling and start conversion. If SSRC<2:0> ≠ '000', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

REGISTER 24-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED)

bit 15	FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
r	

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24				HT<3	1:24>							
22.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	HT<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				HT<1	5:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	HT<7:0>											

REGISTER 25-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 25-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				HT<6	3:56>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	HT<55:48>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				HT<4	7:40>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		HT<39:32>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—		—		—		_		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	RXFWM<7:0>									
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	—	—		—		—		_		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				RXEW	M<7:0>					

REGISTER 25-12: ETHRXWM: ETHERNET CONTROLLER RECEIVE WATERMARKS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-24 Unimplemented: Read as '0'
- bit 23-16 **RXFWM<7:0>:** Receive Full Watermark bits

The software controlled RX Buffer Full Watermark Pointer is compared against the RX BUFCNT to determine the full watermark condition for the FWMARK interrupt and for enabling Flow Control when automatic Flow Control is enabled. The Full Watermark Pointer should always be greater than the Empty Watermark Pointer.

- bit 15-8 Unimplemented: Read as '0'
- bit 7-0 **RXEWM<7:0>:** Receive Empty Watermark bits

The software controlled RX Buffer Empty Watermark Pointer is compared against the RX BUFCNT to determine the empty watermark condition for the EWMARK interrupt and for disabling Flow Control when automatic Flow Control is enabled. The Empty Watermark Pointer should always be less than the Full Watermark Pointer.

Note: This register is only used for RX operations.

30.0 INSTRUCTION SET

The PIC32MX5XX/6XX/7XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- Core Extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

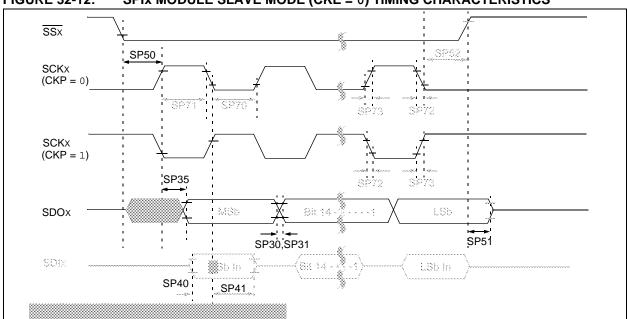

Note: Refer to "MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

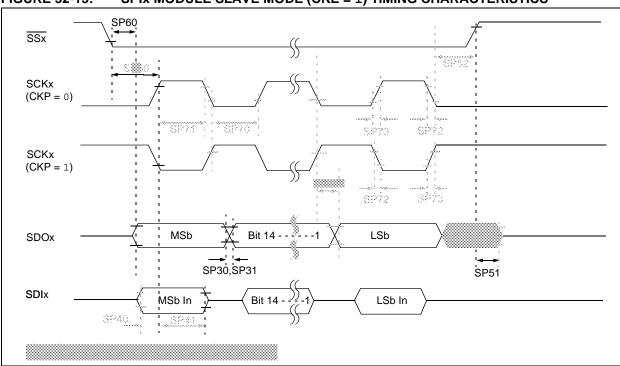
DC CHA	RACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No. Symbol Characteristics			Min.	Typical	Max.	Units	Conditions
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage	2.3		3.6	V	
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.75			V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75		2.1	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005		0.115	V/µs	—

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

FIGURE 32-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS


АС СНА	ARACTERIS	Standard (unless o Operating	therwise	e stated) 40°C ≤ T	2.3V to 3.6V $TA \le +85^{\circ}C$ for Industrial $TA \le +105^{\circ}C$ for V-Temp	
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Тѕск/2	_		ns	—
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	_		ns	—
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	_	_	ns	See parameter DO32
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	_	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—	_	20	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	5	—	25	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA		(unless o	d Operating otherwise st g temperatur	t ated) e -40°	°C ≤ TA ≤	3V to 3.6V ≤ +85°C for Industrial ≤ +105°C for V-Temp	
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2		—	ns	—
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	—	_	ns	—
SP72	TscF	SCKx Input Fall Time	_	5	10	ns	—
SP73	TscR	SCKx Input Rise Time		5	10	ns	—
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾		—	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after		_	20	ns	VDD > 2.7V
	TscL2doV	SCKx Edge		_	30	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—	—	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHA	RACTERIS	ΓΙCS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industri} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temperature} \\ \end{array}$			≤ +85°C for Industrial	
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	5	_	25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тscк + 20	—	_	ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	25	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 32-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

АС СНА	RACTERI	STICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_	
			400 kHz mode	Трв * (BRG + 2)	_	μS	_	
			1 MHz mode ⁽²⁾	Tpb * (BRG + 2)	—	μS	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_	
			400 kHz mode	Tpb * (BRG + 2)	—	μS	_	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	μS	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	100	_	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μS	_	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0	0.3	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	ns	Only relevant for	
		Setup Time	400 kHz mode	Трв * (BRG + 2)	_	ns	Repeated Start	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	ns	After this period, the	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	_	ns	first clock pulse is	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)	_	ns	_	
		Setup Time	400 kHz mode	Трв * (BRG + 2)	_	ns		
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns		
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)	_	ns	_	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	_	ns		
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid from	100 kHz mode	_	3500	ns	_	
		Clock	400 kHz mode	_	1000	ns	_	
			1 MHz mode ⁽²⁾	_	350	ns	_	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	The amount of time the	
			400 kHz mode	1.3	<u> </u>	μS	bus must be free before	
			1 MHz mode ⁽²⁾	0.5	<u> </u>	μS	a new	
IMEO	CD	Rue Consolitive La	ading		400		transmission can start	
IM50	Св	Bus Capacitive Lo	-	-	400	pF	—	
IM51	Tpgd	Pulse Gobbler Del	-	52	312	ns	_	

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

3: The typical value for this parameter is 104 ns.

Example

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

Legend:	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will
	be carrie	d over to the next line, thus limiting the number of available s for customer-specific information.