

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx764f128lt-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7-5: INTERRUPT REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L PIC32MX575F512L AND PIC32MX575F256L DEVICES (CONTINUED)

ess		â								В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
10D0	IPC4	31:16	—	_	—		INT4IP<2:0>		INT4IS	S<1:0>		—	—		OC4IP<2:0>		OC4I	S<1:0>	0000
1000	IFC4	15:0	-		_		IC4IP<2:0>		IC4IS	<1:0>		_	_		T4IP<2:0>		T4IS	<1:0>	0000
4050	IDOF	31:16	Ι	_	-		SPI1IP<2:0>	>	SPI1IS	S<1:0>	_	_	-		OC5IP<2:0>		OC5I	S<1:0>	0000
10E0	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS	<1:0>		_	_		T5IP<2:0>		T5IS	<1:0>	0000
		31:16	_	_	_		AD1IP<2:0>		AD1IS	<1:0>		_	_		CNIP<2:0>		CNIS	<1:0>	0000
10F0	IPC6														U1IP<2:0>		U1IS	<1:0>	
10F0	IPC6	15:0	_	_	_		I2C1IP<2:0>	•	12C115	S<1:0>	_			SPI3IP<2:0>			SPI3IS<1:0>		0000
												I2C3IP<2:0>		12C31	S<1:0>				
						U3IP<2:0> U3IS<1:0>													
1100	IPC7	31:16	_	—	—		SPI2IP<2:0>	`	SPI2IS	S<1:0>	—	—	—		CMP2IP<2:0	>	CMP2	S<1:0>	0000
1100	11 07						I2C4IP<2:0>	•	12C415	S<1:0>									
		15:0	—	_	—	(CMP1IP<2:0	>	CMP1	S<1:0>	_	_	—	PMPIP<2:0>		PMPI	S<1:0>	0000	
		31:16	—	—	—	F	RTCCIP<2:0	>	RTCCI	S<1:0>	_	_	—	FSCMIP<2:0>		FSCM	S<1:0>	0000	
1110	IPC8														U2IP<2:0>		U2IS	<1:0>	
1110	11 00	15:0	-	—	-		I2C2IP<2:0>		12C215	S<1:0>	—	—			SPI4IP<2:0>		SPI4IS<1:0		0000
															I2C5IP<2:0>		12C51	S<1:0>	
1120	IPC9	31:16	-		—	[DMA3IP<2:0	>	DMA3I	S<1:0>		—	—		DMA2IP<2:0	>	DMA2	S<1:0>	0000
1120	11 00	15:0	—	_	—		DMA1IP<2:0		DMA1				—		DMA0IP<2:0			S<1:0>	0000
1130	IPC10	31:16	—	—	—		MA7IP<2:0>		DMA7IS	<1:0> ⁽²⁾	_	_	—	DMA6IP<2:0> ⁽²⁾		DMA6IS	6<1:0> ⁽²⁾	0000	
1130	1 010	15:0	_	_	—	D	MA5IP<2:0>	(2)	DMA5IS	<1:0> ⁽²⁾	_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	S<1:0> ⁽²⁾	0000
1140	IPC11	31:16	Ι		_	_			_	_	—	—	_		CAN1IP<2:0>		CAN1	S<1:0>	0000
1140	1011	15:0	_	_	—		USBIP<2:0>		USBIS	5<1:0>	—	—	—		FCEIP<2:0>		FCEIS	S<1:0>	0000
1150	IPC12	31:16	-		_		U5IP<2:0>		U5IS-	<1:0>	—	—	_		U6IP<2:0>		U6IS	<1:0>	0000
1150	11 012	15:0	-		_		U4IP<2:0> U4IS<1:0>		_	_	_	_	—		—	_	0000		

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX534/564 devices.

3: This register does not have associated CLR, SET, and INV registers.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_		—	—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	—	_	—	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0				—	RDWR	[DMACH<2:0>	•

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

bit 3 RDWR: Read/Write Status bit

1 = Last DMA bus access was a read

0 = Last DMA bus access was a write

bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	DMAADDR<31:24>											
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
	DMAADDR<23:16>											
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8				DMAADDI	R<15:8>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				DMAADD	R<7:0>							

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

17.1 **Control Registers**

ess				Bits															
Vir	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OC1CON	31:16	_	—		—	—	_		_	_		—	-	—	_	_	_	0000
3000	OCICON	15:0	ON	_	SIDL	_	-	-	-		_		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3010	OC1R	31:16								OC1R	<31:0>								xxxx
00.0		15:0								00.11	101107								XXXX
3020	OC1RS	31:16								OC1RS	<31:0>								XXXX
		15:0 31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	XXXX
3200	OC2CON	15:0	ON	_	SIDL								 OC32	OCFLT	OCTSEL		 OCM<2:0>	_	0000
		31:16			OIDE								0002	OOLEI	OUTOLL		0011112.02		xxxx
3210	OC2R	15:0		OC2R<31:0>												xxxx			
0000	000000	31:16													xxxx				
3220	OC2RS	15:0		0C2RS<31:0>											xxxx				
3400	OC3CON	31:16	-	—	_	—	—	_	_	_	_	—	—	-	—	_	—	_	0000
3400	003001	15:0	ON	_	SIDL	—	_			_	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3410	OC3R	31:16								OC3R	<31:0>								xxxx
		15:0																	XXXX
3420	OC3RS	31:16 15:0								OC3R5	<31:0>								XXXX
		31:16	_	_		_	_	_	_	_		_	_	_	_			_	xxxx 0000
3600	OC4CON	15:0	ON		SIDL	_	_	_	_	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
		31:16]				xxxx
3610	OC4R	15:0								OC4R	<31:0>								xxxx
3620	OC4RS	31:16								OC4RS	-21:0								xxxx
3020	004K3	15:0								00483	\$<31.0>								xxxx
3800	OC5CON	31:16	_	—		—	—	_		_	_	_	—	—	—		—		0000
0000		15:0	ON	—	SIDL	—	—	—	_	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3810	OC5R	31:16								OC5R	<31:0>								XXXX
		15:0																	xxxx
3820	OC5RS	31:16 15:0								OC5RS	6<31:0>								xxxx
		10.0																	1 ~~~~~

PIC32MX5XX/6XX/7

TABLE 17-1: OUTPUT COMPARE 1-OUTPUT COMPARE 5 REGISTER MAP

Legend:

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

REGIST	ER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)
bit 15	ON: SPI Peripheral On bit ⁽¹⁾
	1 = SPI Peripheral is enabled
bit 11	0 = SPI Peripheral is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit 1 = Discontinue operation when CPU enters in Idle mode
	0 = Continue operation in Idle mode
bit 12	DISSDO: Disable SDOx pin bit
	1 = SDOx pin is not used by the module (pin is controlled by associated PORT register)
	0 = SDOx pin is controlled by the module
bit 11-10	MODE<32,16>: 32/16-Bit Communication Select bits
	MODE32 MODE16 Communication
	1 x 32-bit 0 1 16-bit
	0 1 16-bit 0 0 8-bit
bit 9	SMP: SPI Data Input Sample Phase bit
	Master mode (MSTEN = 1):
	1 = Input data sampled at end of data output time
	0 = Input data sampled at middle of data output time
	Slave mode (MSTEN = 0):
	SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾
	1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
h:+ 7	0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
bit 7	SSEN: Slave Select Enable (Slave mode) bit 1 = SSx pin used for Slave mode
	0 = SSx pin not used for Slave mode (pin is controlled by port function)
bit 6	CKP: Clock Polarity Select bit
	1 = Idle state for clock is a high level; active state is a low level
	0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	Unimplemented: Read as '0'
bit 3-2	STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
Dit 0-2	11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
	10 = Interrupt is generated when the buffer is empty by one-half or more
	01 = Interrupt is generated when the buffer is completely empty
	00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are
	complete
bit 1-0	SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits 11 = Interrupt is generated when the buffer is full
	10 = Interrupt is generated when the buffer is full by one-half or more
	01 = Interrupt is generated when the buffer is not empty
	00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
	When using the 1.1 DROLK divisor the user's activisity should not used anywrite the mentation " OFR i
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2:	This bit can only be written when the ON bit = 0 .
3:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI
0.	mode (FRMEN = 1).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	_	—	_	—		
Range 3 31:24 - 23:16 -	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	_	—	_	—		
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾		AMASK	<3:0> ⁽²⁾			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ARPT<7:0> ⁽²⁾									

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 **CHIME:** Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽³⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read.
 The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

1111 = Reserved

- 1010 = Reserved
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1000 = Once a month
- 0111 = Once a week
- 0110 = Once a day
- 0101 = Every hour
- 0100 = Every 10 minutes
- 0011 = Every minute
- 0010 = Every 10 seconds
- 0001 = Every second
- 0000 = Every half-second
- Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0 > = 0.0 and CHIME = 0.
 - **2:** This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is only reset on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_		—	—	—	—
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16		MONT	H10<3:0>			MONTH	01<3:0>	
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8		DAY	10<1:0>			DAY01	<3:0>	
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
7:0		_	_			WDAY0)1<3:0>	

REGISTER 22-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Logona.				1
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	I
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

REGISTER 24-1: CICON: CAN MODULE CONTROL REGISTER (CONTINUED)

bit 13 **SIDLE:** CAN Stop in Idle bit 1 = CAN Stops operation when system enters Idle mode 0 = CAN continues operation when system enters Idle mode

bit 12 Unimplemented: Read as '0'

- bit 11 CANBUSY: CAN Module is Busy bit
 - 1 = The CAN module is active
 - 0 = The CAN module is completely disabled
- bit 10-5 Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)

- 10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>)
- •
- •
- •

00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>) 00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	_	_	—	—	—	—	—	
22:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
23:16		WAKFIL		—	—	SEG	SEG2PH<2:0> ^(1,4)		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	Ş	SEG1PH<2:0>			PRSEG<2:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	SJW<1:	0> ⁽³⁾		BRP<5:0>					

REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	ue at POR '1' = Bit is set		x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

- bit 22 **WAKFIL:** CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x Tq
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x Tq
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2:	3 Time bit sampling is not allowed for BRP < 2.
3:	SJW ≤ SEG2PH.
4:	The Time Quanta per bit must be greater than 7 (that is, $TQBIT > 7$).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 24-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)

- bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = A bus wake-up activity interrupt has occurred 0 = A bus wake-up activity interrupt has not occurred CERRIF: CAN Bus Error Interrupt Flag bit bit 13 1 = A CAN bus error has occurred 0 = A CAN bus error has not occurred bit 12 SERRIF: System Error Interrupt Flag bit 1 = A system error occurred (typically an illegal address was presented to the system bus) 0 = A system error has not occurred bit 11 **RBOVIF:** Receive Buffer Overflow Interrupt Flag bit 1 = A receive buffer overflow has occurred 0 = A receive buffer overflow has not occurred bit 10-4 Unimplemented: Read as '0' MODIF: CAN Mode Change Interrupt Flag bit bit 3 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) 0 = A CAN module mode change has not occurred bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit 1 = A CAN timer (CANTMR) overflow has occurred 0 = A CAN timer (CANTMR) overflow has not occurred bit 1 **RBIF:** Receive Buffer Interrupt Flag bit 1 = A receive buffer interrupt is pending 0 = A receive buffer interrupt is not pending bit 0 TBIF: Transmit Buffer Interrupt Flag bit 1 = A transmit buffer interrupt is pending
 - 1 = A transmit buffer interrupt is pending
 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 24-7: CIRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXOVF<31:0>: FIFOn Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 24-8: CITMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24		CANTS<15:8>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	CANTS<7:0>										
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.6	CANTSPRE<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				CANTSPF	RE<7:0>						

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits

1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks
.

0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be paused when CANCAP = 0.

2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

REGISTER 24-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED)

bit 15	FLTEN5: Filter 17 Enable bit
	0 = Filter is disabled
bit 14-13	MSEL5<1:0>: Filter 5 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL5<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN4: Filter 4 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 6-5	MSEL4<1:0>: Filter 4 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL4<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN15	MSEL15<1:0>		FSEL15<4:0>					
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN14	MSEL14<1:0>		FSEL14<4:0>					
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	FLTEN13	MSEL13<1:0>		FSEL13<4:0>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN12	MSEL1	2<1:0>	FSEL12<4:0>					

REGISTER 24-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	<pre>FSEL15<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
bit 23	FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	<pre>FSEL14<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
Note:	The hits in this register can only be modified if the correspondir

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 24-21: CIFIFOINTn: CAN FIFO INTERRUPT REG						GISTER 'n' (n	= 0 THROU	GH 31)	
	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
	Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0

Range	31/23/15/7	7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/		27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	_				TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0	
23:16	—	—	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—			_	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO full 0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO not empty0 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is not full 0 = FIFO is full
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31.24	HT<31:24>													
22.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0						
23:16	HT<23:16>													
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	HT<15:8>													
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				HT<	7:0>									

REGISTER 25-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 25-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	HT<63:56>													
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	HT<55:48>													
45.0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0													
15:8	HT<47:40>													
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0	HT<39:32>													

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10			_		—	_		
15.0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1
15:8	ON ⁽¹⁾	—	—	—	—	VREFSEL ⁽²⁾	BGSEL	<1:0> (2)
7:0	U-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	CVROE	CVRR	CVRSS		CVR<	:3:0>	

REGISTER 27-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

ON: Comparator Voltage Reference On bit⁽¹⁾ bit 15 Setting or clearing this bit does not affect the other bits in this register. 1 = Module is enabled0 = Module is disabled and does not consume current bit 14-11 Unimplemented: Read as '0' VREFSEL: Voltage Reference Select bit⁽²⁾ bit 10 1 = CVREF = VREF+0 = CVREF is generated by the resistor network BGSEL<1:0>: Band Gap Reference Source bits⁽²⁾ bit 9-8 11 = IVRFF = VRFF+10 = Reserved 01 = IVREF = 0.6V (nominal, default)

- 00 = IVREF = 1.2V (nominal)
- bit 7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit
 - 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin

bit 5 **CVRR:** CVREF Range Selection bit

- 1 = 0 to 0.625 CVRSRC, with CVRSRC/24 step size
- 0 = 0.25 CVRSRC to 0.719 CVRSRC, with CVRSRC/32 step size

bit 4 **CVRSS:** CVREF Source Selection bit

- 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)0 = Comparator voltage reference source, CVRSRC = AVDD - AVSS **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits
- bit 3-0 When CVRR = 1: $CVREF = (CVR < 3:0 > /24) \bullet (CVRSRC)$ When CVRR = 0: $CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)$
 - Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: These bits are not available on PIC32MX575/675/775/795 devices. On these devices, the reset value for CVRON is '0000'.

TABLE 29-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess		e								Bit	s								6
Virtual Address (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2550		31:16	FVBUSONIO	FUSBIDIO	_		_	FCANIO	FETHIO	FMIIEN	_	_	_		_	F	SRSSEL<2:0	>	xxxx
2660	2FF0 DEVCFG3			USERID<15:0> xxx													xxxx		
2554		31:16	—	—	_			—	_		_		—		_	FF	PLLODIV<2:()>	xxxx
2664	DEVCFG2	15:0	UPLLEN	_	_	_	_	UF	PLLIDIV<2:0	>	_	F	PLLMUL<2:0)>	_	F	PLLIDIV<2:0	>	xxxx
0550	DEVCFG1	31:16	_	_	_	_	-	_	_	_	FWDTEN	_	_		V	VDTPS<4:0	>		xxxx
2660	DEVCEGI	15:0	FCKSM	<1:0>	FPBDI	V<1:0>	_	OSCIOFNC	POSCM	OD<1:0>	IESO	_	FSOSCEN	—	_	ŀ	NOSC<2:0>		xxxx
2550	DEVCFG0	31:16	_	—	_	CP	_	—	_	BWP	_	_	_	_		PWP	<7:4>		xxxx
2650	DEVCEGO	15:0		PWP<	3:0>		_	_	_	_	_	_	_	-	ICESEL	_	DEBUG	6<1:0>	xxxx
	d	unkno	wn value on R	aaati ur	implomente	d rood oo f	Depetivel	luca ara ahau	n in havada	aimal	•					•			

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 29-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

ess		æ					_	_		В	ts								(1)
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F000	DDDOON	31:16	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
F200	DDPCON	15:0	_		_	_	_	_	_	_	_	—	_	—	JTAGEN	TROEN		TDOEN	0008
F000	DEVID	31:16		VER	<3:0>							DEVID	<27:16>						xxxx
F220	DEVID	15:0		DEVID<15:0> xxxx															
5000		31:16								evere:	Y<31:0>								0000
F230	SYSKEY	15:0								STORE	1<31.0>								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant. Refer to "PIC32MX5XX/6XX/7XX Family Silicon Errata and Data Sheet Clarification" (DS80000480) for more information.

REGISTER 29-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

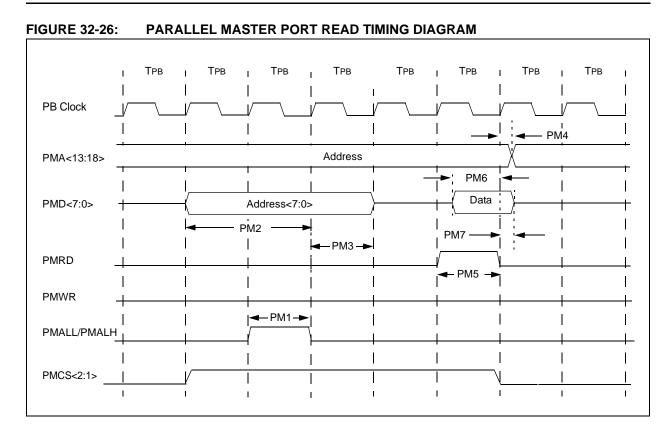
- bit 13-12 **FPBDIV<1:0>:** Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output is disabled
 - 0 = CLKO output signal is active on the OSCO pin; the Primary Oscillator must be disabled or configured for External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 Reserved: Write '1'
- bit 5 FSOSCEN: Secondary Oscillator Enable bit
 - 1 = Enable the Secondary Oscillator
 - 0 = Disable the Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

32.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

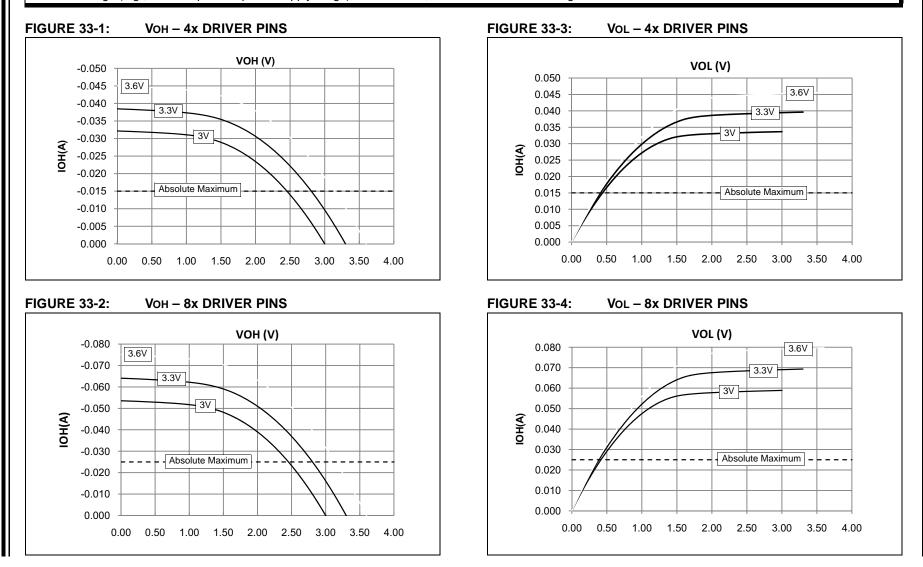

(See Note 1)

Ambient temperature under bias Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	300 mA
Maximum current into Vod pin(s) (Note 2)	300 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).

3: See the "Device Pin Tables" section for the 5V tolerant pins.


TABLE 32-40: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			$\label{eq:standard operating Conditions: 2.3V to 3.6V (unless otherwise stated) \\ Operating temperature & -40^\circ C \leq TA \leq +85^\circ C \text{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \text{ for V-Temp} \\ \end{aligned}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	_	—	—
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 Трв	_	—	—
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв		—	—
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_		ns	—
PM5	Trd	PMRD Pulse Width	—	1 Трв	_	—	—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_	_	ns	_
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 TPBCLK	—	_	ns	PMP PBCLK

Note 1: These parameters are characterized, but not tested in manufacturing.

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX5XX/6XX/7X